Skip to main content

Chronic Kidney Disease-Bone and Mineral Disease

  • Chapter
  • First Online:
Complications in Dialysis

Abstract

Chronic kidney disease (CKD) leads to disorders in mineral metabolism, including disturbances in bone turnover, mineralization, and volume, as well as extraskeletal and vascular calcification leading to increased morbidity and mortality. These disorders are classically identified as chronic kidney disease-mineral bone disorder (CKD-MBD). CKD-MBD contributes significantly to morbidity and adverse outcomes commonly seen in dialysis patients with abnormal parathyroid hormone (PTH) and elevated serum phosphorus concentrations. Early identification, prompt management, and routine screening are important to prevent adverse outcomes. Management strategies include dietary changes, phosphorus binding agents, vitamin D, vitamin D receptor analogs (VDRA), and calcimimetics. Future research will confirm if suppressing FGF-23 and potentiating a-klotho are beneficial. This chapter explores the complex pathophysiology of CKD-MBD as well as discusses screening and therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hanley DA, Watson PH, Hodsman AB, Dempster DW. Pharmacological mechanisms of therapeutics: parathyroid hormone. In: Bilezikian J, Raisz LG, Martin TJ, editors. Principles of bone biology, vol. 2. Elsevier; 2008. p. 1661–95.

    Google Scholar 

  2. Civitelli R, Ziambaras K. Calcium and phosphate homeostasis: concerted interplay of new regulators. J Endocrinol Investig. 2011;34:3–7.

    CAS  Google Scholar 

  3. Chiavistelli S, Giustina A, Mazziotti G. Parathyroid hormone pulsatility: physiological and clinical aspects. Bone Res. 2015;3:14049. https://doi.org/10.1038/boneres.2014.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, editors. Williams textbook of endocrinology, vol. 1. Saunders Elsevier; 2008. p. 1203–68.

    Google Scholar 

  5. Carling T, Rastad J, Akerström G, Westin G. Vitamin D receptor (VDR) and parathyroid hormone messenger ribonucleic acid levels correspond to polymorphic VDR alleles in human parathyroid tumors. J Clin Endocrinol Metab. 1998;83(7):2255–9. https://doi.org/10.1210/jcem.83.7.4862.

    Article  CAS  PubMed  Google Scholar 

  6. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131–55. https://doi.org/10.1152/physrev.00002.2011.

    Article  CAS  PubMed  Google Scholar 

  7. van Abel M, Hoenderop JG, van der Kemp AW, et al. Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney Int. 2005;68:1708–21.

    Article  PubMed  Google Scholar 

  8. Cha SK, Wu T, Huang CL. Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. Am J Physiol Ren Physiol. 2008;294:F1212–21.

    Article  CAS  Google Scholar 

  9. Brenza HL, Kimmel-Jehan C, Jehan F, et al. Parathyroid hormone activation of the 25-hydroxyvitamin D3–1alpha-hydroxylase gene promoter. Proc Natl Acad Sci U S A. 1998;95:1387–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goltzman D. Physiology of parathyroid hormone. Endocrinol Metab Clin N Am. 2018;47(4):743–58. https://doi.org/10.1016/j.ecl.2018.07.003.

    Article  Google Scholar 

  11. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. https://doi.org/10.1038/nature01658.

    Article  CAS  PubMed  Google Scholar 

  12. Walker MD, Silverberg SJ. Primary hyperparathyroidism. Nat Rev Endocrinol. 2018;14(2):115–25. https://doi.org/10.1038/nrendo.2017.104.

    Article  CAS  PubMed  Google Scholar 

  13. Rao SD, et al. Hyperparathyroidism following head and neck irradiation. Arch Intern Med. 1980;140:205–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bendz H, Sjodin I, Toss G, Berglund K. Hyperparathyroidism and long-term lithium therapy—a cross-sectional study and the effect of lithium withdrawal. J Intern Med. 1996;240:357–65.

    Article  CAS  PubMed  Google Scholar 

  15. Brown EM. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab. 2013;27:333–43.

    Article  CAS  PubMed  Google Scholar 

  16. Cope O. The study of hyperparathyroidism at the Massachusetts General Hospital. N Engl J Med. 1966;274:1174–82.

    Article  CAS  PubMed  Google Scholar 

  17. Albright F, Aub J, Bauer W. Hyperparathyroidism: common and polymorphic condition as illustrated by seventeen proven cases in one clinic. JAMA. 1934;102:1276.

    Article  Google Scholar 

  18. Bilezikian JP, et al. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International Workshop. J Clin Endocrinol Metab. 2014;99:3561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elias RM, Dalboni MA, Coelho ACE, Moysés RMA. CKD-MBD: from the pathogenesis to the identification and development of potential novel therapeutic targets. Curr Osteoporos Rep. 2018;16:693–702.

    Article  PubMed  Google Scholar 

  20. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.

    Article  CAS  PubMed  Google Scholar 

  21. Ginsberg C, Zelnick LR, Block GA, Chertow GM, Chonchol M, Hoofnagle A, Kestenbaum B, de Boer IH. Differential effects of phosphate binders on vitamin D metabolism in chronic kidney disease. Nephrol Dial Transplant. 2020;35(4):616–23. https://doi.org/10.1093/ndt/gfaa010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rroji M, Spasovski G. Calcimimetics versus parathyroidectomy: what is preferable? Int Urol Nephrol. 2018;50(7):1271–5. https://doi.org/10.1007/s11255-018-1838-5.

    Article  CAS  PubMed  Google Scholar 

  23. Brown EM. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev. 1991;71(2):371–411. https://doi.org/10.1152/physrev.1991.71.2.371.

    Article  CAS  PubMed  Google Scholar 

  24. Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, DelMar EG, Balandrin MF. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci U S A. 1998;95:4040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bover J, Aguilar A, Venegas R, Jofré R. Calcimiméticos en la enfermedad renal crónica estadio 5D. In: Cannata-Andía JB, editor. Alteraciones del metabolismo óseo y mineral en la enfermedad renal crónica: avances en patogenia, diagnóstico y tratamiento; 2010. p. 209–27.

    Google Scholar 

  26. Parsabiv (etelcalcetide) prescribing information. Thousand Oaks: Amgen, Inc.; 2017.

    Google Scholar 

  27. Chen P, Olsson Gisleskok P, Perez-Ruixo JJ, et al. Population pharmacokinetics and pharmacodynamics of the calcimimetic etelcalcetide in chronic kidney disease and secondary hyperparathyroidism receiving hemodialysis. CPT Pharmacometr Syst Pharmacol. 2016;5:484–94.

    Article  CAS  Google Scholar 

  28. Baird GS. Ionized calcium. Clin Chim Acta. 2011;412(9–10):696–701. https://doi.org/10.1016/j.cca.2011.01.004.

    Article  CAS  PubMed  Google Scholar 

  29. Hill Gallant KM, Spiegel DM. Calcium balance in chronic kidney disease. Curr Osteoporos Rep. 2017;15(3):214–21. https://doi.org/10.1007/s11914-017-0368-x.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Perwad F, Zhang MY, Tenenhouse HS, Portale AA. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro. Am J Physiol Ren Physiol. 2007;293(5):F1577–83. https://doi.org/10.1152/ajprenal.00463.2006.

    Article  CAS  Google Scholar 

  31. Rao MN, Shoback DM. Hypocalcemia. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2000.

    Google Scholar 

  32. Sprague SM, Silva A, Al-Saghir F, Damle R, Tabash SP, Petkovich M, Messner EJ, White JA, Melnick JZ, Bishop CW. Modified-release calcifediol safely suppresses PTH levels in patients with secondary hyperparathyroidism associated with vitamin D insufficiency in chronic kidney disease stages 3 and 4: a randomized controlled trial. Am J Nephrol. 2014;40:535–45. https://doi.org/10.1159/000369939.

    Article  CAS  PubMed  Google Scholar 

  33. Brown AJ, Slatopolsky E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab. 2007;3(2):134–44. https://doi.org/10.1038/ncpendmet0394.

    Article  CAS  PubMed  Google Scholar 

  34. Jamal SA, Miller PD. Secondary and tertiary hyperparathyroidism. J Clin Densitom. 2013;16(1):64–8.

    Article  PubMed  Google Scholar 

  35. O'Neill WC. Targeting serum calcium in chronic kidney disease and end-stage renal disease: is normal too high? Kidney Int. 2016;89(1):40–5. https://doi.org/10.1016/j.kint.2015.10.001.

    Article  CAS  PubMed  Google Scholar 

  36. Suki WN, Moore LW. Phosphorus regulation in chronic kidney disease. Methodist Debakey Cardiovasc J. 2016;12(4 Suppl):6–9. https://doi.org/10.14797/mdcj-12-4s1-6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dominguez JR, Kestenbaum B, Chonchol M, . et al. Relationships between serum and urine phosphorus with all-cause and cardiovascular mortality: the Osteoporotic Fractures in Men (MrOS) Study. Am J Kidney Dis 2013; 61(4): 555–563

    Article  CAS  PubMed  Google Scholar 

  38. Weinman EJ, Light PD, Suki WN. Gastrointestinal phosphate handling in CKD and its association with cardiovascular disease. Am J Kidney Dis. 2013;62(5):1006–11.

    Article  CAS  PubMed  Google Scholar 

  39. Lemann JJ. Calcium and phosphate metabolism: an overview in health and in calcium stone formers. In: Coe F, Favus M, Pak C, Parks J, Preminger G, editors. Kidney stones: medical and surgical management. Philadelphia: Lippincott-Raven; 1996. p. 259–88.

    Google Scholar 

  40. Cupisti A, Kalantar-Zadeh K. Management of natural and added dietary phosphorus burden in kidney disease. Semin Nephrol. 2013;33(2):180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Health.gov [Internet]. Rockville, MD: Office of Disease Prevention and health promotion; 2016. July Dietary Guidelines for Americans 2015–2020, 8th Edition [cited 2016 Jul 22].

  42. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42(4 Suppl 3):S1–S201.

    Google Scholar 

  43. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis [Erratum in: Clin J Am Soc Nephrol. 2015 Oct 7;10(10):1886–7.]. Clin J Am Soc Nephrol. 2015;10(7):1257–72. https://doi.org/10.2215/CJN.09750913.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Z, Su G, Guo X, Wu Y, Liu X, Zou C, Zhang L, Yang Q, Xu Y, Ma W. Dietary interventions for mineral and bone dis- order in people with chronic kidney disease. Cochrane Database Syst Rev. 2015;9:CD010350.

    Google Scholar 

  45. Palmer SC, Gardner S, Tonelli M, Mavridis D, Johnson DW, Craig JC, French R, Ruospo M, Strippoli GF. Phosphate-binding agents in adults with CKD: a network meta-analysis of randomized trials [Erratum in: Am J Kidney Dis. 2017 Sep;70(3):452.]. Am J Kidney Dis. 2016;68(5):691–702. https://doi.org/10.1053/j.ajkd.2016.05.015.

    Article  CAS  PubMed  Google Scholar 

  46. Ruospo M, Palmer SC, Natale P, Craig JC, Vecchio M, Elder GJ, Strippoli GF. Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst Rev. 2018;8:CD006023.

    PubMed  Google Scholar 

  47. Serum phosphorus (most recent), categories. DOPPS Practice Monitor. 2020. https://www.dopps.org/OurStudies/DOPPSPracticeMonitor.aspx.

  48. Copland M, Komenda P, Weinhandl ED, McCullough PA, Morfin JA. Intensive hemodialysis, mineral and bone disorder, and phosphate binder use. Am J Kidney Dis. 2016;68(5S1):S24–32. https://doi.org/10.1053/j.ajkd.2016.05.024.

    Article  PubMed  Google Scholar 

  49. Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO4, Ca × PO4 product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12(10):2131–8.

    Article  CAS  PubMed  Google Scholar 

  50. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15(8):2208–18. https://doi.org/10.1097/01.ASN.0000133041.27682.A2.

    Article  CAS  PubMed  Google Scholar 

  51. Tentori F, Blayney MJ, Albert JM, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2008;52(3):519–30. https://doi.org/10.1053/j.ajkd.2008.03.020.

    Article  CAS  PubMed  Google Scholar 

  52. Kovesdy CP, Quarles LD. Fibroblast growth factor-23: what we know, what we don’t know, and what we need to know. Nephrol Dial Transplant. 2013;28(9):2228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wolf M. Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol. 2010;21(9):1427–35.

    Article  CAS  PubMed  Google Scholar 

  54. Wesseling-Perry K, Jüppner H. The osteocyte in CKD: new concepts regarding the role of FGF23 in mineral metabolism and systemic complications. Bone. 2013;54(2):222–9.

    Article  CAS  PubMed  Google Scholar 

  55. Batra J, Buttar RS, Kaur P, Kreimerman J, Melamed ML. FGF-23 and cardiovascular disease: review of literature. Curr Opin Endocrinol Diabetes Obes. 2016;23(6):423–9. https://doi.org/10.1097/MED.0000000000000294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gupta M, Orozco G, Rao M, Gedaly R, Malluche HH, Neyra JA. The role of alterations in alpha-klotho and FGF-23 in kidney transplantation and kidney donation. Front Med (Lausanne). 2022;9:803016. https://doi.org/10.3389/fmed.2022.803016.

    Article  PubMed  Google Scholar 

  57. Hu MC, Kuro-o M, Moe OW. Secreted klotho and chronic kidney disease. Adv Exp Med Biol. 2012;728:126–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuro-o M. Klotho and aging. Biochim Biophys Acta. 2009;1790(10):1049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu MC, Kuro-o M, Moe OW. The emerging role of Klotho in clinical nephrology. Nephrol Dial Transplant. 2012;27(7):2650–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50. https://doi.org/10.1096/fj.10-154765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol. 2013;180:47–63. https://doi.org/10.1159/000346778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zununi Vahed S, Mostafavi S, Hosseiniyan Khatibi SM, Shoja MM, Ardalan M. Vascular calcification: an important understanding in nephrology. Vasc Health Risk Manag. 2020;16:167–80. https://doi.org/10.2147/VHRM.S242685.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pérez-Hernández N, Aptilon-Duque G, Blachman-Braun R, et al. Vascular calcification: current genetics underlying this complex phenomenon. Chin Med J. 2017;130(9):1113–21. https://doi.org/10.4103/0366-6999.204931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bowman MAH, McNally EM. Genetic pathways of vascular calcification. Trends Cardiovasc Med. 2012;22(4):93–8. https://doi.org/10.1016/j.tcm.2012.07.002.

    Article  CAS  PubMed Central  Google Scholar 

  65. Schurgers LJ, Barreto DV, Barreto FC, et al. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol. 2010;5(4):568–75. https://doi.org/10.2215/CJN.07081009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith ER, Ford ML, Tomlinson LA, Rajkumar C, McMahon LP, Holt SG. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant. 2012;27(5):1957–66.

    Article  CAS  PubMed  Google Scholar 

  67. Shroff RC, McNair R, Figg N, et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation. 2008;118(17):1748–57. https://doi.org/10.1161/CIRCULATIONAHA.108.783738.

    Article  CAS  PubMed  Google Scholar 

  68. Lang F, Leibrock C, Pelzl L, et al. Therapeutic interference with vascular calcification-lessons from klotho-hypomorphic mice and beyond. Front Endocrinol (Lausanne). 2018;9:207. https://doi.org/10.3389/fendo.2018.00207.

    Article  PubMed  Google Scholar 

  69. Kanno Y, Into T, Lowenstein CJ, Matsushita K. Nitric oxide regulates vascular calcification by interfering with TGF-signalling. Cardiovasc Res. 2008;77(1):221–30. https://doi.org/10.1093/cvr/cvm049.

    Article  CAS  PubMed  Google Scholar 

  70. Cai T, Sun D, Duan Y, et al. WNT/beta-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp Cell Res. 2016;345(2):206–17. https://doi.org/10.1016/j.yexcr.2016.06.007.

    Article  CAS  PubMed  Google Scholar 

  71. Lee GL, Yeh CC, Wu JY, et al. TLR2 promotes vascular smooth muscle cell chondrogenic differentiation and consequent calcification via the concerted actions of osteoprotegerin suppression and IL-6-mediated RANKL induction. Arterioscler Thromb Vasc Biol. 2019;39(3):432–45. https://doi.org/10.1161/ATVBAHA.118.311874.

    Article  CAS  PubMed  Google Scholar 

  72. Osako MK, Nakagami H, Shimamura M, et al. Cross-talk of receptor activator of nuclear factor-κB ligand signaling with renin–angiotensin system in vascular calcification. Arterioscler Thromb Vasc Biol. 2013;33(6):1287–96. https://doi.org/10.1161/ATVBAHA.112.301099.

    Article  CAS  PubMed  Google Scholar 

  73. Gauthier-Bastien A, Ung RV, Lariviere R, Mac-Way F, Lebel M, Agharazii M. Vascular remodeling and media calcification increases arterial stiffness in chronic kidney disease. Clin Exp Hypertens. 2014;36(3):173–80. https://doi.org/10.3109/10641963.2013.804541.

    Article  PubMed  Google Scholar 

  74. Pai AS, Giachelli CM. Matrix remodeling in vascular calcification associated with chronic kidney disease. J Am Soc Nephrol. 2010;21(10):1637–40. https://doi.org/10.1681/ASN.2010040349.

    Article  PubMed  Google Scholar 

  75. Lau WL, Savoj J, Nakata MB, Vaziri ND. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clin Sci (Lond). 2018;132(5):509–22. https://doi.org/10.1042/CS20171107.

    Article  CAS  PubMed  Google Scholar 

  76. Yamamoto H, Tsuruoka S, Ioka T, et al. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int. 2006;69(10):1780–5. https://doi.org/10.1038/sj.ki.5000340.

    Article  CAS  PubMed  Google Scholar 

  77. Yisireyili M, Saito S, Abudureyimu S, et al. Indoxyl sulfate-induced activation of (pro)renin receptor promotes cell proliferation and tissue factor expression in vascular smooth muscle cells. PLoS One. 2014;9(10):e109268. https://doi.org/10.1371/journal.pone.0109268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Henze LA, Luong TTD, Boehme B, et al. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. Aging (Albany NY). 2019;11(15):5445–62. https://doi.org/10.18632/aging.102130.

    Article  CAS  PubMed  Google Scholar 

  79. Chen B, Zhao Y, Han D, et al. Wnt1 inhibits vascular smooth muscle cell calcification by promoting ANKH expression. J Mol Cell Cardiol. 2019;135:10–21. https://doi.org/10.1016/j.yjmcc.2019.07.00.

    Article  CAS  PubMed  Google Scholar 

  80. Wei R, Enaka M, Muragaki Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci Rep. 2019;9(1):10366. https://doi.org/10.1038/s41598-019-46824-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Z, Wu J, Zhang X, et al. CDC42 promotes vascular calcification in chronic kidney disease. J Pathol. 2019;249(4):461–71. https://doi.org/10.1002/path.5334.

    Article  CAS  PubMed  Google Scholar 

  82. Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg–Gly–Asp cell-binding sequence. Proc Natl Acad Sci U S A. 1986;83:8819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004;26:179–84.

    CAS  PubMed  Google Scholar 

  84. Paloian NJ, Leaf EM, Giachelli CM. Osteopontin protects against high phosphate-induced nephrocalcinosis and vascular calcification. Kidney Int. 2016;89(5):1027–36. https://doi.org/10.1016/j.kint.2015.12.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kuo TH, Lin WH, Chao JY, et al. Serum sclerostin levels are positively related to bone mineral density in peritoneal dialysis patients: a cross-sectional study. BMC Nephrol. 2019;20(1):266. https://doi.org/10.1186/s12882-019-1452-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Carracedo M, Witasp A, Qureshi AR, et al. Chemerin inhibits vascular calcification through ChemR23 and is associated with lower coronary calcium in chronic kidney disease. J Intern Med. 2019;286(4):449–57. https://doi.org/10.1111/joim.12940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frauscher B, Kirsch AH, Schabhuttl C, et al. Autophagy protects from uremic vascular media calcification. Front Immunol. 2018;9:1866. https://doi.org/10.3389/fimmu.2018.01866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mori D, Matsui I, Shimomura A, Hashimoto N, Matsumoto A, Shimada K, Yamaguchi S, Oka T, Kubota K, Yonemoto S, Sakaguchi Y, Takahashi A, Shintani Y, Takashima S, Takabatake Y, Hamano T, Isaka Y. Protein carbamylation exacerbates vascular calcification. Kidney Int. 2018;94(1):72–90. https://doi.org/10.1016/j.kint.2018.01.033.

    Article  CAS  PubMed  Google Scholar 

  89. Ter Braake AD, Shanahan CM, de Baaij JHF. Magnesium counteracts vascular calcification: passive interference or active modulation? Arterioscler Thromb Vasc Biol. 2017;37(8):1431–45. https://doi.org/10.1161/ATVBAHA.117.309182.

    Article  CAS  PubMed  Google Scholar 

  90. Louvet L, Metzinger L, Buchel J, Steppan S, Massy ZA. Magnesium attenuates phosphate-induced deregulation of a microRNA signature and prevents modulation of Smad1 and osterix during the course of vascular calcification. Biomed Res Int. 2016;2016:7419524. https://doi.org/10.1155/2016/7419524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ter Braake AD, Tinnemans PT, Shanahan CM, Hoenderop JGJ, de Baaij JHF. Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation. Sci Rep. 2018;8(1):2069. https://doi.org/10.1038/s41598-018-20241-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaesler N, Goettsch C, Weis D, et al. Magnesium but not nicotinamide prevents vascular calcification in experimental uraemia. Nephrol Dial Transplant. 2019;35(1):65–73. https://doi.org/10.1093/ndt/gfy410.

    Article  CAS  Google Scholar 

  93. Montes de Oca A, Guerrero F, Martinez-Moreno JM, et al. Magnesium inhibits Wnt/beta-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells. PLoS One. 2014;9(2):e89525. https://doi.org/10.1371/journal.pone.0089525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fusaro M, Noale M, Tripepi G, Giannini S, D'Angelo A, Pica A, Calò LA, Miozzo D, Gallieni M. Long-term proton pump inhibitor use is associated with vascular calcification in chronic kidney disease: a cross-sectional study using propensity score analysis. Drug Saf. 2013;36(8):635–42. https://doi.org/10.1007/s40264-013-0062-6.

    Article  CAS  PubMed  Google Scholar 

  95. Nagy A, Petho D, Gall T, et al. Zinc inhibits HIF-prolyl hydroxylase inhibitor-aggravated VSMC calcification induced by high phosphate. Front Physiol. 2019;10:1584. https://doi.org/10.3389/fphys.2019.01584.

    Article  PubMed  Google Scholar 

  96. Voelkl J, Tuffaha R, Luong TTD, et al. Zinc inhibits phosphate-induced vascular calcification through TNFAIP3-mediated suppression of NF-kappaB. J Am Soc Nephrol. 2018;29(6):1636–48. https://doi.org/10.1681/ASN.2017050492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shin MY, Kwun IS. Zinc restored the decreased vascular smooth muscle cell viability under atherosclerotic calcification conditions. Prev Nutr Food Sci. 2014;19(4):363–6. https://doi.org/10.3746/pnf.2014.19.4.363.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Akbari M, Nayeri H, Nasri H. Association of fetuin-A with kidney disease; a review on current concepts and new data. J Nephropharmacol. 2019;8(2):e14.

    Article  Google Scholar 

  99. Dai L, Qureshi AR, Witasp A, Lindholm B, Stenvinkel P. Early vascular ageing and cellular senescence in chronic kidney disease. Comput Struct Biotechnol J. 2019;17:721–9. https://doi.org/10.1016/j.csbj.2019.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maréchal C, Schlieper G, Nguyen P, et al. Serum fetuin-A levels are associated with vascular calcifications and predict cardiovascular events in renal transplant recipients. Clin J Am Soc Nephrol. 2011;6(5):974–85. https://doi.org/10.2215/CJN.06150710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, Jahnen-Dechent W, Shanahan CM. Multifunctional roles for serum protein fetuin-A in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol. 2005;16(10):2920–30. https://doi.org/10.1681/ASN.2004100895.

    Article  CAS  PubMed  Google Scholar 

  102. Wang J, Zhou JJ, Robertson GR, Lee VW. Vitamin D in vascular calcification: a double-edged sword? Nutrients. 2018;10(5):652. https://doi.org/10.3390/nu10050652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Norman PE, Powell JT. Vitamin D and cardiovascular disease. Circ Res. 2014;114:379–93. https://doi.org/10.1161/CIRCRESAHA.113.301241.

    Article  CAS  PubMed  Google Scholar 

  104. Holick MF, MacLaughlin JA, Doppelt SH. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science. 1981;211:590–3. https://doi.org/10.1126/science.6256855.

    Article  CAS  PubMed  Google Scholar 

  105. Bas A, Lopez I, Perez J, Rodriguez M, Aguilera-Tejero E. Reversibility of calcitriol-induced medial artery calcification in rats with intact renal function. J Bone Miner Res. 2006;21:484–90. https://doi.org/10.1359/JBMR.051211.

    Article  CAS  PubMed  Google Scholar 

  106. Schmidt N, Brandsch C, Kuhne H, Thiele A, Hirche F, Stangl GI. Vitamin D receptor deficiency and low vitamin D diet stimulate aortic calcification and osteogenic key factor expression in mice. PLoS One. 2012;7:e35316. https://doi.org/10.1371/journal.pone.0035316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mizobuchi M, Finch J, Martin D, Slatopolsky E. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 2007;72:709–15. https://doi.org/10.1038/sj.ki.5002406.

    Article  CAS  PubMed  Google Scholar 

  108. Noonan W, Koch K, Nakane M, Ma J, Dixon D, Bolin A, Reinhart G. Differential effects of vitamin D receptor activators on aortic calcification and pulse wave velocity in uraemic rats. Nephrol Dial Transplant. 2008;23:3824–30. https://doi.org/10.1093/ndt/gfn375.

    Article  CAS  PubMed  Google Scholar 

  109. Zittermann A, Schleithoff SS, Koerfer R. Vitamin D and vascular calcification. Curr Opin Lipidol. 2007;18:41–6. https://doi.org/10.1097/MOL.0b013e328011c6fc.

    Article  CAS  PubMed  Google Scholar 

  110. Ellam T, Hameed A, ul Haque R, Muthana M, Wilkie M, Francis SE, Chico TJ. Vitamin D deficiency and exogenous vitamin D excess similarly increase diffuse atherosclerotic calcification in apolipoprotein E knockout mice. PLoS One. 2014;9:e88767. https://doi.org/10.1371/journal.pone.0088767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shioi A, Morioka T, Shoji T, Emoto M. The inhibitory roles of vitamin K in progression of vascular calcification. Nutrients. 2020;12(2):583. https://doi.org/10.3390/nu12020583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shea MK, Dallal GE, Dawson-Hughes B, Ordovas JM, O’Donnell CJ, Gundberg CM, Peterson JW, Booth SL. Vitamin K, circulating cytokines, and bone mineral density in older men and women. Am J Clin Nutr. 2008;88:356–63. https://doi.org/10.1093/ajcn/88.2.356.

    Article  CAS  PubMed  Google Scholar 

  113. Shea MK, Booth SL, Massaro JM, Jacques PF, D’Agostino RB Sr, Dawson-Hughes B, Ordovas JM, O’Donnell CJ, Kathiresan S, Keaney JF Jr, et al. Vitamin K and vitamin D status: associations with inflammatory markers in the Framingham Offspring Study. Am J Epidemiol. 2008;167:313–20. https://doi.org/10.1093/aje/kwm306.

    Article  PubMed  Google Scholar 

  114. Elango K, Javaid A, Khetarpal BK, Ramalingam S, Kolandaivel KP, Gunasekaran K, Ahsan C. The effects of warfarin and direct oral anticoagulants on systemic vascular calcification: a review. Cell. 2021;10(4):773. https://doi.org/10.3390/cells10040773.

    Article  CAS  Google Scholar 

  115. Grzejszczak P, Kurnatowska I. Role of vitamin K in CKD: is its supplementation advisable in CKD patients? Kidney Blood Press Res. 2021;46(5):523–30. https://doi.org/10.1159/000516611.

    Article  CAS  PubMed  Google Scholar 

  116. Nigwekar SU, Thadhani R, Brandenburg VM. Calciphylaxis. N Engl J Med. 2018;378(18):1704–14. https://doi.org/10.1056/NEJMra1505292.

    Article  CAS  PubMed  Google Scholar 

  117. Chen TY, Lehman JS, Gibson LE, Lohse CM, El-Azhary RA. Histopathology of calciphylaxis: cohort study with clinical correlations. Am J Dermatopathol. 2017;39:795–802.

    Article  CAS  PubMed  Google Scholar 

  118. Kramann R, Brandenburg VM, Schurgers LJ, et al. Novel insights into osteogenesis and matrix remodelling associated with calcific uraemic arteriolopathy. Nephrol Dial Transplant. 2013;28:856–68.

    Article  CAS  PubMed  Google Scholar 

  119. Moe SM, Chen NX. Calciphylaxis and vascular calcification: a continuum of extra-skeletal osteogenesis. Pediatr Nephrol. 2003;18:969–75.

    Article  PubMed  Google Scholar 

  120. Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24:179–89.

    Article  CAS  PubMed  Google Scholar 

  121. Chen NX, O’Neill K, Akl NK, Moe SM. Adipocyte induced arterial calcification is prevented with sodium thiosulfate. Biochem Biophys Res Commun. 2014;449:151–6.

    Article  CAS  PubMed  Google Scholar 

  122. Ghosh T, Winchester DS, Davis MDP, El-Azhary R, Comfere NI. Early clinical presentations and progression of calciphylaxis. Int J Dermatol. 2017;56:856–61.

    Article  PubMed  Google Scholar 

  123. Daudén E, Oñate MJ. Calciphylaxis. Dermatol Clin. 2008;26:557–68.

    Article  PubMed  Google Scholar 

  124. Polizzotto MN, Bryan T, Ashby MA, Martin P. Symptomatic management of calciphylaxis: a case series and review of the literature. J Pain Symptom Manag. 2006;32:186–90.

    Article  Google Scholar 

  125. Nigwekar SU, Wolf M, Sterns RH, Hix JK. Calciphylaxis from nonuremic causes: a systematic review. Clin J Am Soc Nephrol. 2008;3:1139–43.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Weenig RH, Sewell LD, Davis MD, McCarthy JT, Pittelkow MR. Calciphylaxis: natural history, risk factor analysis, and outcome. J Am Acad Dermatol. 2007;56:569–79.

    Article  PubMed  Google Scholar 

  127. Bazari H. Case records of the Massachusetts General Hospital (Case 7-2007). N Engl J Med. 2007;356:1049–57.

    Article  CAS  PubMed  Google Scholar 

  128. Brandenburg VM, Evenepoel P, Floege J, et al. Lack of evidence does not justify neglect: how can we address unmet medical needs in calciphylaxis? Nephrol Dial Transplant. 2016;31:1211–9.

    Article  PubMed  Google Scholar 

  129. Baby D, Upadhyay M, Joseph MD, Asopa SJ, Choudhury BK, Rajguru JP, Gupta S. Calciphylaxis and its diagnosis: a review. J Fam Med Prim Care. 2019;8(9):2763–7. https://doi.org/10.4103/jfmpc.jfmpc_588_19.

    Article  Google Scholar 

  130. Sato T, Ichioka S. How should we manage multiple skin ulcers associated with calciphylaxis? J Dermatol. 2012;39(11):966–8.

    Article  PubMed  Google Scholar 

  131. Zitt E, Konig M, Vychytil A, et al. Use of sodium thiosulphate in a multi-interventional setting for the treatment of calciphylaxis in dialysis patients. Nephrol Dial Transplant. 2013;28(5):1232–40.

    Article  CAS  PubMed  Google Scholar 

  132. Nigwekar SU, Kroshinsky D, Nazarian RM, Goverman J, Malhotra R, Jackson VA, Kamdar MM, Steele DJ, Thadhani RI. Calciphylaxis: risk factors, diagnosis, and treatment. Am J Kidney Dis. 2015;66(1):133–46. https://doi.org/10.1053/j.ajkd.2015.01.034.

    Article  PubMed  PubMed Central  Google Scholar 

  133. An J, Devaney B, Ooi KY, Ford S, Frawley G, Menahem S. Hyperbaric oxygen in the treatment of calciphylaxis: a case series and literature review. Nephrology (Carlton). 2015;20:444–50.

    Article  CAS  PubMed  Google Scholar 

  134. Sowers KM, Hayden MR. Calcific uremic arteriolopathy: pathophysiology, reactive oxygen species and therapeutic approaches. Oxid Med Cell Longev. 2010;3:109–21.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cicone JS, Petronis JB, Embert CD, Spector DA. Successful treatment of calciphylaxis with intravenous sodium thiosulfate. Am J Kidney Dis. 2004;43(6):1104–8.

    Article  PubMed  Google Scholar 

  136. Gupta DR, Sangha H, Khanna R. Chemical peritonitis after intraperitoneal sodium thiosulfate. Perit Dial Int. 2012;32(2):220–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sherman C. Chemical peritonitis after intraperitoneal sodium thiosulfate. Perit Dial Int. 2013;33(1):104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Strazzula L, Nigwekar SU, Steele D, et al. Intralesional sodium thiosulfate for the treatment of calciphylaxis. JAMA Dermatol. 2013;149(8):946–9.

    Article  PubMed  Google Scholar 

  139. Baldwin C, Farah M, Leung M, et al. Multi-intervention management of calciphylaxis: a report of 7 cases. Am J Kidney Dis. 2011;58:988–91.

    Article  PubMed  Google Scholar 

  140. Nordheim E, Dahle DO, Syse IM, Åsberg A, Reisæter AV, Hartmann A. Resolution of calciphylaxis after urgent kidney transplantation in 3 patients with end-stage kidney failure. Transplant Direct. 2016;2(11):e113.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instr Course Lect. 1996;45:371–86.

    CAS  PubMed  Google Scholar 

  142. Downey PA, Siegel MI. Bone biology and the clinical implications for osteoporosis. Phys Ther. 2006;86(1):77–91.

    Article  PubMed  Google Scholar 

  143. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98. https://doi.org/10.1146/annurev.bioeng.8.061505.095721.

    Article  CAS  PubMed  Google Scholar 

  144. Datta HK, Ng WF, Walker JA, Tuck SP, Varanasi SS. The cell biology of bone metabolism. J Clin Pathol. 2008;61(5):577–87. https://doi.org/10.1136/jcp.2007.048868.

    Article  CAS  PubMed  Google Scholar 

  145. Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19(5):444–51. https://doi.org/10.1016/j.semcdb.2008.07.016.

    Article  CAS  PubMed  Google Scholar 

  146. Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473(2):201–9. https://doi.org/10.1016/j.abb.2008.03.027.

    Article  CAS  PubMed  Google Scholar 

  147. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell... and more. Endocr Rev. 2013;34(5):658–90. https://doi.org/10.1210/er.2012-1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Michigami T. Skeletal mineralization: mechanisms and diseases. Ann Pediatr Endocrinol Metab. 2019;24(4):213–9. https://doi.org/10.6065/apem.2019.24.4.213.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Murshed M. Mechanism of bone mineralization [Erratum in: Cold Spring Harb Perspect Med 2020 Aug 3;10(8)]. Cold Spring Harb Perspect Med. 2018;8(12):a031229. https://doi.org/10.1101/cshperspect.a031229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R. Targeted inactivation of the 25-hydroxyvitamin D(3)-1(α)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142:3135–41.

    Article  CAS  PubMed  Google Scholar 

  151. Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, Goltzman D. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci. 2001;98:7498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Suda T, Takahashi N, Abe E. Role of vitamin D in bone resorption. J Cell Biochem. 1992;49:53–8.

    Article  CAS  PubMed  Google Scholar 

  153. Curtis EM, Harvey NC, Cooper C. The burden of osteoporosis. In: Harvey NC, Cooper C, editors. Osteoporosis: a life course epidemiology approach to skeletal health. Boca Raton: CRC Press; 2018. p. 1–20.

    Google Scholar 

  154. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–S266.

    Google Scholar 

  155. Jamal S. Fractures in men and women with dialysis-dependent renal failure. Endocrinol Rounds. 2003;3

    Google Scholar 

  156. Jamal SA, Gilbert J, Gordon C, Bauer DC. Cortical PQCT measures are associated with fractures in dialysis patients. J Bone Miner Res. 2006;21:543–8.

    Article  PubMed  Google Scholar 

  157. Jamal SA, Leiter RE, Jassal V, Hamilton CJ, Bauer DC. Impaired muscle strength is associated with fractures in hemodialysis patients. Osteoporosis Int. 2006;17(9):1390–7.

    Article  CAS  Google Scholar 

  158. Malluche HH, Faugere MC. Renal osteodystrophy. New Engl J Med. 1989;321:317–8.

    Article  CAS  PubMed  Google Scholar 

  159. Lindberg JS, Moe SM. Osteoporosis in end-stage renal disease. Semin Nephrol. 1999;19:115–22.

    CAS  PubMed  Google Scholar 

  160. Nickolas TL, McMahon DJ, Shane E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol. 2006;17:3223–32.

    Article  PubMed  Google Scholar 

  161. Alem AM, Sherrard DJ, Gillen DL, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58:396–9.

    Article  CAS  PubMed  Google Scholar 

  162. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. 2009;113:S1–130.

    Google Scholar 

  163. Jamal SA, West SL, Miller PD. Fracture risk assessment in patients with chronic kidney disease. Osteoporos Int. 2012;23:1191–8. https://doi.org/10.1007/s00198-011-1781-0.

    Article  CAS  PubMed  Google Scholar 

  164. Elkington JR. Hydrogen ion turnover in health and disease. Ann Intern Med. 1972;57:660–80.

    Article  Google Scholar 

  165. Kraut JA. The role of metabolic acidosis in the pathogenesis of renal osteodystrophy. Adv Ren Replace Ther. 1995;2(1):40–51. https://doi.org/10.1016/s1073-4449(12)80070-7.

    Article  CAS  PubMed  Google Scholar 

  166. Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G, Kidney Disease: Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945–53. https://doi.org/10.1038/sj.ki.5000414.

    Article  CAS  PubMed  Google Scholar 

  167. Sharma S, Gupta A. Adynamic bone disease: revisited. Nefrologia (Engl Ed). 2021. https://doi.org/10.1016/j.nefro.2020.11.012.

  168. Kurz P, Monier-Faugere MC, Bognar B, Werner E, Roth P, Vlachojannis J, Malluche HH. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int. 1994;46(3):855–61. https://doi.org/10.1038/ki.1994.342.

    Article  CAS  PubMed  Google Scholar 

  169. Coen G, Ballanti P, Bonucci E, Calabria S, Costantini S, Ferrannini M, Giustini M, Giordano R, Nicolai G, Manni M, Sardella D, Taggi F. Renal osteodystrophy in predialysis and hemodialysis patients: comparison of histologic patterns and diagnostic predictivity of intact PTH. Nephron. 2002;91(1):103–11. https://doi.org/10.1159/000057611.

    Article  CAS  PubMed  Google Scholar 

  170. Coco M, Rush H. Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone. Am J Kidney Dis. 2000;36:115–1121.

    Article  Google Scholar 

  171. Atsumi K, Kushida K, Yamazaki K, Shimizu S, Ohmura A, Inoue T. Risk factors for vertebral fractures in renal osteodystrophy. Am J Kidney Dis. 1999;33(2):287–93. https://doi.org/10.1016/s0272-6386(99)70302-1.

    Article  CAS  PubMed  Google Scholar 

  172. Sherrard DJ, Hercz G, Pei Y, Maloney NA, Greenwood C, Manuel A, Saiphoo C, Fenton SS, Segre GV. The spectrum of bone disease in end-stage renal failure—an evolving disorder. Kidney Int. 1993;43(2):436–42. https://doi.org/10.1038/ki.1993.64.

    Article  CAS  PubMed  Google Scholar 

  173. Morelli MB, Santulli G, Gambardella J. Calcium supplements: good for the bone, bad for the heart? A systematic updated appraisal. Atherosclerosis. 2020;296:68–73. https://doi.org/10.1016/j.atherosclerosis.2020.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Torres PU, Bover J, Mazzaferro S, de Vernejoul MC, Cohen-Solal M. When, how, and why a bone biopsy should be performed in patients with chronic kidney disease. Semin Nephrol. 2014;34:612–25.

    Article  PubMed  Google Scholar 

  175. Jablonski G, Klem KH, Dnaielsen CC, Mosekilde L, Gordeladze JO. Aluminum-induced bone disease in uremic rats: effect of deferoxamine. Biosci Rep. 1996;16:49–63.

    Article  CAS  PubMed  Google Scholar 

  176. Bover J, Urena P, Brandenburg V, et al. Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin Nephrol. 2014;34:626–40.

    Article  PubMed  Google Scholar 

  177. Cannata-Andia JB. Pathogenesis, prevention and management of low-bone turnover. Nephrol Dial Transplant. 2000;15:15–7.

    Article  PubMed  Google Scholar 

  178. Naji Rad S, Deluxe L. Osteitis fibrosa cystica. Treasure Island (FL): StatPearls Publishing; 2022.

    Google Scholar 

  179. Slatopolsky E, Gonzalez E, Martin K. Pathogenesis and treatment of renal osteodystrophy. Blood Purif. 2003;21(4–5):318–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Sprague .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajaj, T., Sprague, S.M. (2023). Chronic Kidney Disease-Bone and Mineral Disease. In: Fadem, S.Z., Moura-Neto, J.A., Golper, T.A. (eds) Complications in Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-031-44557-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44557-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44556-9

  • Online ISBN: 978-3-031-44557-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics