Skip to main content

Recent Advances of RNA m6A Modifications in Cancer Immunoediting and Immunotherapy

  • Chapter
  • First Online:
Epigenetics in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 190))

  • 501 Accesses

Abstract

Cancer immunotherapy, which modulates immune responses against tumors using immune-checkpoint inhibitors or adoptive cell transfer, has emerged as a novel and promising therapy for tumors. However, only a minority of patients demonstrate durable responses, while the majority of patients are resistant to immunotherapy. The immune system can paradoxically constrain and promote tumor development and progression. This process is referred to as cancer immunoediting. The mechanisms of resistance to immunotherapy seem to be that cancer cells undergo immunoediting to evade recognition and elimination by the immune system. RNA modifications, specifically N6-methyladenosine (m6A) methylation, have emerged as a key regulator of various post-transcriptional gene regulatory processes, such as RNA export, splicing, stability, and degradation, which play unappreciated roles in various physiological and pathological processes, including immune system development and cancer pathogenesis. Therefore, a deeper understanding of the mechanisms by which RNA modifications impact the cancer immunoediting process can provide insight into the mechanisms of resistance to immunotherapies and the strategies that can be used to overcome such resistance. In this chapter, we briefly introduce the background of cancer immunoediting and immunotherapy. We also review and discuss the roles and mechanisms of RNA m6A modifications in fine-tuning the innate and adaptive immune responses, as well as in regulating tumor escape from immunosurveillance. Finally, we summarize the current strategies targeting m6A regulators for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  3. Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases 1893. Clin Orthop Relat Res 1991(262):3–11

    Google Scholar 

  4. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111

    Article  CAS  PubMed  Google Scholar 

  5. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    Article  CAS  PubMed  Google Scholar 

  6. Burnet M (1957) Cancer; a biological approach I: the processes of control. Br Med J 1(5022):779–786

    Google Scholar 

  7. Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27

    Article  CAS  PubMed  Google Scholar 

  8. Thomas L (1959) Cellular and humoral aspects of the hypersensitive states. In: Lawrence HS (eds) Symposia of the section on microbiology, New York Academy of Medicine

    Google Scholar 

  9. Couzin-Frankel J (2013) Breakthrough of the year 2013 Cancer immunotherapy. Science 342(6165):1432–1433

    Article  CAS  PubMed  Google Scholar 

  10. June CH, Sadelain M (2018) Chimeric antigen receptor therapy. N Engl J Med 379(1):64–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515(7528):558–562

    Article  CAS  PubMed  Google Scholar 

  13. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB (2020) The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 17(2):75–90

    Article  PubMed  Google Scholar 

  15. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A et al (2015) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162(5):974–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas PG et al (2017) De Novo epigenetic programs inhibit PD-1 blockade-mediated T Cell rejuvenation. Cell 170(1):142–157 e119

    Google Scholar 

  17. Topper MJ, Vaz M, Chiappinelli KB, DeStefano Shields CE, Niknafs N, Yen RC, Wenzel A, Hicks J, Ballew M, Stone M et al (2017) Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171(6):1284–1300 e1221

    Google Scholar 

  18. Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, Sebree R, Rodgers K, Hooker CM, Franco N et al (2011) Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1(7):598–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Daver N, Garcia-Manero G, Basu S, Boddu PC, Alfayez M, Cortes JE, Konopleva M, Ravandi-Kashani F, Jabbour E, Kadia T et al (2019) Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label phase II study. Cancer Discov 9(3):370–383

    Article  CAS  PubMed  Google Scholar 

  20. Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. He PC, He C (2021) M6A RNA methylation: from mechanisms to therapeutic potential. EMBO J 40(3):e105977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shi H, Wei J, He C (2019) Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74(4):640–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Shulman Z, Stern-Ginossar N (2020) The RNA modification N(6)-methyladenosine as a novel regulator of the immune system. Nat Immunol 21(5):501–512

    Article  CAS  PubMed  Google Scholar 

  24. Busch W (1868) Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl Klin Wochenschr 5(5):137

    Google Scholar 

  25. Fehleisen F (1882) Ueber die Züchtung der Erysipelkokken auf künstlichem Nährboden und ihre Übertragbarkeit auf den Menschen. Dtsch Med Wochenschr 8(31):553–554

    Google Scholar 

  26. Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases 1. Am J Med Sci (1827–1924) 105(6):487

    Google Scholar 

  27. Coley WB (1908) The treatment of sarcoma with the mixed toxins of erysipelas and bacillus prodigiosus. Boston Med Surg J 158(6):175–182

    Google Scholar 

  28. Holsti LR (1995) Development of clinical radiotherapy since 1896. Acta Oncol 34(8):995–1003

    Article  CAS  PubMed  Google Scholar 

  29. Fenn JE, Udelsman R (2011) First use of intravenous chemotherapy cancer treatment: rectifying the record. J Am Coll Surg 212(3):413–417

    Article  PubMed  Google Scholar 

  30. Gorer PA, Lyman S, Snell GD (1948) Studies on the genetic and antigenic basis of tumour transplantation Linkage between a histocompatibility gene and’fused’in mice. Proc R Soc Lond Ser B-Biol Sci 135(881):499–505

    Google Scholar 

  31. Jerne NK (1955) The natural-selection theory of antibody formation. Proc Natl Acad Sci USA 41(11):849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Billingham RE, Brent L, Medawar PB (1956) Quantitative studies on tissue transplantation immunity III: actively acquired tolerance. Philos Trans R Soc Lond Ser B Biol Sci:357–414

    Google Scholar 

  33. Isaacs A, Lindenmann J (1957) Virus interference I: the interferon. Proc R Soc Lond B Biol Sci 147(927):258–267

    Google Scholar 

  34. Isaacs A, Lindenmann J, Valentine RC (1957) Virus interference II: some properties of interferon. Proc R Soc Lond B Biol Sci 147(927):268–273

    Google Scholar 

  35. Old LJ, Clarke DA, Benacerraf B (1959) Effect of bacillus calmette-Guerin infection on transplanted tumours in the mouse. Nature 184(Suppl):291–292

    Google Scholar 

  36. Prehn RT (1965) Cancer antigens in tumors induced by chemicals. Fed Proc 24(5):1018–1022

    CAS  PubMed  Google Scholar 

  37. Miller JF, Mitchell GF, Weiss NS (1967) Cellular basis of the immunological defects in thymectomized mice. Nature 214(5092):992–997

    Article  CAS  PubMed  Google Scholar 

  38. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice: I morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162

    Google Scholar 

  39. Kiessling R, Klein E, Pross H, Wigzell H (1975) “Natural” killer cells in the mouse II: cytotoxic cells with specificity for mouse Moloney leukemia cells: characteristics of the killer cell. Eur J Immunol 5(2):117–121

    Google Scholar 

  40. Burnet M (1957) Cancer—a biological approach: I the processes of control II. the significance of somatic mutation. Br Med J 1(5022):779

