Skip to main content

Theoretical Foundations of Photocatalysis

  • Chapter
  • First Online:
Pyrochlore Oxides

Abstract

The technological progress of the twentieth-twenty-first centuries has caused serious problems: the depletion of traditional non-renewable sources (oil, gas, coal) as well as environmental problems, primarily related to the greenhouse effect. The study of the photocatalysis and the development of new effective photocatalytic systems can lead to solving problems associated with the need to replace non-renewable raw materials and energy sources with renewable ones, as well as significantly advance in reducing the concentration of carbon dioxide in the atmosphere by capturing and further transforming it into value-added products. This Chapter covers general aspects of photocatalytic reactions as well as the photocatalytic materials with the main focus on pyrochlore oxides and methods for improving their activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodionov IA, Zvereva IA (2016) Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions. Russian Chemical Reviews. 85(3):248–279

    Google Scholar 

  2. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, 135 p

    Google Scholar 

  3. Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41(4):1437–1451

    Google Scholar 

  4. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2–based photocatalysts: a comparative overview. RSC Adv 4(70):37003–37026

    Google Scholar 

  5. Anwer H, Mahmood A, Lee J, Kim K-H, Park J.-W, Yip ACK (2019) Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res. 12(5):955–972

    Google Scholar 

  6. Tsang CHA, Li K, Zeng Y, Zhao W, Zhang T, Zhan Y, Xie R, Leung DYC, Huang H (2019) Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environ Int 125:200–228

    Google Scholar 

  7. Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322

    Google Scholar 

  8. Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43(34):4463–4466.

    Google Scholar 

  9. Sang Y, Liu H, Umar A (2015) Photocatalysis from UV/Vis to near-infrared light: towards full solar-light spectrum activity. ChemCatChem 7(4):559–573

    Google Scholar 

  10. Parmon VN (1997) Photocatalysis as a phenomenon: aspects of terminology. Catal Today 39(3):137–144

    Google Scholar 

  11. Zamarayev KI (1991) Photocatalytic conversion of solar energy. Heterogeneous, homogeneous and molecularly structured-organized systems. N. P. V. - Novosibirsk: Science

    Google Scholar 

  12. Kryukov AI, et al (2013) Nanophotocatalysis. Academperiodika, Kiev. 618 p

    Google Scholar 

  13. Eibner A (1911) Action of light on pigments. Chemiker Zeitung 35:753–755

    Google Scholar 

  14. Landau M (1913) The phenomenon of photocatalysis. Comptes rendus 156:1894–1896

    Google Scholar 

  15. Bruner L, Kozak J (1911) On the knowledge of photocatalysis. I. The light reaction in mixtures: uranium salt + oxalic acid. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 17(9):354–360

    Google Scholar 

  16. Baly ECC, Heilbron IM, Barker WF (1921) CX—Photocatalysis. Part I. The synthesis of formaldehyde and carbohydrates from carbon dioxide and water. J Chem Soc Trans 119:1025–1035

    Google Scholar 

  17. Baur E, Perret A (1924) On the effect of light on dissolved silver salts in the presence of zinc oxide. Helv Chim Acta 7(1):910–915

    Google Scholar 

  18. Keidel E (1929) The fading of aniline dyes in the presence of titanium white. Farben-Zeitung 34:1242–1243

    Google Scholar 

  19. Goodeve CF, Kitchener JA (1938) The mechanism of photosensitisation by solids. Trans Faraday Soc 34:902–908

    Google Scholar 

  20. Renz C (1932) On the effect of oxides on silver nitrate and gold chloride in light. Helv Chim Acta 15(1):1077–1084

    Google Scholar 

  21. Filimonov VN (1964) Photocatalytic oxidation of gaseous isopropanol on ZnO and TiO2. Rep Acad Sci USSR 154:922–925

    Google Scholar 

  22. Ikekawa A, Kamiya M, Fujita Y, Kwan T (1965) On the competition of homogeneous and heterogeneous chain terminations in heterogeneous photooxidation catalysis by Zinc Oxide. Bull Chem Soc Jpn 38(1):32–36

    Google Scholar 

  23. Kato S-i, Mashio F (1964) Titanium dioxide-photocatalyzed liquid phase oxidation of tetralin. J Soc Chem Ind, Jpn 67(8):1136–1140

    Google Scholar 

  24. Alpanda S, Peralta-Alva A (2010) Oil crisis, energy-saving technological change and the stock market crash of 1973–74. Rev Econ Dyn 13(4):824–842

    Google Scholar 

  25. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Google Scholar 

  26. Nozik AJ (1977) Photochemical diodes. Appl Phys Lett 30(11):567–569

    Google Scholar 

  27. Sakata T, Kawai T (1981) Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chem Phys Lett 80(2):341–344

    Google Scholar 

  28. Wagner FT, Somorjai GA (2002) Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. J Am Chem Soc 102(17):5494–5502

    Google Scholar 

  29. Ciamician G (1912) The photochemistry of the future. Science 36(926):385–394

    Google Scholar 

  30. Cherevatskaya M, König B (2014) Heterogeneous photocatalysts in organic synthesis. Russ Chem Rev 83(3):183–195

    Google Scholar 

  31. Colmenares JC, Luque R (2014) Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem Soc Rev 43(3):765–778

    Google Scholar 

  32. Tsidilkovsky IM (1972) Electrons and holes in semiconductors. Energy Spectr Dyn. Moscow, Science. 640 p

    Google Scholar 

  33. Kozlova EA, Parmon VN (2017) Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors. Russ Chem Rev 86(9): 870–906

    Google Scholar 

  34. Ohtani B (2014) Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics. Phys Chem Chem Phys 16(5):1788–1797

    Google Scholar 

  35. Lee YY, Jung HS, Kang YT (2017) A review: effect of nanostructures on photocatalytic CO2 conversion over metal oxides and compound semiconductors. J CO2 Util 20:163–177

    Google Scholar 

  36. Xu S, Carter EA (2018) Theoretical insights into heterogeneous (photo) electrochemical CO2 reduction. Chem Rev 119(11):6631–6669

    Google Scholar 

  37. Kovačič Ž, Likozar B, Huš M (2020) Photocatalytic CO2 reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal 10(24):14984–15007

    Google Scholar 

  38. Kato H, Kudo A (2001) Water Splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J Phys Chem B 105(19):4285–4292

    Google Scholar 

  39. Braslavsky SE, Braun AM, Cassano AE, Emeline AV, Litter MI, Palmisano L, Parmon VN, Serpone N (2011) Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl Chem 83(4):931–1014

    Google Scholar 

  40. Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117(17):11302–11336

    Google Scholar 

  41. Hirakawa T, Kominami H, Ohtani B, Nosaka Y (2001) Mechanism of photocatalytic production of active oxygens on highly crystalline TiO2 particles by means of chemiluminescent probing and ESR spectroscopy. J Phys Chem B 105(29):6993–6999

    Google Scholar 

  42. Goto H (2004) Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles. J Catal 225(1):223–229

    Google Scholar 

  43. Nosaka Y, Nakamura M, Hirakawa T (2002) Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method. Phys Chem Chem Phys 4(6):1088–1092

    Google Scholar 

  44. Shiraishi Y, Sugano Y, Ichikawa S, Hirai T (2012) Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles. Catal Sci Technol 2(2):400–405

    Google Scholar 

  45. Ding X, Zhao K, Zhang L (2014) Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions. Environ Sci Technol 48(10):5823–5831

    Google Scholar 

  46. Sawyer DT, Valentine JS (2002) How super is superoxide? Acc Chem Res 14(12):393–400

    Google Scholar 

  47. Diesen V, Jonsson M (2014) Formation of H2O2 in TiO2 photocatalysis of oxygenated and deoxygenated aqueous systems: a probe for photocatalytically produced hydroxyl radicals. J Phys Chem C 118(19):10083–10087

    Google Scholar 

  48. Hirakawa T, Yawata K, Nosaka Y (2007) Photocatalytic reactivity for O2 and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl Catal A: Gen 325(1):105–111

    Google Scholar 

  49. Kakuma Y, Nosaka AY., Nosaka Y (2015) Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water. Phys Chem Chem Phys 17(28):18691–18698

    Google Scholar 

  50. Walling C (2002) Fenton's reagent revisited. Acc Chem Res 8(4):125–131

    Google Scholar 

  51. Gohre K, Miller GC (1985) Photochemical generation of singlet oxygen on non-transition-metal oxide surfaces. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 81(3):793–800

    Google Scholar 

  52. Nosaka Y, Daimon T, Nosaka AY, Murakami Y (2004) Singlet oxygen formation in photocatalytic TiO2 aqueous suspension. Phys Chem Chem Phys 6(11):2917–2918

    Google Scholar 

  53. Daimon T, Hirakawa T, Kitazawa M, Suetake J, Nosaka Y (2008) Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts. Appl Catal A: Gen 340(2):169–175

    Google Scholar 

  54. Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24(2):663–677

    Google Scholar 

  55. Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284: 582–598

    Google Scholar 

  56. Boehm HP (1971) Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc 52:264–275

    Google Scholar 

  57. Salvador P (2011) Mechanisms of water photooxidation at n-TiO2 rutile single crystal oriented electrodes under UV illumination in competition with photocorrosion. Prog Surf Sci 86(1–2):41–58

    Google Scholar 

  58. Suda Y, Morimoto T (2002) Molecularly adsorbed water on the bare surface of titania (rutile). Langmuir 3(5):786–788

    Google Scholar 

  59. Kaise M, Nagai H, Tokuhashi K, Kondo S, Nimura S, Kikuchi O (2002) Electron spin resonance studies of photocatalytic interface reactions of suspended M/TiO2 (M = Pt, Pd, Ir, Rh, Os, or Ru) with alcohol and acetic acid in aqueous media. Langmuir 10(5):1345–1347

    Google Scholar 

  60. Mills A, Burns L, O’Rourke C, Elouali S (2016) Kinetics of the photocatalysed oxidation of NO in the ISO 22197 reactor. J Photochem Photobiol A: Chem 321:137–142

    Google Scholar 

  61. Dillert R, Engel A, Große J, Lindner P, Bahnemann DW (2013) Light intensity dependence of the kinetics of the photocatalytic oxidation of nitrogen(II) oxide at the surface of TiO2. Phys Chem Chem Phys 15(48):20876–20886

    Google Scholar 

  62. Xiao J, Xie Y, Nawaz F, Wang Y, Du P, Cao H (2016) Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants. Appl Catal B: Environ 183:417–425

    Google Scholar 

  63. Li K, An X, Park KH, Khraisheh M, Tang J (2014) A critical review of CO2 photoconversion: catalysts and reactors. Catal Today 224:3–12

    Google Scholar 

  64. Al Jitan S, Palmisano G, Garlisi C (2020) Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts 10(2):227

    Google Scholar 

  65. Koelsch M, Cassaignon S, Ta Thanh Minh C, Guillemoles JF, Jolivet JP (2004) Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium. Thin Solid Films 451–452:86–92

    Google Scholar 

  66. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C: Photochem Rev 25:1–29

    Google Scholar 

  67. Bakbolat B, Daulbayev C, Sultanov F, Beissenov R, Umirzakov A, Mereke A, Bekbaev A, Chuprakov I (2020) Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: a review. Nanomaterials 10(9):1790

    Google Scholar 

  68. Shtyka O, Ciesielski R, Kedziora A, Maniukiewicz W, Dubkov S, Gromov D, Maniecki T (2020) Photocatalytic reduction of CO2 over Me (Pt, Pd, Ni, Cu)/TiO2 catalysts. Top Catal 63(1–2):113–120

    Google Scholar 

  69. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Whangbo M-H (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 21(25):9079–9087

    Google Scholar 

  70. Lee JY, Choi J-H (2019) Sonochemical synthesis of Ce-doped TiO2 nanostructure: a visible-light-driven photocatalyst for degradation of toluene and O-xylene. Materials 12(8):1265

    Google Scholar 

  71. Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. J Catal 308:168–175

    Google Scholar 

  72. Xiong Y, He D, Jaber R, Cameron PJ, Edler KJ (2017) Sulfur-doped cubic mesostructured titania films for use as a solar photocatalyst. J Phys Chem C 121(18):9929–9937

    Google Scholar 

  73. Liu D, Wang J, Zhou J, Xi Q, Li X, Nie E, Piao X, Sun Z (2019) Fabricating I doped TiO2 photoelectrode for the degradation of diclofenac: performance and mechanism study. Chem Eng J 369:968–978

    Google Scholar 

  74. Jafari AJ, Kalantari RR, Kermani M, Firooz MH (2018) Photocatalytic oxidation of benzene by ZnO coated on glass plates under simulated sunlight. Chem Pap 73(3):635–644

    Google Scholar 

  75. Cui Z, Zhou H, Wang G, Zhang Y, Zhang H, Zhao H (2019) Enhancement of the visible-light photocatalytic activity of CeO2 by chemisorbed oxygen in the selective oxidation of benzyl alcohol. New J Chem 43(19):7355–7362

    Google Scholar 

  76. Nogueira AE, Oliveira JA, da Silva GTST, Ribeiro C (2019) Insights into the role of CuO in the CO2 photoreduction process. Sci Rep 9(1):1316

    Google Scholar 

  77. Liu Y, Zhang P, Tian B, Zhang J (2015) Core–Shell structural CdS@SnO2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde. ACS Appl Mater & Interfaces 7(25):13849–13858

    Google Scholar 

  78. Villa K, Murcia-López S, Andreu T, Morante JR (2015) Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl Catal B: Environ. 163:150–155

    Google Scholar 

  79. Li N, Yan W, Yang P, Zhang H, Wang Z, Zheng J, Jia S, Zhu Z (2016) Direct C–C coupling of bio-ethanol into 2,3-butanediol by photochemical and photocatalytic oxidation with hydrogen peroxide. Green Chem 18(22):6029–6034

    Google Scholar 

  80. Qin Q, Liu Y, Shan W, Hou W, Wang K, Ling X, Zhou Y, Wang J (2017) Synergistic catalysis of Fe2O3 nanoparticles on mesoporous poly(ionic liquid)-derived carbon for benzene hydroxylation with dioxygen. Ind Eng Chemi Res 56(43):12289–12296

    Google Scholar 

  81. Danish MSS, Bhattacharya A, Stepanova D, Mikhaylov A, Grilli ML, Khosravy M, Senjyu T (2020) A systematic review of metal oxide applications for energy and environmental sustainability. Metals 10(12):1604

    Google Scholar 

  82. Hao H, Lang X (2019) Metal sulfide photocatalysis: visible‐light‐induced organic transformations. ChemCatChem 11(5):1378–1393

    Google Scholar 

  83. Oliva A (2001) Formation of the band gap energy on CdS thin films growth by two different techniques. Thin Solid Films 391(1):28–35

    Google Scholar 

  84. Baglov AV, et al (2020) Structural and photoluminescent properties of graphite-like carbon nitride. Semicond Phys Tech 54(2):176–180

    Google Scholar 

  85. Jourshabani M, Lee B-K, Shariatinia Z (2020) From traditional strategies to Z-scheme configuration in graphitic carbon nitride photocatalysts: recent progress and future challenges. Appl Catal B: Environ 276:119157

    Google Scholar 

  86. Zhai H-S, Cao L, Xia X-H (2013) Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin Chem Lett 24(2):103–106

    Google Scholar 

  87. Hwang S, Lee S, Yu J-S (2007) Template-directed synthesis of highly ordered nanoporous graphitic carbon nitride through polymerization of cyanamide. Appl Surf Sci 253(13):5656–5659

    Google Scholar 

  88. Bojdys MJ, Müller J-O, Antonietti M, Thomas A (2008) Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem-Eur J 14(27):8177–8182

    Google Scholar 

  89. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21(38):14398–14401

    Google Scholar 

  90. Zhang Y, Gong H, Li G, Zeng H, Zhong L, Liu K, Cao H, Yan H (2017) Synthesis of graphitic carbon nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light. Int J Hydrog Energy 42(1):143–151

    Google Scholar 

  91. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Google Scholar 

  92. Wei Y, Zou Q, Ye P, Wang M, Li X, Xu A (2018) Photocatalytic degradation of organic pollutants in wastewater with g-C3N4/sulfite system under visible light irradiation. Chemosphere 208:358–365

    Google Scholar 

  93. Yu W, Xu D, Peng T (2015) Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem A 3(39):19936–19947

    Google Scholar 

  94. Zhang L, He X, Xu X, Liu C, Duan Y, Hou L, Zhou Q, Ma C, Yang X, Liu R, Yang F, Cui L, Xu C, Li Y (2017) Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. Appl Catal B: Environ 203:1–8

    Google Scholar 

  95. Bellardita M, García-López EI, Marcì G, Krivtsov I, García JR, Palmisano L (2018) Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Appl Catal B: Environ 220:222–233

    Google Scholar 

  96. Zhang Y, Hu L, Zhao S, Liu N, Bai L, Liu J, Huang H, Liu Y, Kang Z (2016) Ag3PW12O40/C3N4 nanocomposites as an efficient photocatalyst for hydrocarbon selective oxidation. RSC Adv 6(65):60394–60399

    Google Scholar 

  97. Zou H, Yan X, Ren J, Wu X, Dai Y, Sha D, Pan J, Liu J (2015) Photocatalytic activity enhancement of modified g-C3N4 by ionothermal copolymerization. J Mater 1(4):340–347

    Google Scholar 

  98. Butova VV, Soldatov MA, Guda AA, Lomachenko KA, Lamberti C (2016) Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ Chem Rev 85(3):280–307

    Google Scholar 

  99. Mialane P, Mellot-Draznieks C, Gairola P, Duguet M, Benseghir Y, Oms O, Dolbecq A (2021) Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chem Soc Rev 50(10):6152–6220

    Google Scholar 

  100. Batten SR, Champness NR, Chen X-M, Garcia-Martinez J, Kitagawa S, Öhrström L, O’Keeffe M, Paik Suh M, Reedijk J (2013) Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem 85(8):1715–1724

    Google Scholar 

  101. Tsivadze AY, Aksyutin OE, Ishkov AG, Knyazeva MK, Solovtsova OV, Men’shchikov IE, Fomkin AA, Shkolin AV, Khozina EV, Grachev VA (2019) Metal–organic framework structures: adsorbents for natural gas storage. Russ Chem Rev. 88(9):925–978

    Google Scholar 

  102. Lin R-B, Xiang S, Xing H, Zhou W, Chen B (2019) Exploration of porous metal–organic frameworks for gas separation and purification. Coord Chem Rev 378:87–103

    Google Scholar 

  103. Hiraide S, Sakanaka Y, Kajiro H, Kawaguchi S, Miyahara MT, Tanaka H (2020) High-throughput gas separation by flexible metal–organic frameworks with fast gating and thermal management capabilities. Nat Commun 11(1):3867

    Google Scholar 

  104. Li H, Li L, Lin R-B, Zhou W, Zhang Z, Xiang S, Chen B (2019) Porous metal–organic frameworks for gas storage and separation: status and challenges. EnergyChem 1(1):100006

    Google Scholar 

  105. Falsafi M, Saljooghi AS, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2021) Smart metal organic frameworks: focus on cancer treatment. Biomater Sci 9(5):1503–1529

    Google Scholar 

  106. Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G (2021) Current advances in versatile metal–organic frameworks for cancer therapy. J Drug Deliv Sci Technol 61:102266

    Google Scholar 

  107. Dhakshinamoorthy A, Li Z, Garcia H (2018) Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 47(22):8134–8172

    Google Scholar 

  108. Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402(6759):276–279

    Google Scholar 

  109. Biemmi E, Christian S, Stock N, Bein T (2009) High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater 117(1–2):111–117

    Google Scholar 

  110. Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64(36):8553–8557

    Google Scholar 

  111. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851

    Google Scholar 

  112. Healy C, Patil KM, Wilson BH, Hermanspahn L, Harvey-Reid NC, Howard BI, Kleinjan C, Kolien J, Payet F, Telfer SG, Kruger PE, Bennett TD (2020) The thermal stability of metal-organic frameworks. Coord Chem Rev 419:213388

    Google Scholar 

  113. Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR (2017) New synthetic routes towards MOF production at scale. Chem Soc Rev 46(11):3453–3480

    Google Scholar 

  114. Qiu J, Zhang X, Feng Y, Zhang X, Wang H, Yao J (2018) Modified metal-organic frameworks as photocatalysts. Appl Catal B: Environ 231:317–342

    Google Scholar 

  115. Le TTT, Tran TD (2020) Photocatalytic degradation of rhodamine B by C and N Co doped TiO2 nanoparticles under visible-light irradiation. J Chem:1–8

    Google Scholar 

  116. McDonald KD, Bartlett BM (2019) Photocatalytic primary alcohol oxidation on WO3 nanoplatelets. RSC Adv 9(49):28688–28694

    Google Scholar 

  117. Liu X, Ye L, Liu S, Li Y, Ji X (2016) Photocatalytic reduction of CO2 by ZnO micro/nanomaterials with different morphologies and ratios of {0001} facets. Sci. Rep. 6(1):38474

    Google Scholar 

  118. Murugadoss G, Kumar DD, Kumar MR, Venkatesh N, Sakthivel P (2021) Silver decorated CeO2 nanoparticles for rapid photocatalytic degradation of textile rose bengal dye. Sci Rep 11(1):1080

    Google Scholar 

  119. Sophia PJ, Balaji D, James Caleb Peters T, Chander DS, Vishwath Rishaban S, Vijaya Shanthi P, Nagavenkatesh KR, Kumar MR (2020) Solar induced photocatalytic degradation of methylene blue by CdS/Ag2O nanocomposites. ChemistrySelect 5(14):4125–4135

    Google Scholar 

  120. Li Y, Pan C, Wang G, Leng Y, Jiang P, Dong Y, Zhu Y (2021) Improving the photocatalytic activity of benzyl alcohol oxidation by Z-Scheme SnS/g-C3N4. New J Chem 45(15):6611–6617

    Google Scholar 

  121. Alfaifi BY, Tahir AA, Wijayantha KGU (2019) Fabrication of Bi2WO6 photoelectrodes with enhanced photoelectrochemical and photocatalytic performance. Sol Energy Mater Sol Cells 195:134–141

    Google Scholar 

  122. Bi Y, Ehsan MF, Huang Y, Jin J, He T (2015) Synthesis of Cr-Doped SrTiO3 Photocatalyst and its application in visible-light-driven transformation of CO2 into CH4. J CO2 Util 12:3–48

    Google Scholar 

  123. Fukina DG, Suleimanov EV, Boryakov AV, Zubkov SY, Koryagin AV, Volkova NS, Gorshkov AP. Structure analysis and electronic properties of ATe4+0.5Te6+1.5–xM6+xO6 (A = Rb, Cs, M6+ = Mo, W) solid solutions with β-pyrochlore structure. J Solid State Chem 293:121787

    Google Scholar 

  124. Logan MW, Ayad S, Adamson JD, Dilbeck T, Hanson K, Uribe-Romo FJ (2017) Systematic variation of the optical bandgap in titanium based isoreticular metal–organic frameworks for photocatalytic reduction of CO2 under blue light. J Mater Chem A 5(23):11854–11863

    Google Scholar 

  125. Zhao X, Zhang Y, Wen P, Xu G, Ma D, Qiu P (2018) NH2-MIL-125(Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of cyclohexane. Mol Catal 452:175–183

    Google Scholar 

  126. Xu C, Pan Y, Wan G, Liu H, Wang L, Zhou H, Yu S-H, Jiang H-L (2019) Turning on visible-light photocatalytic C−H oxidation over metal–organic frameworks by introducing metal-to-cluster charge transfer. J Am Chem Soc 141(48):19110–19117

    Google Scholar 

  127. Bibi R, Shen Q, Wei L, Hao D, Li N, Zhou J (2018) Hybrid BiOBr/UiO-66-NH2 composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation. RSC Adv 8(4):2048–2058

    Google Scholar 

  128. Qiu X, Zhu Y, Zhang X, Zhang Y, Menisa LT, Xia C, Liu S, Tang Z (2019) Cerium‐based metal–organic frameworks with UiO architecture for visible light‐induced aerobic oxidation of benzyl alcohol. Solar RRL 4(8):1900449

    Google Scholar 

  129. Abdelhameed RM, El-Shahat M (2019) Fabrication of ZIF-67@MIL-125-NH2 nanocomposite with enhanced visible light photoreduction activity. J Environ Chem Eng 7(3):103194

    Google Scholar 

  130. Kudo A, Sayama K, Tanaka A, Asakura K, Domen K, Maruya K, Onishi T (1989) Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: structure and reaction mechanism. J Catal 120(2):337–352

    Google Scholar 

  131. Centi G, Perathoner S (2008) Catalysis by layered materials: a review. Microporous Mesoporous Mater 107(1–2):3–15

    Google Scholar 

  132. Kumar A, Kumar A, Krishnan V (2020) Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal 10(17):10253–10315.

    Google Scholar 

  133. Belousov AS, Suleimanov EV (2021) Application of metal–organic frameworks as an alternative to metal oxide-based photocatalysts for the production of industrially important organic chemicals. Green Chem 23(17):6172–6204

    Google Scholar 

  134. Belousov AS, Suleimanov EV, Fukina DG (2021) Pyrochlore oxides as visible light-responsive photocatalysts. New J Chem 45(48):22531–22558

    Google Scholar 

  135. Wei K, Faraj Y, Yao G, Xie R, Lai B (2021) Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: a review on recent progress. Chem Eng J 414:128783

    Google Scholar 

  136. Kumar V, Sharma R, Kumar S, Kaur M, Sharma JD (2019) Enhancement in the photocatalytic activity of Bi2Ti2O7 nanopowders synthesised via Pechini vs Co-Precipitation method. Ceram Int 45(16):20386–20395

    Google Scholar 

  137. Wang X-S, Zhou C, Shi R, Liu Q-Q, Zhang T-R (2019) Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution. Rare Metals 38(5):397–403

    Google Scholar 

  138. Thirumalairajan S, Girija K, Mastelaro VR, Ponpandian N (2014) Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO3 nanostructures comprised of nanosheet petals. New J Chem 38(11):5480–5490

    Google Scholar 

  139. Kumar V, Choudhary S, Malik V, Nagarajan R, Kandasami A, Subramanian A (2019) Enhancement in photocatalytic activity of SrTiO3 by tailoring particle size and defects. Phys Status Solidi A 216(18):1900294

    Google Scholar 

  140. Panayotov DA, Frenkel AI, Morris JR (2017) Catalysis and photocatalysis by nanoscale Au/TiO2: perspectives for renewable energy. ACS Energy Lett 2(5):1223–1231

    Google Scholar 

  141. Matsubara K, Inoue M, Hagiwara H, Abe T (2019) Photocatalytic water splitting over Pt-loaded TiO2 (Pt/TiO2) catalysts prepared by the polygonal barrel-sputtering method. Appl Catal B: Environ 254:7–14

    Google Scholar 

  142. Salomatina EV, Fukina DG, Koryagin AV, Titaev DN, Suleimanov EV, Smirnova LA (2021) Preparation and photocatalytic properties of titanium dioxide modified with gold or silver nanoparticles. J Environ Chem Eng 9(5):106078

    Google Scholar 

  143. Kavitha R, Kumar SG (2019) A review on plasmonic Au-ZnO heterojunction photocatalysts: Preparation, modifications and related charge carrier dynamics. Mater Sci Semicond Process 93:59–91

    Google Scholar 

  144. Hak CH, Sim LC, Leong KH, Lim PF, Chin YH, Saravanan P (2018) M/g-C3N4 (M=Ag, Au, and Pd) composite: synthesis via sunlight photodeposition and application towards the degradation of bisphenol A. Environ Sci Pollut Res 25(25):25401–25412

    Google Scholar 

  145. Nasir JA, Rehman Zu, Shah SNA, Khan A, Butler IS, Catlow CRA (2020) Recent developments and perspectives in CdS-based photocatalysts for water splitting. J Mater Chem A 8(40):20752–20780

    Google Scholar 

  146. Lebedev VA (2017) Methods for enhancing the photocatalytic activity of TiO2 and its based nanocomposites. Moscow, 123 p

    Google Scholar 

  147. Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A (2019) Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem Rev 120(2):986–1041

    Google Scholar 

  148. Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Li M, Bristow AD, Wu N (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041

    Google Scholar 

  149. Qiu G, Wang R, Han F, Tao X, Xiao Y, Li B (2019) One-Step Synthesized Au–Bi2WO6 hybrid nanostructures: synergistic effects of Au nanoparticles and oxygen vacancies for promoting selective oxidation under visible light. Ind Eng Chem Res 58(37):17389–17398

    Google Scholar 

  150. Tang R, Sun H, Zhang Z, Liu L, Meng F, Zhang X, Yang W, Li Z, Zhao Z, Zheng R, Huang J (2022) Incorporating plasmonic Au-nanoparticles into three-dimensionally ordered macroporous perovskite frameworks for efficient photocatalytic CO2 reduction. Chem Eng J 429:132137

    Google Scholar 

  151. Zhong Y, Chang J-Q, Hu C-H, Zhou J (2020) Fabrication of novel heterostructured catalyst Ag@AgCl/Bi2Ti2O7 and its excellent visible light photocatalytic performance. J Mol Struct 1222:128938

    Google Scholar 

  152. Wakayama H, Kato K, Kashihara K, Uchiyama T, Miyoshi A, Nakata H, Lu D, Oka K, Yamakata A, Uchimoto Y, Maeda K (2020) Activation of a Pt-loaded Pb2Ti2O5.4F1.2 photocatalyst by alkaline chloride treatment for improved H2 evolution under visible light. J Mater Chem A 8(18):9099–9108.

    Google Scholar 

  153. Li J, Lou Z, Li B (2021) Engineering plasmonic semiconductors for enhanced photocatalysis. J Mater Chem A 9(35):18818–18835

    Google Scholar 

  154. Nie J, Patrocinio AOT, Hamid S, Sieland F, Sann J, Xia S, Bahnemann DW, Schneider J (2018) New insights into the plasmonic enhancement for photocatalytic H2 production by Cu–TiO2 upon visible light illumination. Phys Chem Chem Phys 20(7):5264–5273

    Google Scholar 

  155. Zhou L, Zhang C, McClain MJ, Manjavacas A, Krauter CM, Tian S, Berg F, Everitt HO, Carter EA, Nordlander P, Halas NJ (2016) Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett 16(2):1478–1484

    Google Scholar 

  156. Liu L, Dai K, Zhang J, Li L (2021) Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. J Colloid Interface Sci 604:844–855

    Google Scholar 

  157. Zhang S, Zhang L, Fang S, Zhou J, Fan J, Lv K (2021) Plasmonic semiconductor photocatalyst: non-stoichiometric tungsten oxide. Environ Res 199:111259

    Google Scholar 

  158. Kozlova EA (2018) Heterogeneous semiconductor suspended photocatalysts for hydrogen production from aqueous solutions of electron donors. Novosibirsk, 332 p

    Google Scholar 

  159. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29(20):1601694

    Google Scholar 

  160. Mishra BP, Parida K (2021) Orienting Z-scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications. J Mater Chem A 9(16):10039–10080

    Google Scholar 

  161. Guo L, Huang H, Mei L, Li M, Zhang Y (2021) Bismuth-based Z-scheme photocatalytic systems for solar energy conversion. Mater Chem Front 5(6):2484–2505

    Google Scholar 

  162. Wu S, Lin Y, Hu YH (2021) Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: a review. J Mater Chem A 9(5):2592–2611

    Google Scholar 

  163. Liu H, Chen Y, Tian G, Ren Z, Tian C, Fu H (2015) Visible-light-induced self-cleaning property of Bi2Ti2O7-TiO2 composite nanowire arrays. Langmuir 31(21):5962–5969

    Google Scholar 

  164. Chen C, Zhou J, Geng J, Bao R, Wang Z, Xia J, Li H (2020) Perovskite LaNiO3/TiO2 step-scheme heterojunction with enhanced photocatalytic activity. Appl Surf Sci 503:144287

    Google Scholar 

  165. Mu Y-F, Zhang C, Zhang M-R, Zhang W, Zhang M, Lu T-B (2021) Direct Z-scheme heterojunction of ligand-free FAPbBr3/α-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation. ACS Appl Mater Interfaces 13(19):22314–22322

    Google Scholar 

  166. Zhu M, Zhang G, Zhai L, Cao J, Li S., Zeng T (2021) Polarization-enhanced photoelectrochemical properties of BaTiO3/BaTiO3−x/CdS heterostructure nanocubes. Dalton Trans 50(9):3137–3144

    Google Scholar 

  167. Adhikari SP, Hood ZD, Chen Vincent W, More KL, Senevirathne K, Lachgar A (2018) Visible-light-active g-C3N4/N-doped Sr2Nb2O7 heterojunctions as photocatalysts for the hydrogen evolution reaction. Sustain Energy Fuels 2(11):2507–2515

    Google Scholar 

  168. Sepahvand H, Sharifnia S (2019) Photocatalytic overall water splitting by Z-scheme g-C3N4/BiFeO3 heterojunction. Int J Hydrog Energy 44(42):23658–23668

    Google Scholar 

  169. Jayaraman V, Mani A (2020) Interfacial coupling effect of high surface area Pyrochlore like Ce2Zr2O7 over 2D g-C3N4 sheet photoactive material for efficient removal of organic pollutants. Sep Purif Technol 235:116242

    Google Scholar 

  170. Wang R, Ye C, Wang H, Jiang F (2020) Z-Scheme LaCoO3/g-C3N4 for efficient full-spectrum light-simulated solar photocatalytic hydrogen generation. ACS Omega 5(47):30373–30382

    Google Scholar 

  171. Tasleem S, Tahir M (2021) Constructing LaxCoyO3 perovskite anchored 3D g-C3N4 hollow tube heterojunction with proficient interface charge separation for stimulating photocatalytic H2 production. Energy Fuels 35(11):9727–9746

    Google Scholar 

  172. Bargozideh S, Tasviri M, Shekarabi S, Daneshgar H (2020) Magnetic BiFeO3 decorated UiO-66 as a p–n heterojunction photocatalyst for simultaneous degradation of a binary mixture of anionic and cationic dyes. New J Chem 44(30):13083–13092

    Google Scholar 

  173. Li Q, Li L, Long X, Tu Y, Ling L, Gu J, Hou L, Xu Y, Liu N, Li Z (2021) Rational design of MIL-88A(Fe)/Bi2WO6 heterojunctions as an efficient photocatalyst for organic pollutant degradation under visible light irradiation. Opt Mater 118:111260

    Google Scholar 

  174. Afroz K, Moniruddin M, Bakranov N, Kudaibergenov S, Nuraje N (2018) A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. J Mater Chem A 6(44):21696–21718

    Google Scholar 

  175. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114(19):9824–9852

    Google Scholar 

  176. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40(4):3000–3009

    Google Scholar 

  177. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Google Scholar 

  178. Zhang X, Liu A, Cao Y, Xie J, Jia W, Jia D (2019) Interstitial N-doped SrSnO3 perovskite: structural design, modification and photocatalytic degradation of dyes. New J Chem 43(27):10965–10972

    Google Scholar 

  179. Khan M. S., Diao Z., Osada M., Shen S (2020) Nitrogen doped ultrathin calcium/sodium niobate perovskite nanosheets for photocatalytic water oxidation. Sol Energy Mater Sol Cells 205:110283

    Google Scholar 

  180. Xu X, Wang R, Sun X, Lv M, Ni S (2020) Layered perovskite compound NaLaTiO4 modified by nitrogen doping as a visible light active photocatalyst for water splitting. ACS Catal 10(17):9889–9898

    Google Scholar 

  181. Marschall R, Mukherji A, Tanksale A, Sun C, Smith SC, Wang L, Lu GQ (2011) Preparation of new sulfur-doped and sulfur/nitrogen co-doped CsTaWO6 photocatalysts for hydrogen production from water under visible light. J Mater Chem 21(24):8871–8879

    Google Scholar 

  182. Ravi G, Shrujana P, Palla S, Reddy JR, Guje R, Velchuri R, Vithal M (2014) Enhanced photoactivity in nitrogen‐doped KM0.33W1.67O6 (M = Al and Cr). Micro Nano Lett 9(1):11–15

    Google Scholar 

  183. Liu B, Mo Q, Zhu J, Hou Z, Peng L, Tu Y, Wang Q (2016) Synthesis of Fe and N Co-doped Bi2Ti2O7 nanofiber with enhanced photocatalytic activity under visible light irradiation. Nanoscale Res Lett 11(1):391

    Google Scholar 

  184. Goldschmidt VM (1926) The laws of crystal chemistry. Die Naturwissenschaften 14(21):477–485

    Google Scholar 

  185. Zhang G, Liu G, Wang L, Irvine JTS (2016) Inorganic perovskite photocatalysts for solar energy utilization. Chem Soc Rev 45(21):5951–5984

    Google Scholar 

  186. Konysheva EY (2018) Perovskite-like materials based on transition and rare earth metals: regularities of chemical and thermal stability. Saint Petersburg, 305 p

    Google Scholar 

  187. Fuentes AF, Montemayor SM, Maczka M, Lang M, Ewing RC, Amador U (2018) A critical review of existing criteria for the prediction of pyrochlore formation and stability. Inorg Chem 57(19):12093–12105

    Google Scholar 

  188. Isupov VA (1958) Geometric criterion of pyrochlore structure. Crystallography 3(1):99–100

    Google Scholar 

  189. Cai L, Arias AL, Nino JC (2011) The tolerance factors of the pyrochlore crystal structure. J Mater Chem 21(11):3611–3618

    Google Scholar 

  190. Song Z, Liu Q (2020) Tolerance factor, phase stability and order–disorder of the pyrochlore structure. Inorg Chem Front 7(7):1583–1590

    Google Scholar 

  191. Shlyakhtina AV, Pigalskiy KS, Belov DA, Lyskov NV, Kharitonova EP, Kolbanev IV, Borunova AB, Karyagina OK, Sadovskaya EM, Sadykov VA, Eremeev NF (2018) Proton and oxygen ion conductivity in the pyrochlore/fluorite family of Ln2−xCaxScMO7−δ (Ln = La, Sm, Ho, Yb; M = Nb, Ta; x = 0, 0.05, 0.1) niobates and tantalates. Dalton Trans 47(7):2376–2392

    Google Scholar 

  192. Shlyakhtina AV, Pigalskiy KS (2019) Tolerance factor as the basic criterion in searching for promising oxygen-ion and proton conductors among Ln2–xDxM2O7–δ (Ln = La-Lu; M= Sn, Ti, Zr, Hf; D= Sr, Ca, Mg; x = 0, 0.1) 3+/4+ pyrochlores. Mater Res Bull 116:72–78

    Google Scholar 

  193. Waehayee A, Watthaisong P, Wannapaiboon S, Chanlek N, Nakajima H, Wittayakun J, Suthirakun S, Siritanon T (2020) Effects of different exchanging ions on the band structure and photocatalytic activity of defect pyrochlore oxide: a case study on KNbTeO6. Catal Sci & Technol 10(4):978–992

    Google Scholar 

  194. Kato H, Kobayashi H, Kudo A (2002) Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J Phys Chem B 106(48):12441–12447

    Google Scholar 

  195. Sun J, Chen G, Pei J, Jin R, Li Y (2012) A novel Bi1.5Zn1−xCuxTa1.5O7 photocatalyst: water splitting properties under visible light and its electronic structures. Int J Hydrog Energy 37(17):12960–12966

    Google Scholar 

  196. Bradha M, Vijayaraghavan T, Suriyaraj SP, Selvakumar R, Ashok AM (2015) Synthesis of photocatalytic La(1–x)AxTiO3.5–δ (A=Ba, Sr, Ca) nano perovskites and their application for photocatalytic oxidation of congo red dye in aqueous solution. J Rare Earths 33(2):160–167

    Google Scholar 

  197. Abdi M., Mahdikhah V., Sheibani S (2020) Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder. Opt Mater 102:109803

    Google Scholar 

  198. Yadav PK, Singh P, Shukla M, Banik S, Upadhyay C (2020) Effect of B-site substitution on structural, magnetic and optical properties of Ho2Ti2O7 pyrochlore oxide. J Phys Chem Solids 138:109267

    Google Scholar 

  199. Zhu M, Liang X, Yang BB, Zhu SJ, Xie C, Hu L, Wei RH, Lu WJ, Zhu XB, Sun YP (2021) Sizeable bandgap modulation in Y2Hf2O7 pyrochlore oxide thin films through B-site substitution. Appl Phys Lett 118(14):141902

    Google Scholar 

  200. Hou L, Zhang H, Dong L, Zhang L, Duprez D, Royer S (2017) A simple non-aqueous route to nano-perovskite mixed oxides with improved catalytic properties. Catal Today 287:30–36

    Google Scholar 

  201. Sulaeman U, Yin S, Sato T (2011) Solvothermal synthesis and photocatalytic properties of chromium-doped SrTiO3 nanoparticles. Appl Catal B: Environ 105(1–2):206–210

    Google Scholar 

  202. Parrino F, García-López E, Marcì G, Palmisano L, Felice V, Sora IN, Armelao L (2016) Cu-substituted lanthanum ferrite perovskites: Preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar light irradiation. J Alloy Compd 682:686–694

    Google Scholar 

  203. Wei Z-X, Wang Y, Liu J-P, Xiao C-M, Zeng W-W (2012) Synthesis, magnetization and photocatalytic activity of LaFeO3 and LaFe0.5Mn0.5−xO3−δ. Mater Chem Phys 136(2–3):755–761

    Google Scholar 

  204. Peng Q, Shan B, Wen Y, Chen R (2015) Enhanced charge transport of LaFeO3 via transition metal (Mn, Co, Cu) doping for visible light photoelectrochemical water oxidation. Int J Hydrog Energy 40(45):15423–15431

    Google Scholar 

  205. Bantawal H, Shenoy US, Bhat DK (2020) Vanadium-doped SrTiO3 nanocubes: insight into role of vanadium in improving the photocatalytic activity. Appl Surf Sci 513:145858

    Google Scholar 

  206. Peng J, Lu X, Jiang X, Zhang Y, Chen Q, Lai B, Yao G (2018) Degradation of atrazine by persulfate activation with copper sulfide (CuS): kinetics study, degradation pathways and mechanism. Chem Eng J 354:740–752

    Google Scholar 

  207. He Y, Zhang J, Zhou H, Yao G, Lai B (2020) Synergistic multiple active species for the degradation of sulfamethoxazole by peroxymonosulfate in the presence of CuO@FeOx@Fe0. Chem Eng J 380:122568

    Google Scholar 

  208. Wang Y, Chi Z, Chen C., Su C., Liu D., Liu Y., Duan X., Wang S (2020) Facet- and defect-dependent activity of perovskites in catalytic evolution of sulfate radicals. Appl Catal B: Environ 272:118972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Belousov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belousov, A.S. (2024). Theoretical Foundations of Photocatalysis. In: Fukina, D.G., Belousov, A.S., Suleimanov, E.V. (eds) Pyrochlore Oxides. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-46764-6_3

Download citation

Publish with us

Policies and ethics