    Google Scholar 

  41. Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18(6):769–778

    CAS  PubMed  Google Scholar 

  42. Old LJ, Boyse EA (1964) Immunology of Experimental Tumors. Annu Rev Med 15:167–186

    Article  CAS  PubMed  Google Scholar 

  43. Rygaard J, Povlsen CO (1974) The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance. Acta Pathol Microbiol Scand B Microbiol Immunol 82(1):99–106

    Google Scholar 

  44. Stutman O (1974) Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science 183(4124):534–536

    Article  CAS  PubMed  Google Scholar 

  45. Stutman O (1975) Delayed tumour appearance and absence of regression in nude mice infected with murine sarcoma virus. Nature 253(5487):142–144

    Article  CAS  PubMed  Google Scholar 

  46. Dighe AS, Richards E, Old LJ, Schreiber RD (1994) Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1(6):447–456

    Article  CAS  PubMed  Google Scholar 

  47. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95(13):7556–7561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97(1):192–197

    Article  CAS  PubMed  Google Scholar 

  49. van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184(5):1781–1790

    Article  PubMed  Google Scholar 

  50. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192(5):755–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Engel AM, Svane IM, Mouritsen S, Rygaard J, Clausen J, Werdelin O (1996) Methylcholanthrene-induced sarcomas in nude mice have short induction times and relatively low levels of surface MHC class I expression. APMIS 104(7–8):629–639

    Article  CAS  PubMed  Google Scholar 

  52. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111

    Article  CAS  PubMed  Google Scholar 

  53. Boshoff C, Weiss R (2002) AIDS-related malignancies. Nat Rev Cancer 2(5):373–382

    Article  CAS  PubMed  Google Scholar 

  54. Birkeland SA, Storm HH, Lamm LU, Barlow L, Blohme I, Forsberg B, Eklund B, Fjeldborg O, Friedberg M, Frodin L et al (1995) Cancer risk after renal transplantation in the Nordic countries, 1964–1986. Int J Cancer 60(2):183–189

    Article  CAS  PubMed  Google Scholar 

  55. Sheil AG (1986) Cancer after transplantation. World J Surg 10(3):389–396

    Article  CAS  PubMed  Google Scholar 

  56. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  57. Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26

    Article  CAS  PubMed  Google Scholar 

  58. Galon J, Dieu-Nosjean M, Tartour E, Sautès-Fridman C, Fridman W (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29(8):1093–1102

    Article  PubMed  Google Scholar 

  59. Svane IM, Engel AM, Thomsen AR, Werdelin O (1997) The susceptibility to cytotoxic T lymphocyte mediated lysis of chemically induced sarcomas from immunodeficient and normal mice. Scand J Immunol 45(1):28–35

    Article  CAS  PubMed  Google Scholar 

  60. Svane IM, Engel AM, Nielsen MB, Ljunggren HG, Rygaard J, Werdelin O (1996) Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice. Eur J Immunol 26(8):1844–1850

    Article  CAS  PubMed  Google Scholar 

  61. Street SE, Trapani JA, MacGregor D, Smyth MJ (2002) Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196(1):129–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  63. Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol 27:16–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436(7054):1186–1190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, Lee H, Arthur CD, White JM, Kalinke U et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208(10):1989–2003

    Google Scholar 

  66. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, Gajewski TF (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med 208(10):2005–2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Davidson WF, Giese T, Fredrickson TN (1998) Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J Exp Med 187(11):1825–1838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195(2):161–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  CAS  PubMed  Google Scholar 

  71. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G et al (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1):105–115

    Article  CAS  PubMed  Google Scholar 

  72. Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol 27:16–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J (2011) Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol 23(2):286–292

    Article  CAS  PubMed  Google Scholar 

  74. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  75. Hanahan D (2022) Hallmarks of Cancer: New Dimensions. Cancer Discov 12(1):31–46

    Article  CAS  PubMed  Google Scholar 

  76. Ma R, Li Z, Chiocca EA, Caligiuri MA, Yu J (2022) The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer

    Google Scholar 

  77. Haslam A, Prasad V (2019) Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2(5):e192535

    Article  PubMed Central  PubMed  Google Scholar 

  78. Johnson DB, Nebhan CA, Moslehi JJ, Balko JM (2022) Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol

    Google Scholar 

  79. Ascierto PA, Melero I, Bhatia S, Bono P, Sanborn RE, Lipson EJ, Callahan MK, Gajewski T, Gomez-Roca CA, Hodi FS et al (2017) Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy. J Clin Oncol 35(15_suppl):9520–9520

    Google Scholar 

  80. Wolf Y, Anderson AC, Kuchroo VK (2020) TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 20(3):173–185

    Article  CAS  PubMed  Google Scholar 

  81. Murphy KM, Nelson CA, Sedy JR (2006) Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol 6(9):671–681

    Article  CAS  PubMed  Google Scholar 

  82. Rodriguez-Abreu D, Johnson ML, Hussein MA, Cobo M, Patel AJ, Secen NM, Lee KH, Massuti B, Hiret S, Yang JC-H et al (2020) Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J Clin Oncol 38(15_suppl):9503–9503

    Google Scholar 

  83. Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T (2020) VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol 13(1):83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, He L, Chen Y, Chen H, Luo W et al (2018) LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature 562(7728):605–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma: a preliminary report. N Engl J Med 319(25):1676–1680

    Google Scholar 

  86. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, Heim M, Wilmanns W (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76(12):2462–2465

    Article  CAS  PubMed  Google Scholar 

  87. Sterner RC, Sterner RM (2021) CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 11(4):69

    Article  PubMed Central  PubMed  Google Scholar 

  88. Yilmaz A, Cui H, Caligiuri MA, Yu J (2020) Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol 13(1):168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, Nassif Kerbauy L, Overman B, Thall P, Kaplan M et al (2020) Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 382(6):545–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Shimasaki N, Jain A, Campana D (2020) NK cells for cancer immunotherapy. Nat Rev Drug Discov 19(3):200–218

    Article  CAS  PubMed  Google Scholar 

  91. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100

    Article  CAS  PubMed  Google Scholar 

  92. Teng KY, Mansour AG, Zhu Z, Li Z, Tian L, Ma S, Xu B, Lu T, Chen H, Hou D et al (2022) Off-the-shelf PSCA-directed chimeric antigen receptor natural killer cell therapy to treat pancreatic cancer. Gastroenterology

    Google Scholar 

  93. Han J, Chu J, Keung Chan W, Zhang J, Wang Y, Cohen JB, Victor A, Meisen WH, Kim SH, Grandi P et al (2015) CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep 5:11483

    Article  PubMed Central  PubMed  Google Scholar 

  94. Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J, Peng Y, Mao H, Yi L, Ghoshal K et al (2014) CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 28(4):917–927

    Article  CAS  PubMed  Google Scholar 

  95. Li Y, Hermanson DL, Moriarity BS, Kaufman DS (2018) Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23(2):181–192 e185

    Google Scholar 

  96. Ma R, Lu T, Li Z, Teng KY, Mansour AG, Yu M, Tian L, Xu B, Ma S, Zhang J et al (2021) An oncolytic virus expressing IL15/IL15Ralpha combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma. Cancer Res 81(13):3635–3648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Chen X, Han J, Chu J, Zhang L, Zhang J, Chen C, Chen L, Wang Y, Wang H, Yi L et al (2016) A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 7(19):27764–27777

    Article  PubMed Central  PubMed  Google Scholar 

  98. Cheng J, Zhao L, Zhang Y, Qin Y, Guan Y, Zhang T, Liu C, Zhou J (2019) Understanding the mechanisms of resistance to CAR T-cell therapy in malignancies. Front Oncol 9:1237

    Article  PubMed Central  PubMed  Google Scholar 

  99. Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S, Zheng LL, Qu LH, Yang JH (2018) RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res 46(D1):D327–D334

    Google Scholar 

  100. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149(7):1635–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206

    Article  CAS  PubMed  Google Scholar 

  102. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12(8):767–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40(11):5023–5033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S et al (2016) RNA biochemistry: transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351(6270):282–285

    Google Scholar 

  105. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC et al (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530(7591):441–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, Yi C (2016) Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol 12(5):311–316

    Article  CAS  PubMed  Google Scholar 

  107. Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, Hosogane M, Sinclair WR, Nanan KK, Mandler MD et al (2018) Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175(7):1872–1886 e1824

    Google Scholar 

  108. Zhang LS, Liu C, Ma H, Dai Q, Sun HL, Luo G, Zhang Z, Zhang L, Hu L, Dong X et al (2019) Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol Cell 74(6):1304–1316 e1308

    Google Scholar 

  109. Suzuki T, Ueda H, Okada S, Sakurai M (2015) Transcriptome-wide identification of adenosine-to-inosine editing using the ICE-seq method. Nat Protoc 10(5):715–732

    Article  CAS  PubMed  Google Scholar 

  110. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515(7525):143–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES et al (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159(1):148–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    Article  CAS  PubMed  Google Scholar 

  114. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481):117–120

    Article  PubMed  Google Scholar 

  115. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Huang H, Weng H, Chen J (2020) The biogenesis and precise control of RNA m(6)A methylation. Trends Genet 36(1):44–52

    Article  CAS  PubMed  Google Scholar 

  118. Chang RB, Beatty GL (2020) The interplay between innate and adaptive immunity in cancer shapes the productivity of cancer immunosurveillance. J Leukoc Biol 108(1):363–376

    Article  CAS  PubMed  Google Scholar 

  119. Wagner M, Koyasu S (2019) Cancer immunoediting by innate lymphoid cells. Trends Immunol 40(5):415–430

    Article  CAS  PubMed  Google Scholar 

  120. Shimizu K, Iyoda T, Yamasaki S, Kadowaki N, Tojo A, Fujii AS (2020) NK and NKT cell-mediated immune surveillance against hematological malignancies. Cancers (Basel) 12(4)

    Google Scholar 

  121. Park JH, Lee HK (2021) Function of gammadelta T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 53(3):318–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175

    Article  CAS  PubMed  Google Scholar 

  123. Huang W, Qi CB, Lv SW, Xie M, Feng YQ, Huang WH, Yuan BF (2016) Determination of DNA and RNA methylation in circulating tumor cells by mass spectrometry. Anal Chem 88(2):1378–1384

    Article  CAS  PubMed  Google Scholar 

  124. Pearce EJ, Everts B (2015) Dendritic cell metabolism. Nat Rev Immunol 15(1):18–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, Zhou Q, Cao X (2019) Mettl3-mediated mRNA m(6)A methylation promotes dendritic cell activation. Nat Commun 10(1):1898

    Article  PubMed Central  PubMed  Google Scholar 

  126. Wu H, Xu Z, Wang Z, Ren Z, Li L, Ruan Y (2020) Dendritic cells with METTL3 gene knockdown exhibit immature properties and prolong allograft survival. Genes Immun 21(3):193–202

    Article  CAS  PubMed  Google Scholar 

  127. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Forster R (2004) CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21(2):279–288

    Article  CAS  PubMed  Google Scholar 

  128. Liu J, Zhang X, Chen K, Cheng Y, Liu S, Xia M, Chen Y, Zhu H, Li Z, Cao X (2019) CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1alpha-mediated glycolysis. Immunity 50(3):600–615 e615

    Google Scholar 

  129. Alloatti A, Kotsias F, Magalhaes JG, Amigorena S (2016) Dendritic cell maturation and cross-presentation: timing matters! Immunol Rev 272(1):97–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, Huang X, Liu Y, Wang J, Dougherty U et al (2019) Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature 566(7743):270–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Jaiswal S, Chao MP, Majeti R, Weissman IL (2010) Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31(6):212–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, Yu Y, Wu Y, Wang Y, Zhang J et al (2021) RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun 12(1):1394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Tong J, Wang X, Liu Y, Ren X, Wang A, Chen Z, Yao J, Mao K, Liu T, Meng FL et al (2021) Pooled CRISPR screening identifies m(6)A as a positive regulator of macrophage activation. Sci Adv 7(18)

    Google Scholar 

  134. Liu Y, Liu Z, Tang H, Shen Y, Gong Z, Xie N, Zhang X, Wang W, Kong W, Zhou Y et al (2019) The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. Am J Physiol Cell Physiol 317(4):C762–C775

    Article  CAS  PubMed  Google Scholar 

  135. Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, Wang H, Song Y, Du Y, Cui B et al (2022) Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell 82(9):1660–1677 e1610

    Google Scholar 

  136. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D, Hendrick AG et al (2021) Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593(7860):597–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Dong L, Chen C, Zhang Y, Guo P, Wang Z, Li J, Liu Y, Liu J, Chang R, Li Y et al (2021) The loss of RNA N(6)-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8(+) T cell dysfunction and tumor growth. Cancer Cell 39(7):945–957 e910

    Google Scholar 

  138. Zheng Y, Li Y, Ran X, Wang D, Zheng X, Zhang M, Yu B, Sun Y, Wu J (2022) Mettl14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-kappaB/IL-6 signaling pathway. Cell Mol Life Sci 79(6):311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Gu X, Zhang Y, Li D, Cai H, Cai L, Xu Q (2020) N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell Signal 69:109553

    Article  CAS  PubMed  Google Scholar 

  140. Yu R, Li Q, Feng Z, Cai L, Xu Q (2019) m6A Reader YTHDF2 regulates LPS-induced inflammatory response. Int J Mol Sci 20(6)

    Google Scholar 

  141. Ma S, Sun B, Duan S, Han J, Barr T, Zhang J, Bissonnette M, Kortylewski M, He C, Chen J et al (2022) YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls anti-tumor immunity through CD8+ T cells. Nat Immunol 24(2):225–266

    Google Scholar 

  142. Wang X, Ji Y, Feng P, Liu R, Li G, Zheng J, Xue Y, Wei Y, Ji C, Chen D et al (2021) The m6A Reader IGF2BP2 regulates macrophage phenotypic activation and inflammatory diseases by stabilizing TSC1 and PPARgamma. Adv Sci (Weinh) 8(13):2100209

    Article  CAS  PubMed  Google Scholar 

  143. Miller JS, Lanier LL (2019) Natural killer cells in cancer immunotherapy. Ann Rev Cancer Biol 3:77–103

    Article  Google Scholar 

  144. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA (2017) The broad spectrum of human natural killer cell diversity. Immunity 47(5):820–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Ma S, Yan J, Barr T, Zhang J, Chen Z, Wang LS, Sun JC, Chen J, Caligiuri MA, Yu J (2021) The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med 218(8)

    Google Scholar 

  146. Song H, Song J, Cheng M, Zheng M, Wang T, Tian S, Flavell RA, Zhu S, Li HB, Ding C et al (2021) METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun 12(1):5522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Niogret C, Miah SMS, Rota G, Fonta NP, Wang H, Held W, Birchmeier W, Sexl V, Yang W, Vivier E et al (2019) Shp-2 is critical for ERK and metabolic engagement downstream of IL-15 receptor in NK cells. Nat Commun 10(1):1444

    Article  PubMed Central  PubMed  Google Scholar 

  148. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4(3):231–237

    Article  CAS  PubMed  Google Scholar 

  149. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E et al (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278(5343):1626–1629

    Article  CAS  PubMed  Google Scholar 

  150. Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, Grusby MJ, Tachado SD (1999) CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283(5399):225–229

    Article  CAS  PubMed  Google Scholar 

  151. Robertson FC, Berzofsky JA, Terabe M (2014) NKT cell networks in the regulation of tumor immunity. Front Immunol 5:543

    Article  PubMed Central  PubMed  Google Scholar 

  152. Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawano T, Pelikan SB, Crowe NY, Godfrey DI (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191(4):661–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Cao L, Morgun E, Genardi S, Visvabharathy L, Cui Y, Huang H, Wang CR (2022) METTL14-dependent m(6)A modification controls iNKT cell development and function. Cell Rep 40(5):111156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Raverdeau M, Cunningham SP, Harmon C, Lynch L (2019) Gammadelta T cells in cancer: a small population of lymphocytes with big implications. Clin Transl Immunol 8(10):e01080

    Article  Google Scholar 

  155. Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, Craft J, Yin Z (2003) Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med 198(3):433–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampricotti M, Hawinkels L, Jonkers J et al (2015) IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522(7556):345–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Rei M, Goncalves-Sousa N, Lanca T, Thompson RG, Mensurado S, Balkwill FR, Kulbe H, Pennington DJ, Silva-Santos B (2014) Murine CD27(-) Vgamma6(+) gammadelta T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci USA 111(34):E3562-3570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X, Shi L, Wu D, Dong C, Liu H (2014) IL-17A produced by gammadelta T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res 74(7):1969–1982

    Article  CAS  PubMed  Google Scholar 

  159. Ding C, Xu H, Yu Z, Roulis M, Qu R, Zhou J, Oh J, Crawford J, Gao Y, Jackson R et al (2022) RNA m(6)A demethylase ALKBH5 regulates the development of gammadelta T cells. Proc Natl Acad Sci USA 119(33):e2203318119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Walker JA, Barlow JL, McKenzie AN (2013) Innate lymphoid cells–how did we miss them? Nat Rev Immunol 13(2):75–87

    Article  CAS  PubMed  Google Scholar 

  161. Eberl G, Colonna M, Di Santo JP, McKenzie AN (2015) Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348(6237):aaa6566

    Google Scholar 

  162. Jacquelot N, Seillet C, Vivier E, Belz GT (2022) Innate lymphoid cells and cancer. Nat Immunol 23(3):371–379

    Article  CAS  PubMed  Google Scholar 

  163. Vely F, Barlogis V, Vallentin B, Neven B, Piperoglou C, Ebbo M, Perchet T, Petit M, Yessaad N, Touzot F et al (2016) Evidence of innate lymphoid cell redundancy in humans. Nat Immunol 17(11):1291–1299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Dadi S, Chhangawala S, Whitlock BM, Franklin RA, Luo CT, Oh SA, Toure A, Pritykin Y, Huse M, Leslie CS et al (2016) Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164(3):365–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Li Z, Ma R, Ma S, Tian L, Lu T, Zhang J, Mundy-Bosse BL, Zhang B, Marcucci G, Caligiuri MA et al (2022) ILC1s control leukemia stem cell fate and limit development of AML. Nat Immunol 23(5):718–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Ducimetiere L, Lucchiari G, Litscher G, Nater M, Heeb L, Nunez NG, Wyss L, Burri D, Vermeer M, Gschwend J et al (2021) Conventional NK cells and tissue-resident ILC1s join forces to control liver metastasis. Proc Natl Acad Sci United States Am 118(27)

    Google Scholar 

  167. Vallentin B, Barlogis V, Piperoglou C, Cypowyj S, Zucchini N, Chene M, Navarro F, Farnarier C, Vivier E, Vely F (2015) Innate lymphoid cells in cancer. Cancer Immunol Res 3(10):1109–1114

    Article  CAS  PubMed  Google Scholar 

  168. Liu B, Liu N, Zhu X, Yang L, Ye B, Li H, Zhu P, Lu T, Tian Y, Fan Z (2021) Circular RNA circZbtb20 maintains ILC3 homeostasis and function via Alkbh5-dependent m(6)A demethylation of Nr4a1 mRNA. Cell Mol Immunol 18(6):1412–1424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Kim HJ, Cantor H (2014) CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res 2(2):91–98

    Article  CAS  PubMed  Google Scholar 

  170. Roychoudhuri R, Eil RL, Restifo NP (2015) The interplay of effector and regulatory T cells in cancer. Curr Opin Immunol 33:101–111

    Article  CAS  PubMed  Google Scholar 

  171. Han J, Khatwani N, Searles TG, Turk MJ, Angeles CV (2020) Memory CD8(+) T cell responses to cancer. Semin Immunol 49:101435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y et al (2017) M(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548(7667):338–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Takada K, Jameson SC (2009) Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 9(12):823–832

    Article  CAS  PubMed  Google Scholar 

  174. Palmer DC, Restifo NP (2009) Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol 30(12):592–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Cacalano NA, Sanden D, Johnston JA (2001) Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat Cell Biol 3(5):460–465

    Article  CAS  PubMed  Google Scholar 

  176. Chong MM, Cornish AL, Darwiche R, Stanley EG, Purton JF, Godfrey DI, Hilton DJ, Starr R, Alexander WS, Kay TW (2003) Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependent CD8+ T cell differentiation. Immunity 18(4):475–487

    Article  CAS  PubMed  Google Scholar 

  177. Tong J, Cao G, Zhang T, Sefik E, Amezcua Vesely MC, Broughton JP, Zhu S, Li H, Li B, Chen L et al (2018) M(6)A mRNA methylation sustains Treg suppressive functions. Cell Res 28(2):253–256

    Article  PubMed Central  PubMed  Google Scholar 

  178. Lu TX, Zheng Z, Zhang L, Sun HL, Bissonnette M, Huang H, He C (2020) A new model of spontaneous colitis in mice induced by deletion of an RNA m(6)A methyltransferase component METTL14 in T cells. Cell Mol Gastroenterol Hepatol 10(4):747–761

    Article  PubMed Central  PubMed  Google Scholar 

  179. Gaud G, Lesourne R, Love PE (2018) Regulatory mechanisms in T cell receptor signalling. Nat Rev Immunol 18(8):485–497

    Article  CAS  PubMed  Google Scholar 

  180. Ito-Kureha T, Leoni C, Borland K, Cantini G, Bataclan M, Metzger RN, Ammann G, Krug AB, Marsico A, Kaiser S et al (2022) The function of Wtap in N(6)-adenosine methylation of mRNAs controls T cell receptor signaling and survival of T cells. Nat Immunol 23(8):1208–1221

    Article  CAS  PubMed  Google Scholar 

  181. Crotty S (2014) T follicular helper cell differentiation, function, and roles in disease. Immunity 41(4):529–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Nurieva RI, Liu Z, Gangadharan A, Bieerkehazhi S, Zhao Y-Z, Alekseev A, Sahoo A (2019) Function of T follicular helper cells in anti-tumor immunity. J Immunol 202(1 Supplement):138.118–138.118

    Google Scholar 

  183. Zhu Y, Zhao Y, Zou L, Zhang D, Aki D, Liu YC (2019) The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. J Exp Med 216(7):1664–1681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Yao Y, Yang Y, Guo W, Xu L, You M, Zhang YC, Sun Z, Cui X, Yu G, Qi Z et al (2021) METTL3-dependent m(6)A modification programs T follicular helper cell differentiation. Nat Commun 12(1):1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Zhou J, Zhang X, Hu J, Qu R, Yu Z, Xu H, Chen H, Yan L, Ding C, Zou Q et al (2021) m(6)A demethylase ALKBH5 controls CD4(+) T cell pathogenicity and promotes autoimmunity. Sci Adv 7(25)

    Google Scholar 

  186. Schultz KR, Klarnet JP, Gieni RS, HayGlass KT, Greenberg PD (1990) The role of B cells for in vivo T cell responses to a Friend virus-induced leukemia. Science 249(4971):921–923

    Article  CAS  PubMed  Google Scholar 

  187. DiLillo DJ, Yanaba K, Tedder TF (2010) B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J Immunol 184(7):4006–4016

    Article  CAS  PubMed  Google Scholar 

  188. Clatza A, Bonifaz LC, Vignali DA, Moreno J (2003) CD40-induced aggregation of MHC class II and CD80 on the cell surface leads to an early enhancement in antigen presentation. J Immunol 171(12):6478–6487

    Article  CAS  PubMed  Google Scholar 

  189. Laumont CM, Banville AC, Gilardi M, Hollern DP, Nelson BH (2022) Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat Rev Cancer 22(7):414–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16(2):219–230

    Article  CAS  PubMed  Google Scholar 

  191. Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB, Bar-Sagi D (2016) IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov 6(3):247–255

    Article  CAS  PubMed  Google Scholar 

  192. Zheng Z, Zhang L, Cui XL, Yu X, Hsu PJ, Lyu R, Tan H, Mandal M, Zhang M, Sun HL et al (2020) Control of early B cell development by the RNA N(6)-methyladenosine methylation. Cell Rep 31(13):107819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Grenov A, Hezroni H, Lasman L, Hanna JH, Shulman Z (2022) YTHDF2 suppresses the plasmablast genetic program and promotes germinal center formation. Cell Rep 39(5):110778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Cheng Y, Luo H, Izzo F, Pickering BF, Nguyen D, Myers R, Schurer A, Gourkanti S, Bruning JC, Vu LP et al (2019) m(6)A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep 28(7):1703–1716 e1706

    Google Scholar 

  195. Lee H, Bao S, Qian Y, Geula S, Leslie J, Zhang C, Hanna JH, Ding L (2019) Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation. Nat Cell Biol 21(6):700–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Cheson BD (2020) Predicting the future for DLBCL. Blood 135(16):1308–1309

    Article  CAS  PubMed  Google Scholar 

  197. Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med 207(10):2053–2063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15(7):405–414

    Article  CAS  PubMed  Google Scholar 

  199. Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remedios C et al (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20(11):1301–1309

    Article  CAS  PubMed  Google Scholar 

  200. Nunez NG, Andreani V, Crespo MI, Nocera DA, Breser ML, Moron G, Dejager L, Libert C, Rivero V, Maccioni M (2012) IFNbeta produced by TLR4-activated tumor cells is involved in improving the antitumoral immune response. Cancer Res 72(3):592–603

    Article  CAS  PubMed  Google Scholar 

  201. Swiecki M, Colonna M (2015) The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15(8):471–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, Du X, Yang J, Li T, Wan Y et al (2018) Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48(4):675–687 e677

    Google Scholar 

  204. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo SR, Lemmens E, Banda T, Leong JJ et al (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11(7):1018–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Zhang Y, Sun Y, Rao E, Yan F, Li Q, Zhang Y, Silverstein KA, Liu S, Sauter E, Cleary MP et al (2014) Fatty acid-binding protein E-FABP restricts tumor growth by promoting IFN-beta responses in tumor-associated macrophages. Cancer Res 74(11):2986–2998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Arwert EN, Milford EL, Rullan A, Derzsi S, Hooper S, Kato T, Mansfield D, Melcher A, Harrington KJ, Sahai E (2020) STING and IRF3 in stromal fibroblasts enable sensing of genomic stress in cancer cells to undermine oncolytic viral therapy. Nat Cell Biol 22(7):758–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  207. Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, Gaide O, Michielin O, Hwu P, Petrova TV et al (2015) STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci USA 112(50):15408–15413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I (2011) Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 17(9):2619–2627

    Article  CAS  PubMed  Google Scholar 

  209. Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16(3):131–144

    Article  PubMed  Google Scholar 

  210. Swann JB, Hayakawa Y, Zerafa N, Sheehan KC, Scott B, Schreiber RD, Hertzog P, Smyth MJ (2007) Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J Immunol 178(12):7540–7549

    Article  CAS  PubMed  Google Scholar 

  211. Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH (2018) Tumor-Derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49(4):754–763 e754

    Google Scholar 

  212. Hashimoto H, Ueda R, Narumi K, Heike Y, Yoshida T, Aoki K (2014) Type I IFN gene delivery suppresses regulatory T cells within tumors. Cancer Gene Ther 21(12):532–541

    Article  CAS  PubMed  Google Scholar 

  213. Bacher N, Raker V, Hofmann C, Graulich E, Schwenk M, Baumgrass R, Bopp T, Zechner U, Merten L, Becker C et al (2013) Interferon-alpha suppresses cAMP to disarm human regulatory T cells. Cancer Res 73(18):5647–5656

    Article  CAS  PubMed  Google Scholar 

  214. Borden EC (2019) Interferons alpha and beta in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov 18(3):219–234

    Article  CAS  PubMed  Google Scholar 

  215. Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, Nachshon A, Tai-Schmiedel J, Friedman N, Le-Trilling VTK et al (2019) M(6)A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 20(2):173–182

    Article  CAS  PubMed  Google Scholar 

  216. Rubio RM, Depledge DP, Bianco C, Thompson L, Mohr I (2018) RNA m(6) A modification enzymes shape innate responses to DNA by regulating interferon beta. Genes Dev 32(23–24):1472–1484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  217. Jin S, Li M, Chang H, Wang R, Zhang Z, Zhang J, He Y, Ma H (2022) The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKepsilon/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer 21(1):97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. Gocher AM, Workman CJ, Vignali DAA (2022) Interferon-gamma: teammate or opponent in the tumour microenvironment? Nat Rev Immunol 22(3):158–172

    Article  CAS  PubMed  Google Scholar 

  219. Wall L, Burke F, Barton C, Smyth J, Balkwill F (2003) IFN-gamma induces apoptosis in ovarian cancer cells in vivo and in vitro. Clin Cancer Res 9(7):2487–2496

    CAS  PubMed  Google Scholar 

  220. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19(6):1189–1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800

    Article  CAS  PubMed  Google Scholar 

  222. Watcharanurak K, Zang L, Nishikawa M, Yoshinaga K, Yamamoto Y, Takahashi Y, Ando M, Saito K, Watanabe Y, Takakura Y (2014) Effects of upregulated indoleamine 2, 3-dioxygenase 1 by interferon gamma gene transfer on interferon gamma-mediated antitumor activity. Gene Ther 21(9):794–801

    Article  CAS  PubMed  Google Scholar 

  223. Fenimore J (2016) HAY: regulation of IFN-gamma expression. Adv Exp Med Biol 941:1–19

    Article  CAS  PubMed  Google Scholar 

  224. Ivashkiv LB (2018) IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol 18(9):545–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Soutto M, Zhou W, Aune TM (2002) Cutting edge: distal regulatory elements are required to achieve selective expression of IFN-gamma in Th1/Tc1 effector cells. J Immunol 169(12):6664–6667

    Article  CAS  PubMed  Google Scholar 

  226. Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell 152(4):743–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD, Matloubian M, Blelloch R, Ansel KM (2011) MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity 35(2):169–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Wang H, Zhang Y, Wu X, Wang Y, Cui H, Li X, Zhang J, Tun N, Peng Y, Yu J (2018) Regulation of human natural killer cell IFN-gamma production by MicroRNA-146a via targeting the NF-kappaB signaling pathway. Front Immunol 9:293

    Article  PubMed Central  PubMed  Google Scholar 

  229. Ma N, Wei T, Wang B, Jiang X, Zhou L, Zhong R (2019) MicroRNA-142-3p inhibits IFN-gamma production via targeting of RICTOR in Aspergillus fumigatus activated CD4(+) T cells. Ann Transl Med 7(22):649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  230. Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, Yuan J, Rana TM (2020) M(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J 39(20):e104514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  231. Yang S, Wei J, Cui YH, Park G, Shah P, Deng Y, Aplin AE, Lu Z, Hwang S, He C et al (2019) M(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun 10(1):2782

    Article  PubMed Central  PubMed  Google Scholar 

  232. Wang Y, Huang L, Li M, Qi Y (2021) Synthesize analysis of the IFN-γ and immune infiltrates of m6A RNA methylation regulators in human skin cutaneous melanoma

    Google Scholar 

  233. Yamashita H, ten Dijke P, Franzen P, Miyazono K, Heldin CH (1994) Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 269(31):20172–20178

    Article  CAS  PubMed  Google Scholar 

  234. Schmierer B, Hill CS (2007) TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8(12):970–982

    Article  CAS  PubMed  Google Scholar 

  235. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  CAS  PubMed  Google Scholar 

  236. Gu S, Feng XH (2018) TGF-beta signaling in cancer. Acta Biochim Biophys Sin (Shanghai) 50(10):941–949

    Article  CAS  PubMed  Google Scholar 

  237. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R et al (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  238. Wan YY, Flavell RA (2007) Regulatory T cells, transforming growth factor-beta, and immune suppression. Proc Am Thorac Soc 4(3):271–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  239. Condamine T, Ramachandran I, Youn JI, Gabrilovich DI (2015) Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med 66:97–110

    Article  CAS  PubMed  Google Scholar 

  240. Wang Y, Chu J, Yi P, Dong W, Saultz J, Wang Y, Wang H, Scoville S, Zhang J, Wu LC et al (2018) SMAD4 promotes TGF-beta-independent NK cell homeostasis and maturation and antitumor immunity. J Clin Invest 128(11):5123–5136

    Article  PubMed Central  PubMed  Google Scholar 

  241. Viel S, Marcais A, Guimaraes FS, Loftus R, Rabilloud J, Grau M, Degouve S, Djebali S, Sanlaville A, Charrier E et al (2016) TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal 9(415):ra19

    Google Scholar 

  242. Yu J, Wei M, Becknell B, Trotta R, Liu S, Boyd Z, Jaung MS, Blaser BW, Sun J, Benson DM Jr et al (2006) Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity 24(5):575–590

    Article  CAS  PubMed  Google Scholar 

  243. Trotta R, Dal Col J, Yu J, Ciarlariello D, Thomas B, Zhang X, Allard J 2nd, Wei M, Mao H, Byrd JC et al (2008) TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol 181(6):3784–3792

    Article  CAS  PubMed  Google Scholar 

  244. Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8(5):369–380

    Article  CAS  PubMed  Google Scholar 

  245. Feng Y, Dong H, Sun B, Hu Y, Yang Y, Jia Y, Jia L, Zhong X, Zhao R (2021) METTL3/METTL14 transactivation and m(6)A-dependent TGF-beta1 translation in activated kupffer cells. Cell Mol Gastroenterol Hepatol 12(3):839–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  246. Ye X, Weinberg RA (2015) Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 25(11):675–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  247. Wanna-Udom S, Terashima M, Lyu H, Ishimura A, Takino T, Sakari M, Tsukahara T, Suzuki T (2020) The m6A methyltransferase METTL3 contributes to transforming growth factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB. Biochem Biophys Res Commun 524(1):150–155

    Article  CAS  PubMed  Google Scholar 

  248. Sun Z, Su Z, Zhou Z, Wang S, Wang Z, Tong X, Li C, Wang Y, Chen X, Lei Z et al (2022) RNA demethylase ALKBH5 inhibits TGF-beta-induced EMT by regulating TGF-beta/SMAD signaling in non-small cell lung cancer. FASEB J 36(5):e22283

    Article  CAS  PubMed  Google Scholar 

  249. Chen J, Sun Y, Xu X, Wang D, He J, Zhou H, Lu Y, Zeng J, Du F, Gong A et al (2017) YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells. Cell Cycle 16(23):2259–2271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17(9):559–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  251. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Chen H, Pan Y, Zhou Q, Liang C, Wong CC, Zhou Y, Huang D, Liu W, Zhai J, Gou H et al (2022) METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology

    Google Scholar 

  253. Chen B, Ye F, Yu L, Jia G, Huang X, Zhang X, Peng S, Chen K, Wang M, Gong S et al (2012) Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc 134(43):17963–17971

    Article  CAS  PubMed  Google Scholar 

  254. Zheng G, Cox T, Tribbey L, Wang GZ, Iacoban P, Booher ME, Gabriel GJ, Zhou L, Bae N, Rowles J et al (2014) Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci 5(8):658–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, Gan J, Jiang H, Jia GF, Luo C et al (2015) Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 43(1):373–384

    Article  CAS  PubMed  Google Scholar 

  256. Wang T, Hong T, Huang Y, Su H, Wu F, Chen Y, Wei L, Huang W, Hua X, Xia Y et al (2015) Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J Am Chem Soc 137(43):13736–13739

    Article  CAS  PubMed  Google Scholar 

  257. Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C et al (2018) R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell 172(1–2):90–105 e123

    Google Scholar 

  258. Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, Ni T, Zhang ZS, Zhang T, Li C et al (2019) Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35(4):677–691 e610

    Google Scholar 

  259. Peng S, Xiao W, Ju D, Sun B, Hou N, Liu Q, Wang Y, Zhao H, Gao C, Zhang S et al (2019) Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med 11(488)

    Google Scholar 

  260. Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, Deng X, Li H, Huang Y, Gao L et al (2020) Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 38(1):79–96 e11

    Google Scholar 

  261. Huff S, Tiwari SK, Gonzalez GM, Wang Y, Rana TM (2021) M(6)A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem Biol 16(2):324–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  262. Liu Y, Liang G, Xu H, Dong W, Dong Z, Qiu Z, Zhang Z, Li F, Huang Y, Li Y et al (2021) Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab 33(6):1221–1233 e1211

    Google Scholar 

  263. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C et al (2017) FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-Methyladenosine RNA demethylase. Cancer Cell 31(1):127–141

    Article  PubMed  Google Scholar 

  264. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, Yeo GS, McDonough MA, Cunliffe S, McNeill LA et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318(5855):1469–1472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  265. Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A et al (2018) Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 71(6):973–985 e975

    Google Scholar 

  266. Jia G, Yang CG, Yang S, Jian X, Yi C, Zhou Z, He C (2008) Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 582(23–24):3313–3319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  267. Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J, Cai Z (2022) RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol 15(1):8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  268. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 113(14):E2047-2056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  269. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bogler O et al (2017) m(6)A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31(4):591–606 e596

    Google Scholar 

  270. Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, Chen H, Su R, Yin Z, Li W et al (2020) RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell 27(1):64–80 e69

    Google Scholar 

  271. Wang J, Li Y, Wang P, Han G, Zhang T, Chang J, Yin R, Shan Y, Wen J, Xie X et al (2020) Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell 27(1):81–97 e88

    Google Scholar 

  272. Jin H, Ying X, Que B, Wang X, Chao Y, Zhang H, Yuan Z, Qi D, Lin S, Min W et al (2019) N(6)-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine 47:195–207

    Article  PubMed Central  PubMed  Google Scholar 

  273. Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, He S, Shimamoto F (2020) M(6)A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer 19(1):3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  274. Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q, Wan R (2020) RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer 19(1):91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  275. Qiu X, Yang S, Wang S, Wu J, Zheng B, Wang K, Shen S, Jeong S, Li Z, Zhu Y et al (2021) M(6)A demethylase ALKBH5 regulates PD-L1 expression and tumor immunoenvironment in intrahepatic cholangiocarcinoma. Cancer Res 81(18):4778–4793

    Article  CAS  PubMed  Google Scholar 

  276. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, Agrawal K, Gonzalez GM, Wang Y, Patel SP et al (2020) ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA 117(33):20159–20170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  277. Dong F, Qin X, Wang B, Li Q, Hu J, Cheng X, Guo D, Cheng F, Fang C, Tan Y et al (2021) ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res 81(23):5876–5888

    Article  CAS  PubMed  Google Scholar 

  278. Selberg S, Seli N, Kankuri E, Karelson M (2021) Rational design of novel anticancer small-molecule RNA m6A demethylase ALKBH5 inhibitors. ACS Omega 6(20):13310–13320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  279. Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C et al (2016) Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534(7608):575–578

    Article  CAS  PubMed  Google Scholar 

  280. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10(2):93–95

    Article  CAS  PubMed  Google Scholar 

  281. Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, Shi H, Skibbe J, Shen C, Hu C et al (2018) METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell 22(2):191–205 e199

    Google Scholar 

  282. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M et al (2017) The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 23(11):1369–1376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM et al (2018) RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67(6):2254–2270

    Article  CAS  PubMed  Google Scholar 

  284. Moroz-Omori EV, Huang D, Kumar Bedi R, Cheriyamkunnel SJ, Bochenkova E, Dolbois A, Rzeczkowski MD, Li Y, Wiedmer L, Caflisch A (2021) METTL3 inhibitors for epitranscriptomic modulation of cellular processes. ChemMedChem 16(19):3035–3043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  285. Dolbois A, Bedi RK, Bochenkova E, Muller A, Moroz-Omori EV, Huang D, Caflisch A (2021) 1,4,9-Triazaspiro[5.5]undecan-2-one derivatives as potent and selective METTL3 inhibitors. J Med Chem 64(17):12738–12760

    Google Scholar 

  286. Lee JH, Kim S, Jin MS, Kim YC (2022) Discovery of substituted indole derivatives as allosteric inhibitors of m(6) A-RNA methyltransferase, METTL3-14 complex. Drug Dev Res 83(3):783–799

    CAS  PubMed  Google Scholar 

  287. Lee JH, Choi N, Kim S, Jin MS, Shen H, Kim YC (2022) Eltrombopag as an allosteric inhibitor of the METTL3–14 complex affecting the m(6)A methylation of RNA in acute myeloid leukemia cells. Pharmaceuticals (Basel) 15(4)

    Google Scholar 

  288. Du Y, Yuan Y, Xu L, Zhao F, Wang W, Xu Y, Tian X (2022) Discovery of METTL3 small molecule inhibitors by virtual screening of natural products. Front Pharmacol 13:878135

    Article  PubMed Central  PubMed  Google Scholar 

  289. Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q, Baidya P, Wang X et al (2017) Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res 27(3):444–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  290. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res 27(3):315–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  291. Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY et al (2016) Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 61(4):507–519

    Article  CAS  PubMed  Google Scholar 

  292. Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P et al (2017) YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife 6

    Google Scholar 

  293. Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J et al (2017) Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27(9):1115–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  294. Zhou B, Liu C, Xu L, Yuan Y, Zhao J, Zhao W, Chen Y, Qiu J, Meng M, Zheng Y et al (2021) N(6)-Methyladenosine reader protein YT521-B homology domain-containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes. Hepatology 73(1):91–103

    Article  CAS  PubMed  Google Scholar 

  295. Nai F, Nachawati R, Zálešák F, Wang X, Li Y, Caflisch A (2022) Fragment ligands of the m6A-RNA reader YTHDF2. ACS Med Chem Lett

    Google Scholar 

  296. Zaccara S, Jaffrey SR (2020) A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 181(7):1582–1595 e1518

    Google Scholar 

  297. Li Q (2020) Application of fragment-based drug discovery to versatile targets. Front Mol Biosci 7:180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  298. Bedi RK, Huang D, Wiedmer L, Li Y, Dolbois A, Wojdyla JA, Sharpe ME, Caflisch A, Sledz P (2020) Selectively disrupting m(6)A-dependent protein-RNA interactions with fragments. ACS Chem Biol 15(3):618–625

    Article  CAS  PubMed  Google Scholar 

  299. Li Y, Bedi RK, Wiedmer L, Sun X, Huang D, Caflisch A (2021) Atomistic and thermodynamic analysis of N6-Methyladenosine (m(6)A) recognition by the reader domain of YTHDC1. J Chem Theory Comput 17(2):1240–1249

    Article  CAS  PubMed  Google Scholar 

  300. Weng H, Huang F, Yu Z, Chen Z, Prince E, Kang Y, Zhou K, Li W, Hu J, Fu C et al (2022) The m(6)A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell

    Google Scholar 

  301. Bekes M, Langley DR, Crews CM (2022) PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 21(3):181–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  302. Neklesa T, Snyder LB, Willard RR, Vitale N, Pizzano J, Gordon DA, Bookbinder M, Macaluso J, Dong H, Ferraro C et al (2019) ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer. J Clin Oncol 37(7_suppl):259–259

    Google Scholar 

  303. Cromm PM, Samarasinghe KTG, Hines J, Crews CM (2018) Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc 140(49):17019–17026

    Article  CAS  PubMed  Google Scholar 

  304. Hu J, Hu B, Wang M, Xu F, Miao B, Yang CY, Wang M, Liu Z, Hayes DF, Chinnaswamy K et al (2019) Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem 62(3):1420–1442

    Article  CAS  PubMed  Google Scholar 

  305. Smith BE, Wang SL, Jaime-Figueroa S, Harbin A, Wang J, Hamman BD, Crews CM (2019) Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun 10(1):131

    Article  PubMed Central  PubMed  Google Scholar 

  306. Saenz DT, Fiskus W, Qian Y, Manshouri T, Rajapakshe K, Raina K, Coleman KG, Crew AP, Shen A, Mill CP et al (2017) Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia 31(9):1951–1961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  307. Zhou F, Chen L, Cao C, Yu J, Luo X, Zhou P, Zhao L, Du W, Cheng J, Xie Y et al (2020) Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem 187:111952

    Article  CAS  PubMed  Google Scholar 

  308. Burslem GM, Schultz AR, Bondeson DP, Eide CA, Savage Stevens SL, Druker BJ, Crews CM (2019) Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation. Cancer Res 79(18):4744–4753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  309. Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, Zhu H, Farley KA, Ding W, Schiemer J et al (2018) Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci USA 115(31):E7285–E7292

    Article  PubMed Central  PubMed  Google Scholar 

  310. Costales MG, Matsumoto Y, Velagapudi SP, Disney MD (2018) Small molecule targeted recruitment of a nuclease to RNA. J Am Chem Soc 140(22):6741–6744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  311. Haniff HS, Tong Y, Liu X, Chen JL, Suresh BM, Andrews RJ, Peterson JM, O’Leary CA, Benhamou RI, Moss WN et al (2020) Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders. ACS Cent Sci 6(10):1713–1721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  312. Dong G, Ding Y, He S, Sheng C (2021) Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem 64(15):10606–10620

    Article  CAS  PubMed  Google Scholar 

  313. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X et al (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343(6168):301–305

    Article  PubMed  Google Scholar 

  314. Faust TB, Yoon H, Nowak RP, Donovan KA, Li Z, Cai Q, Eleuteri NA, Zhang T, Gray NS, Fischer ES (2020) Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat Chem Biol 16(1):7–14

    Article  CAS  PubMed  Google Scholar 

  315. Isobe Y, Okumura M, McGregor LM, Brittain SM, Jones MD, Liang X, White R, Forrester W, McKenna JM, Tallarico JA et al (2020) Manumycin polyketides act as molecular glues between UBR7 and P53. Nat Chem Biol 16(11):1189–1198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  316. Lv L, Chen P, Cao L, Li Y, Zeng Z, Cui Y, Wu Q, Li J, Wang JH, Dong MQ et al (2020) Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. Elife 9

    Google Scholar 

  317. Mayor-Ruiz C, Bauer S, Brand M, Kozicka Z, Siklos M, Imrichova H, Kaltheuner IH, Hahn E, Seiler K, Koren A et al (2020) Rational discovery of molecular glue degraders via scalable chemical profiling. Nat Chem Biol 16(11):1199–1207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  318. Slabicki M, Kozicka Z, Petzold G, Li YD, Manojkumar M, Bunker RD, Donovan KA, Sievers QL, Koeppel J, Suchyta D et al (2020) The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585(7824):293–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  319. Bartolucci D, Pession A, Hrelia P, Tonelli R (2022) Precision anti-cancer medicines by oligonucleotide therapeutics in clinical research targeting undruggable proteins and non-coding RNAs. Pharmaceutics 14(7)

    Google Scholar 

  320. Tolcher AW, Papadopoulos KP, Patnaik A, Rasco DW, Martinez D, Wood DL, Fielman B, Sharma M, Janisch LA, Brown BD et al (2015) Safety and activity of DCR-MYC, a first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors. J Clin Oncol 33(15_suppl):11006–11006

    Google Scholar 

  321. Montemurro L, Raieli S, Angelucci S, Bartolucci D, Amadesi C, Lampis S, Scardovi AL, Venturelli L, Nieddu G, Cerisoli L et al (2019) A novel MYCN-specific antigene oligonucleotide deregulates mitochondria and inhibits tumor growth in MYCN-amplified neuroblastoma. Cancer Res 79(24):6166–6177

    Article  CAS  PubMed  Google Scholar 

  322. Ross SJ, Revenko AS, Hanson LL, Ellston R, Staniszewska A, Whalley N, Pandey SK, Revill M, Rooney C, Buckett LK et al (2017) Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci Transl Med 9(394)

    Google Scholar 

  323. Reilley MJ, McCoon P, Cook C, Lyne P, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N et al (2018) STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J Immunother Cancer 6(1):119

    Article  PubMed Central  PubMed  Google Scholar 

  324. Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M, Lee H, Scuto A, Liu Y, Yang C et al (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 27(10):925–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  325. Moreira D, Sampath S, Won H, White SV, Su YL, Alcantara M, Wang C, Lee P, Maghami E, Massarelli E et al (2021) Myeloid cell-targeted STAT3 inhibition sensitizes head and neck cancers to radiotherapy and T cell-mediated immunity. J Clin Invest 131(2)

    Google Scholar 

  326. Gagliardi M, Ashizawa AT (2022) Making sense of antisense oligonucleotide therapeutics targeting Bcl-2. Pharmaceutics 14(1)

    Google Scholar 

  327. Farghali H, Kutinova Canova N, Arora M (2021) The potential applications of artificial intelligence in drug discovery and development. Physiol Res 70(Suppl4):S715–S722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, S., Barr, T., Yu, J. (2023). Recent Advances of RNA m6A Modifications in Cancer Immunoediting and Immunotherapy. In: Chen, J., Wang, G.G., Lu, J. (eds) Epigenetics in Oncology . Cancer Treatment and Research, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-031-45654-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45654-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45653-4

  • Online ISBN: 978-3-031-45654-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics