Skip to main content

An Overview of Fungal Volatile Organic Compounds (VOCs)

  • Chapter
  • First Online:
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

  • 485 Accesses

Abstract

Fungi emit many volatile organic compounds (VOCs) as mixtures of low molecular mass alcohols, aldehydes, esters, terpenoids, thiols, and other small molecules. The study of the gas-phase portion of a metabolome is sometimes called “volatomics.” Chemical separation and VOC identification usually rely on gas chromatography-mass spectrometry (GC-MS). Fungal VOC profiles are both complex and dynamic: the specific compounds produced and their abundance vary with the producing species, the age of the colony, water availability, the substrate, the temperature, the presence of other organisms, and other parameters. The single most reported volatile from fungi is 1-octen-3-ol. It functions as a hormone within many fungal species; serves as both an attractant and a deterrent for some species of arthropods; and exhibits toxicity at relatively low concentrations in several model systems. Fungal VOCs have been studied by scientists from a broad range of subdisciplines in both theoretical and applied contexts. In biotechnology, VOCs are exploited for their food and flavor properties as indirect indicators of microbial growth, to stimulate plant growth, and to attract insect pests. Because these compounds can diffuse a long way from their point of origin, they are excellent chemical signaling molecules and facilitate the ability of fungi to engage in “chemical conversations.” Volatiles shape ecology at the level of organisms and populations. The physiological effects of fungal VOCs in host–pathogen relationships and mediating interspecific associations in natural ecosystem functioning are emerging frontiers in volatile research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramson D, Sinha RN, Mills JT (1980) Mycotoxin and odor formation in moist cereal grain during granary storage. Cereal Chem 57:346–351

    CAS  Google Scholar 

  • Abramson D, Sinha RN, Mills JT (1983) Mycotoxin and odor formation in barley stored at 16 and 20% moisture in Manitoba. Cereal Chem 60:350–355

    CAS  Google Scholar 

  • Ackerman D (1990) A natural history of the senses. Vintage Books, Random House, New York, NY

    Google Scholar 

  • Agrios GN (2008) Plant pathology, 5th edn. Elsevier, San Diego, CA

    Google Scholar 

  • Aldrich JR (1988) Chemical ecology of the heteroptera. Annu Rev Entomol 33:211–238

    Article  Google Scholar 

  • Allen PJ (1957) Properties of a volatile fraction of uredospores of Puccinia graminis var. tritici affecting their germination and development. I Biological activity. Plant Physiol 32:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen K, Bennett JW (2021) Tour of truffles: aromas, aphrodisiacs, adaptogens, and more. Mycobiology 49(3):201–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Alpha CJ, Campos M, Jacobs-Wagner C, Strobel SA (2015) Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81(3):1147–1156

    Article  PubMed  PubMed Central  Google Scholar 

  • Anishchenko IM, McCartney MM, Fung AG, Peirano DJ, Schirle MJ, Kenyon NJ, Davis CE (2018) Modular and reconfigurable gas chromatography/differential mobility spectrometry (GC/DMS) package for detection of volatile organic compounds (VOCs). Int J Ion Mobil Spectrom 21:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assaf S, Hadar Y, Dosoretz CG (1997) 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzym Microb Technol 21:484–490

    Article  CAS  Google Scholar 

  • Atmosukarto I, Castillo U, Hess W, Sears J, Strobel G (2005) Isolation and characterization of Muscodor albus I-41.3s, a volatile antibiotic producing fungus. Plant Sci 169:854–861

    Article  CAS  Google Scholar 

  • Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39(2):222–233

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, White JW (eds) (2000) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815

    Article  CAS  PubMed  Google Scholar 

  • Banchio E, Xie X, Zhang H, Paré PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW (1983) Differentiation and secondary metabolism in mycelial fungi. In: Bennett JW, Ciegler A (eds) Secondary metabolism and differentiation in Fungi. Marcel Dekker, New York

    Google Scholar 

  • Bennett JW, Bentley R (1989) What’s in a name? – Microbial secondary metabolism. Adv Appl Microbiol 34:1–28

    Article  CAS  Google Scholar 

  • Bennett JW, Feibleman T (2001) Fungal bacterial interactions. In: Hock B (ed) The Mycota, vol IX. Springer-Verlag, Berlin

    Google Scholar 

  • Bentley R, Meganathan R (1981) Geosmin and methylisoborneol biosynthesis in streptomycetes: evidence for an isoprenoid pathway and its absence in non-differentiating isolates. FEBS Lett 125(2):220–222

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Tymoch JL, Stryer L (2007) Biochemistry. WH Freeman and Company, New York

    Google Scholar 

  • Berger RG, Drawert F, Tiefel P (1992) Naturally occuring flavours from fungi, yeasts, and bacteria. In: Patterson RLS, Charlwood BV, MacLeod G, Williams AA (eds) Bioinformation of flavours. The Royal Chemistry Society, Cambridge, pp 1–20

    Google Scholar 

  • Bitas V, Kim H-S, Bennett J, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26:835–843

    Article  CAS  PubMed  Google Scholar 

  • Bloch E, Deorazio R (1994) Chemistry in a salad bowl: comparative organosulfur chemistry of garlic, onion, and shitake mushrooms. Pure Appl Chem 66:2205–2206

    Article  Google Scholar 

  • Bohbot JD, Dickens JC (2009) Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 4:7032

    Article  Google Scholar 

  • Bone E (2011) Mycophilia: revelations from the weird world of mushrooms. Rodale Books

    Google Scholar 

  • Bonfante P, Desirò A (2017) Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J 11(8):1727–1735

    Article  PubMed  PubMed Central  Google Scholar 

  • Boniface T (2020) The use of odours in the identification of mushrooms and toadstools. Field Mycol 21:28–30

    Article  Google Scholar 

  • Borg-Karlson A-K, Englund FO, Unelius CR (1994) Dimethyl oligosulphides, major volatiles released from Sauromatum guttatum and Phallus impudicus. Phytochemistry 35:321–323

    Article  CAS  Google Scholar 

  • Börjesson T, Stöllman UM, Adamek P, Kaspersson A (1989) Analysis of volatile compounds for detection of molds in stored cereals. Cereal Chem 66:300–304

    Google Scholar 

  • Börjesson T, Stöllman UM, Schnürer J (1993) Off-odorous compounds produced by molds on oatmeal agar: Identification and relation to other growth characteristics. J Agric Food Chem 41:2104–2111

    Article  Google Scholar 

  • Breheret S, Talou T, Rapior S, Bessiere J-M (1997) Monoterpenes in the aromas of fresh wild mushrooms. J Agric Food Chem 45:831–836

    Article  CAS  Google Scholar 

  • Briard B, Heddergott C, Latge JP (2016) Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. MBio 7:e00219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Reciprocal oxylipin-mediated cross-talk in the Aspergillus–seed pathosystem. Mol Microbiol 67:378–391

    Article  CAS  PubMed  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Brown WL (1968) An hypothesis concerning the function of the metapleural glands in ants. Am Nat 102:188–191

    Article  Google Scholar 

  • Bruce A, Verrall S, Hackett CA, Wheatley RE (2004) Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapstain fungi. Holzforschung 58:193–198

    Article  CAS  Google Scholar 

  • Burge PS (2004) Studies on the role of fungi in sick building syndrome. Occup Environ Med 61:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champe SP, el-Zayat AA (1989) Isolation of a sexual sporulation hormone from Aspergillus nidulans. J Bacteriol 171:3982–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champe SP, Rao P, Chang A (1987) An endogenous inducer of sexual development in Aspergillus nidulans. J Gen Microbiol 133:1383–1387

    CAS  PubMed  Google Scholar 

  • Chauhan NM, Mohan Karuppayil S (2021) Dual identities for various alcohols in two different yeasts. Mycology 12(1):25–38

    Article  CAS  Google Scholar 

  • Chauhan NM, Raut JS, Karuppayil SM (2011) A morphogenetic regulatory role for ethyl alcohol in Candida albicans. Mycoses 54(6):e697–e703

    Article  PubMed  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Yang R, Chen J, Luo Q, Cui X, Yan X, Gerwick WH (2019) 1-Octen-3-ol, a self-stimulating oxylipin messenger, can prime and induce defense of marine alga. BMC Plant Biol 19:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiron N, Michelot D (2005) Odeurs de champignons: chimie et rôle dans les interactions biotiques — une revue. Cryptogam Mycol 26:299–364

    Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol 54:67–75

    Article  CAS  PubMed  Google Scholar 

  • Cho IH, Namgung H-J, Choi H-K, Kim YS (2008) Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing). Food Chem 106:71–76

    Article  CAS  Google Scholar 

  • Choudhary DK, Johri BN, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci 94(5):595–604

    CAS  Google Scholar 

  • Chow EWL, Pang LM, Wang Y (2021) From Jekyll to Hyde: the yeast-hyphal transition of Candida albicans. Pathogens 10(7):859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claeson A-S, Levin J-O, Blomquist GR, Sunesson A-L (2002) Volatile metabolites from microorganisms grown on humid building materials and synthetic media. J Environ Monit 4:667–672

    Article  CAS  PubMed  Google Scholar 

  • Cole R, Schweikert M (2003) Handbook of secondary fungal metabolites, vol 1-3. Academic Press, Amsterdam

    Google Scholar 

  • Combet E, Henderson J, Eastwood DC, Burton KS (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326

    Article  CAS  Google Scholar 

  • Copetti MV (2019) Fungi as industrial producers of food ingredients. Curr Opin Food Sci 25:52–56

    Article  Google Scholar 

  • Cronin DA, Ward MK (1971) The characterisation of some mushroom volatiles. J Sci Food Agric 22:477–479

    Article  CAS  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  CAS  PubMed  Google Scholar 

  • Davis C, Pleil J, Beauchamp J (eds) (2020) Breathborne biomarkers and the human volatilome, 2nd edn. Elsevier

    Google Scholar 

  • De Heer K, Vonk SI, Kok M, Kolader M, Zwinderman AH, Van Oers MHJ, Visser CE (2016) eNose technology can detect and classify human pathogenic molds in vitro: a proof-of-concept study of Aspergillus fumigatus and Rhizopus oryzae. J Breath Res 10(3):036008

    Article  PubMed  Google Scholar 

  • de Pinho PG, Ribeiro B, Goncalves RF, Baptista P, Valentao P, Seabra RM, Andrade PB (2008) Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms. J Agric Food Chem 56:1704–1712

    Article  PubMed  Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131–139

    Article  Google Scholar 

  • Dickschat JS (2017) Fungal volatiles–a survey from edible mushrooms to moulds. Nat Prod Rep 34(3):310–328

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS, Martens R, Brinkhoff T, Simon M, Schulz S (2005a) Volatiles releases by Streptomyces species isolated from the North Sea. Chem Biodivers 2:837–865

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS, Wenzel SC, Bode HB, Müller R, Schulz S (2005b) Biosynthesis of volatiles by the Myxobacterium Myxococcus xanthus. Chembiochem 5:778–787

    Article  Google Scholar 

  • Dietert RR, Silbergeld EK (2015) Biomarkers for the 21st century: listening to the microbiome. Toxicol Sci 144(2):208–216

    Article  CAS  PubMed  Google Scholar 

  • Dixon EF, Hall RA (2015) Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell Microbiol 17:1431–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do DH, Walgraeve C, Amare AN, Barai KR, Parao AE, Demeestere K, Van Langenhove H (2015) Airborne volatile organic compounds in urban and industrial locations in four developing countries. Atmos Environ 119:330–338

    Article  CAS  Google Scholar 

  • Doty SL (2013) Endophytic yeasts: biology and applications. In: Aroca R (ed) Symbiotic endophytes. Soil biology. Springer, Berlin, pp 335–343

    Chapter  Google Scholar 

  • Dowd PF, Bartelt RJ (1991) Host-derived volatiles as attractants and pheromone synergists for dried fruit beetle, Carpophilus hemipterus. J Chem Ecol 17:285–308

    Article  CAS  PubMed  Google Scholar 

  • Dunkel M, Schmidt U, Struck S, Berger L, Gruening B, Hossbach J, Jaeger IS, Effmert U, Piechulla B, Eriksson R, Knudsen J, Preissner R (2009) SuperScent--a database of flavors and scents. Nucleic Acids Res 37(Database issue):D291–D294

    Article  CAS  PubMed  Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    Article  CAS  PubMed  Google Scholar 

  • Eisner T (2003) For love of insects. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Elmassry MM, Farag MA, Preissner R, Gohlke BO, Piechulla B, Lemfack MC (2020) Sixty-one volatiles have phylogenetic signals across bacterial domain and fungal kingdom. Front Microbiol 11:557253

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezquer I, Li J, Ovecka M, Baroja-Fernández E, José Muñoz F, Montero M, de Cerio J, Hidalgo M, Sesma MT, Behaji A, Etxeberria E (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono-and dicotyledonous plants. Plant Cell Physiol 51(10):1674–1693

    Article  CAS  PubMed  Google Scholar 

  • Fäldt J, Jonsell M, Nordlander G, Borg-Karlson A-K (1999) Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 25:567–590

    Article  Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  CAS  PubMed  Google Scholar 

  • Farh ME, Jeon J (2020) Roles of fungal volatiles from perspective of distinct lifestyles in filamentous fungi. Plant Pathol J 36(3):193–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Ferrari R, Lacaze I, Le Faouder P, Bertrand-Michel J, Oger C, Galano J-M, Durand T, Moularat S, Tong LCH, Boucher C (2018) Cyclooxygenases and lipoxygenases are used by the fungus Podospora anserina to repel nematodes. Biochim Biophys Acta (BBA)-Gen Subj 1862:2174–2182

    Article  CAS  Google Scholar 

  • Fiedler N, Laumbach R, Kelly-McNeil K, Lioy P, Fan Z-H, Zhang J, Ottenweller J, Ohman-Strickland P, Kipen H (2005) Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress. Environ Health Perspect 113:1542–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer G, Schwalbe R, Möller M, Ostrowski R, Dott W (1999) Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:779–810

    Article  Google Scholar 

  • Flavier AB, Ganova-Raeva LM, Schell MA, Denny TP (1997) Hierarchial autoinduction in Ralstonia solanacearum: control of actyl- homoserine lactone production by a novel autoregulatory system responsive to 30- hydroxypalmitic acid methyl ester. J Bacteriol 179:7089–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraatz MA, Zorn H (2010) Fungal flavours. In: Hofrichter M (ed) The Mycota X: industial applications, vol X. industrial applications, 2nd edn. Springer, Berlin, Heidelberg, pp 249–264

    Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bact 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallois A, Langlois D (1990) New results in the volatile odorous compounds of French cheeses. Lait 70:89–106

    Article  CAS  Google Scholar 

  • Gilbert A (2008) What the nose knows. The science of scent in everyday life. Crown Pubs, New York, NY

    Google Scholar 

  • Glick BR (2020) Beneficial plant-bacterial interactions. Springer

    Book  Google Scholar 

  • Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156:3814–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith RT, Jayachandran K, Shetty KG, Whitstine W, Furton KG (2007) Differentiation of toxic molds via headspace SPME-GC/MS and canine detection. Sensors 7:1496–1508

    Article  CAS  PubMed Central  Google Scholar 

  • Guo Y, Jud W, Weikl F, Ghirardo A, Junker RR, Polle A, Benz JP, Pritsch K, Schnitzler J-P, Rosenkranz M (2021) Volatile organic compound patterns predict fungal trophic mode and lifestyle. Commun Biol 4:673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83

    Article  Google Scholar 

  • Hall IR, Brown G, Byars J (1994) The black truffle: its history, uses and cultivation. New Zealand Institute for Crop & Food Research Limited, Christchurch

    Google Scholar 

  • Hall IR, Brown GT, Zambonelli A (2007) Taming the truffle. the history, lore, and science of the ultimate mushroom. Timber Press, Portland, OR

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H (2015) Frontier studies on highly selective bio-regulators useful for environmentally benign agricultural production. Biosci Biotechnol Biochem 79:877–887

    Article  CAS  PubMed  Google Scholar 

  • He P, Hassan MM, Tang F, Jiang H, Chen M, Liu R, Chen Q (2022) Total fungi counts and metabolic dynamics of volatile organic compounds in paddy contaminated by Aspergillus niger during storage employing gas chromatography-ion mobility spectrometry. Food Anal Methods 15(6):1638–1651

    Article  Google Scholar 

  • Heddergott C, Calvo AM, Latgé JP (2014) The volatome of Aspergillus fumigatus. Eukaryot Cell 13:1014–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heenan-Daly D, Coughlan S, Dillane E, Doyle Prestwich B (2021) Volatile compounds from Bacillus, Serratia, and Pseudomonas promote growth and alter the transcriptional landscape of Solanum tuberosum in a passively ventilated growth system. Front Microbiol 1766

    Google Scholar 

  • Hermann A (2010) The chemistry and biology of volatiles. Wiley, Hoboken, NJ, pp 1–428

    Book  Google Scholar 

  • Herrero-Garcia E, Garzia A, Cordobés S, Espeso EA, Ugalde U (2011) 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol 115:393–400

    Article  CAS  PubMed  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holighaus G, Rohlfs M (2016) Fungal allelochemicals in insect pest management. Appl Microbiol Biotechnol 100(13):5681–5689

    Article  CAS  PubMed  Google Scholar 

  • Hooper AM, Pickett JA (2004) Semiochemistry. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry, vol 2. Marcel Dekker, New York, pp 1270–1277

    Chapter  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horswill A, Stoodley P, Stewart P, Parsek M (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387:371–380

    Article  CAS  PubMed  Google Scholar 

  • Hossain MM, Sultana F, Miyazawa M, Hyakumachi M (2014) The plant growth promoting fungi Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. J Oleo Sci 63(4):391–400

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26

    Article  Google Scholar 

  • Hung R, Lee S, Bennett JW (2014) The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana. Mycology 5:73–80

    Article  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99:3395–3405

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson SA (1973) Biological activities of volatile fungal metabolites. Annu Rev Phytopathol 11:223–246

    Article  CAS  Google Scholar 

  • Inamdar AA, Bennett JW (2015) Volatile organic compounds from fungi isolated after Hurricane Katrina induce developmental defects and apoptosis in a Drosophila melanogaster model. Environ Toxicol 30(5):614–620

    Article  CAS  PubMed  Google Scholar 

  • Inamdar AA, Masurekar P, Bennett JW (2010) Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol Sci 117:418–426

    Article  CAS  PubMed  Google Scholar 

  • Inamdar AA, Moore JC, Cohen RI, Bennett JW (2011) A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells. Mycopathologia 173:13–20

    Article  PubMed  Google Scholar 

  • Inamdar AA, Morath S, Bennett JW (2020) Fungal volatile organic compounds: More than just a funky smell? Annu Rev Microbiol 74:101–116

    Article  CAS  PubMed  Google Scholar 

  • IOM - Institute of Medicine (2004) Damp indoor spaces and health. National Academies Press, Washington, DC

    Google Scholar 

  • Jarvis BB, Miller JD (2005) Mycotoxins as harmful indoor air contaminants. Appl Microbiol Biotechnol 66:367–372

    Article  CAS  PubMed  Google Scholar 

  • Jeandroz S, Murat C, Wang Y, Bonfante P, Tacon FL (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J Biogeogr 35(5):815–829

    Article  Google Scholar 

  • Jeleń HH (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36:263–267

    Article  PubMed  Google Scholar 

  • Joblin Y, Moularat S, Anton R, Bousta F, Orial G, Robine E, Picon O, Bourouina T (2010) Detection of moulds by volatile organic compounds; application to heritage conservation. Int Biodeterior Biodegrad 64:210–217

    Article  CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kaminski E, Libbey LM, Stawicki S, Wasowicz E (1972) Identification of the predominant volatile compounds produced by Aspergillus flavus. Appl Microbiol 24:721–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karahadian C, Josephson DB, Lindsay RC (1985) Contribution of Penicillium sp. to the flavour of Brie and Camembert cheese. J Dairy Sci 68:1865–1877

    Article  CAS  Google Scholar 

  • Karlovsky P (ed) (2008) Secondary metabolites in soil ecology. Springer, Berlin

    Google Scholar 

  • Karlshøj K, Nielsen PV, Larsen TO (2007) Fungal volatiles biomarkers of good and bad food quality. In: Dijksterhuis J, Samson RA (eds) Food mycology. CRC Press, Boca Raton, FL, pp 279–302

    Google Scholar 

  • Karlson P, Luscher M (1959) ‘Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56

    Article  CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Kimball BA (2016) Volatile metabolome: problems and prospects. Bioanalysis 8(19):1987–1991

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol 73:35–37

    Article  CAS  Google Scholar 

  • Kline D, Allan SA, Bernier UR, Welch CH (2007) Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, U.S.A. Med Vet Entomol 21:323–331

    Article  CAS  PubMed  Google Scholar 

  • Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302

    Article  CAS  PubMed  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  • Kües U, Navarro-González M (2009) Communication of fungi on individual, species, kingdom, and above kingdom levels. In: Anke T, Weber D (eds) Physiology and genetics. The Mycota XV. Springer, pp 79–106

    Chapter  Google Scholar 

  • Kuske M, Romain A-C, Nicolas J (2005) Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Build Environ 40:824–831

    Article  Google Scholar 

  • La Camera S, Gouzerh G, Sandrine D, Laurent H, Bernard F, Michel F, Thierry H (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284

    Article  PubMed  Google Scholar 

  • Lam K, Tsang M, Labrie A, Gries R, Gries G (2010) Semiochemical-mediated oviposition avoidance by female house flies, Musca domestica, on animal feces colonized with harmful fungi. J Chem Ecol 36:141–147

    Article  CAS  PubMed  Google Scholar 

  • Larsen TO (1998) Volatiles in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Handbook of applied mycology, Chemical fungal taxonomy, vol 6. Marcel Dekker, New York, NY, pp 263–287

    Google Scholar 

  • Larsen TO, Frisvad JC (1995) Comparison of different methods for collection of volatile chemical markers from fungi. J Microbiol Methods 24:135–144

    Article  CAS  Google Scholar 

  • Lax AR, Templeton GE, Meyer WL (1985) Isolation, purification, and biological activity of a self -inhibotor from conidia of Colletotrichum gloeosporioides. Phytopathology 75:386–390

    Article  CAS  Google Scholar 

  • Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197:723–727

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Hung R, Yin G, Klich MA, Grimm C, Bennett JW (2016a) Arabidopsis thaliana as bioindicator of fungal VOCs in indoor air. Mycobiology 44:162–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S, Yap M, Behringer G, Hung R, Bennett JW (2016b) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3:1–14

    Article  CAS  Google Scholar 

  • Lee S, Yin G, Bennett JW (2017) Airborne signals: volatile-mediated communication between plants, fungi, and microorganisms. In: Dighton J, White JF (eds) The fungal community. Its organization and role in the ecosystem, 4th edn. CRC Press, Taylor & Francis, pp 521–538

    Google Scholar 

  • Lee S, Behringer G, Hung R, Bennett J (2019) Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. Fungal Ecol 37:1–9

    Article  Google Scholar 

  • Lee NY, Choi DH, Kim MG, Jeong MJ, Kwon HJ, Kim DH, Kim YG, di Luccio E, Arioka M, Yoon HJ, Kim JG (2020) Biosynthesis of (R)-(−)-1-octen-3-ol in recombinant Saccharomyces cerevisiae with lipoxygenase-1 and hydroperoxide lyase genes from Tricholoma matsutake. J Microbiol Biotechnol 30:296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, Wali N, Nakazawa T, Honda Y, Shie JJ, Hsueh YP (2023) A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Science. Advances 9(3):eade4809

    Google Scholar 

  • Leeder AC, Palma-Guerrero J, Glass NL (2011) The social network: deciphering fungal language. Nat Rev Microbiol 9:440–451

    Article  CAS  PubMed  Google Scholar 

  • Lemfack MC, Gohlke BO, SMT T, Preissner S, Piechulla B, Preissner R (2018) mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res 46(D1):D1261–D1265

    Article  CAS  PubMed  Google Scholar 

  • Li N, Kang S (2018) Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants? Mycology 9:166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DW, Yang CS (2004) Fungal contamination as a major contributor to sick building syndrome. Adv Appl Microbiol 55:31–112

    Article  CAS  PubMed  Google Scholar 

  • Li N, Alfiky A, Vaughan M, Kang S (2016) Stop and smell the fungi: fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol Rev 30:134–144

    Article  Google Scholar 

  • Li N, Wang W, Bitas V, Subbarao K, Liu X, Kang S (2018) Volatile compounds emitted by diverse Verticillium species enhance plant growth by manipulating auxin signaling. Mol Plant-Microbe Interact 31:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Paul R, Tis TB, Saville AC, Hansel JC, Yu T, Ristaino JB, Qingshan W (2019) Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat Plants 5:856–866

    Article  CAS  PubMed  Google Scholar 

  • Ling L, Tu Y, Ma W, Feng S, Yang C, Zhao Y, Wang N, Li Z, Lu L, Zhang J (2020) A potentially important resource: endophytic yeasts. World J Microbiol Biotechnol 36:1–7

    Article  Google Scholar 

  • Liu W, Mu W, Zhu B, Liu F (2008) Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Curr Res Bacteriol 1:28–34

    Article  CAS  Google Scholar 

  • Luard E (2006) Truffles. Frances Lincoln Limited, Childs Hill, London

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Luntz AJ (2003) Arthropod semiochemicals: mosquitoes, midges and sealice. Biochem Soc Trans 31(Pt 1):128–133

    Article  PubMed  Google Scholar 

  • Luo QJ, Zhu ZG, Zhu ZJ, Yang R, Qian J, Chen HM, Yan XJ (2014) Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS One 9(4):e94354

    Article  PubMed  PubMed Central  Google Scholar 

  • Macedo GE, Vieira PDB, Rodrigues NR, Gomes KK, Rodrigues JF, Franco JL, Posser T (2022) Effect of fungal indoor air pollutant 1-octen-3-ol on levels of reactive oxygen species and nitric oxide as well as dehydrogenases activities in Drosophila melanogaster males. J Toxic Environ Health A 85(14):573–585

    Article  CAS  Google Scholar 

  • Mackie AE, Wheatley RE (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31:375–385

    Article  CAS  Google Scholar 

  • Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807

    Article  CAS  PubMed  Google Scholar 

  • Materić D, Bruhn D, Turner C, Morgan G, Mason N, Gauci V (2015) Methods in plant foliar volatile organic compounds research. Appl Plant Sci 3(12):1500044

    Article  Google Scholar 

  • Mattheis JP, Roberts RG (1992) Identification of geosmin as a volatile metabolite of Penicillium expansum. Appl Environ Microbiol 58:3170–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matysik S, Herbarth O, Mueller A (2008) Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J Microbiol Methods 75:182–187

    Article  CAS  PubMed  Google Scholar 

  • Matysik S, Herbarth O, Mueller A (2009) Determination of microbial volatile organic compounds (MVOCs) by passive sampling onto charcoal sorbents. Chemosphere 76:114–119

    Article  CAS  PubMed  Google Scholar 

  • Mau J-L, Beelman RB, Ziegler GR (1992) Effect of 10-oxo-trans-8-decenoic acid on growth of Agaricus bisporus. Phytochemistry 31:4059–4064

    Article  CAS  Google Scholar 

  • Mau J-L, Chyau C-C, Li J-Y, Tseng Y-H (1997) Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. J Agric Food Chem 45:4726–4729

    Article  CAS  Google Scholar 

  • Mauriello G, Marino R, D'Auria M, Cerone G, Rana GL (2004) Determination of volatile organic compounds from truffles via SPME-GC-MS. J Chromatogr Sci 42:299–305

    Article  CAS  PubMed  Google Scholar 

  • McFee DR, Zavon P (1988) Solvents. In: Plog BA (ed) Fundamentals of industrial hygiene, 3rd edn. National Safety Council, Chicago, pp 95–121

    Google Scholar 

  • McGann JP (2017) Poor human olfaction is a 19th-century myth. Science 356(6338):eaam7263

    Article  PubMed  PubMed Central  Google Scholar 

  • McNeal KS, Herbert BE (2009) Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Sci Soc Am J 73:579–588

    Article  CAS  Google Scholar 

  • Meilgaard MC (1975a) Flavor chemistry of beer. I. Flavor interaction between principal volatiles. Technical Quarterly, Master Brewers Association of America 12:107–117

    Google Scholar 

  • Meilgaard MC (1975b) Flavor chemistry of beer. II. Flavor and threshold of 239 aroma volatiles. Technical Quarterly, Master Brewers Association of America 12:151–168

    Google Scholar 

  • Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31:1–8

    Article  Google Scholar 

  • Mercier J, Manker D (2005) Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Prot 24:355–362

    Article  Google Scholar 

  • Micheluz A, Manente S, Rovea M, Slanzi D, Varese GC, Ravagnan G, Formenton G (2016) Detection of volatile metabolites of moulds isolated from a contaminated library. J Microbiol Methods 128:34–41

    Article  CAS  PubMed  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854

    Article  CAS  PubMed  Google Scholar 

  • Mitra M, Venkatesh P, Ghissing U, Biswas A, Mitra A, Mandal M, Mishra HN, Maiti MK (2023) Fruity-scented antifungal volatiles from endophytic Geotrichum candidum PF005: broad-spectrum bioactivity against stored grain pathogens, mode of action and suitable formulation for mycofumigation. Biol Control 177:105129

    Article  CAS  Google Scholar 

  • Moisan K, Raaijmakers JM, Dicke M, Lucas-Barbosa D, Cordovez V (2021) Volatiles from soil-borne fungi affect directional growth of roots. Plant Cell Environ 44:339–345

    Article  CAS  PubMed  Google Scholar 

  • Mølhave L (2009) Volatile organic compounds and the sick building syndrome. In: Lippmann M (ed) Environmental toxicants: human exposures and their health effects, 3rd edn. Wiley-Interscience, New York, pp 241–256

    Chapter  Google Scholar 

  • Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26(2–3):73–83

    Article  Google Scholar 

  • Morey P, Wortham A, Weber A, Horner E, Black M, Muller W (1997) Microbial VOCs in moisture damaged buildings. Healthy Build 1:245–250

    Google Scholar 

  • Mosandl A, Heusinger G, Gessner M (1986) Analytical and sensory differentiation of 1-octen-3-ol enantiomers. J Agric Food Chem 34:119–122

    Article  CAS  Google Scholar 

  • Mustafa AM, Angeloni S, Nzekoue FK, Abouelenein D, Sagratini G, Caprioli G, Torregiani E (2020) An overview on truffle aroma and main volatile compounds. Molecules 25(24):5948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemcovic M, Jakubikova L, Viden I, Farkas V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3:431–438

    Article  CAS  PubMed  Google Scholar 

  • Niimi J, Deveau A, Splivallo R (2021) Geographical-based variations in white truffle Tuber magnatum aroma is explained by quantitative differences in key volatile compounds. New Phytol 230(4):1623–1638

    Article  CAS  PubMed  Google Scholar 

  • Nilssen AC (1998) Effect of 1-octen-3-ol in field trapping Aedes spp. (Dipt., Culicidae) and Hybomitra spp. (Dipt., Tabanidae) in subartic Norway. J Appl Entomol 122:465–468

    Article  CAS  Google Scholar 

  • Nilsson A, Kihlstrom E, Lagesson V, Wessen B, Szponar B, Larsson L, Tagesson C (2004) Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air 14:74–82

    Article  CAS  PubMed  Google Scholar 

  • Niu Q, Huang X, Zhang L, Xu J, Yang D, Wei K, Niu X, An Z, Bennett JW, Zou C, Yang J, Zhang KQ (2010) A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proc Natl Acad Sci U S A 107:16631–16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble R, Dobrovin-Pennington A, Hobbs PJ, Pederby J, Rodger A (2009) Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia 101:583–591

    Article  CAS  PubMed  Google Scholar 

  • Nordlund DA, Lewis WJ (1976) Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J Chem Ecol 2:211–220

    Article  Google Scholar 

  • Noverr MC, Erb-Downward JR (2003) Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 16:517–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okull DO, Beelman RB, Gourama H (2003) Antifungal activity of 10-oxo-trans-8-decenoic acid and 1-octen-3-ol against Penicillium expansum in potato dextrose agar medium. J Food Prot 66:1503–1505

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576

    Article  CAS  PubMed  Google Scholar 

  • Ômura H, Kuwahara Y, Tanabe T (2002) 1-Octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. J Chem Ecol 28:2601–2612

    Article  PubMed  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo H, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pangga IB (2021) Mycofumigation with the endophytic fungi Fusarium proliferatum (Matsushima) Nirenberg and Diaporthe sp. for the control of banana and mango anthracnose. Annal Trop Res 43(2):13–24

    Google Scholar 

  • Pantoja LDM, do Nascimento RF, de Araújo Nunes AB (2016) Investigation of fungal volatile organic compounds in hospital air. Atmos Pollut Res 7(4):659–663

    Article  Google Scholar 

  • Pasanen P, Korpi A, Kalliokosi P, Pasanen AL (1997) Growth and volatile metabolite production of Aspergillus versicolor in house dust. Environ Int 23:425–432

    Article  CAS  Google Scholar 

  • Pavlou AD, Turner AP (2000) Sniffing out the truth: clinical diagnosis using the electronic nose. Clin Chem Lab Med 38:99–112

    Article  CAS  PubMed  Google Scholar 

  • Peixoto L, Salazar LTH, Laska M (2018) Olfactory sensitivity for mold-associated odorants in CD-1 mice and spider monkeys. J Comp Physiol A 204:821–833

    Article  CAS  Google Scholar 

  • Pelaez F (2005) Biological activities of fungal metabolites. In: An Z (ed) Handbook of industrial mycology. Marcel Dekker, pp 49–92

    Google Scholar 

  • Pennerman KK, Yin G, Bennett JW (2022) Eight-carbon volatiles: prominent fungal and plant interaction compounds. J Exp Bot 73(2):487–497

    Article  CAS  PubMed  Google Scholar 

  • Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ 40(10):2042–2067

    Article  CAS  PubMed  Google Scholar 

  • Pierce AM, Pierce HD, Borden JH, Oehlschlager AC (1991a) Fungal volatiles: semiochemicals for stored-product beetles (Coleoptera: Cucujidae). J Chem Ecol 3:567–579

    Article  Google Scholar 

  • Pierce AM, Pierce HD, Oehlschlager AC, Borden JH (1991b) 1-octen-3-ol, attractive semiochemical for foreign grain beetle, Ahasverus adevna (Waltl) (Coleoptera: Cucujidae). J Chem Ecol 3:567–579

    Article  Google Scholar 

  • Poland TM, Pureswaran DS, Ciaramitaro TM, Borden JH (2009) 1-octen-3-ol is repellent to Ips pini (Coleoptera: Curculionidae: Scolytinae) in the midwestern United States. Can Entomol 141:158–160

    Article  Google Scholar 

  • Ramoni R, Vincent F, Grolli S, Conti V, Malosse C, Boyer F, Nagnan-Le Meillour P, Spinelli S, Cambillau C, Tegoni M (2001) The insect attractant 1-octen-3-ol Is the natural ligand of bovine odorant-binding protein. J Biol Chem 276:7150–7155

    Article  CAS  PubMed  Google Scholar 

  • Ramsbottom J (1953) Mushrooms & toadstools: a study of the activities of fungi. London, Collins, St. James’s Place

    Book  Google Scholar 

  • Rapior S, Breheret S, Talou T, Pelissier Y, Bessiere JM (2002) The anise-like odor of Clitocybe odora, Lentinellus cochleatus, and Agaricus essettie. Mycologia 94:373–376

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Wei Z, Jousset A, Shen Q, Friman VP (2021) Extended plant metarhizobiome: understanding volatile organic compound signaling in plant-microbe metapopulation networks. Msystems 6(4):e00849–e00821

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson J (ed) (2006) The Oxford companion to wine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH (2020) Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep 37:868–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Jimenez J, Zanca N, Lan H, Jussila M, Hartonen K, Riekkola ML (2019) Aerial drone as a carrier for miniaturized air sampling systems. J Chromatogr A 1597:202–208

    Article  CAS  PubMed  Google Scholar 

  • Rumbaugh KP, Griswold JA, Hamood AN (2000) The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu C-M, Farag MA, Paré PW, Kloepper JW (2005) Invisible signals from the underground: Bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plant Pathol J 21:7–12

    Article  Google Scholar 

  • Sánchez-López ÁM, Baslam M, De Diego N, Muñoz FJ, Bahaji A, Almagro G, Ricarte-Bermejo A, García-Gómez P, Li J, Humplík JF, Novák O (2016) Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant Cell Environ 39(12):2592–2608

    Article  PubMed  Google Scholar 

  • Schmidberger PC, Schieberle P (2017) Characterization of the key aroma compounds in white Alba truffle (Tuber magnatum pico) and Burgundy truffle (Tuber uncinatum) by means of the sensomics approach. J Agric Food Chem 65(42):9287–9296

    Article  CAS  PubMed  Google Scholar 

  • Schnürer J, Olsson J, Börjesson T (1999) Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 27:209–217

    Article  PubMed  Google Scholar 

  • Schöller CEG, Gürtler H, Petersen R, Molin S, Wilkins K (2002) Volatile metabolites from Actinomycetes. J Agric Food Chem 50:2615–2621

    Article  PubMed  Google Scholar 

  • Schreier P (1992) Bioflavours: AN overview. In: Patterson RLS, Charlwood BV, MacLeod G, Williams AA (eds) Bioinformation of flavours. The Royal Society of Chemistry, Cambridge, pp 1–20

    Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Bohm K, Lara M-S, Paolina G (2017) Microbial volatiles: Small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8:2484

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott J, Sueiro-Olivares M, Ahmed W, Heddergott C, Zhao C, Thomas R, Bromley M, Latgé J-P, Krappmann S, Fowler S, Bignell E, Amich J (2019) Pseudomonas aeruginosa-derived volatile sulfur compounds promote distal Aspergillus fumigatus growth and a synergistic pathogen-pathogen interaction that increases pathogenicity in co-infection. Front Microbiol 10:2311

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafiq SA, Chechan RA (2019) Influence of different natural media on production of myco-diesel. IOP Conf Ser Earth Environ Sci 388:012054

    Article  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104

    Article  CAS  PubMed  Google Scholar 

  • Shimkets LJ (1999) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu Rev Microbiol 53:525–549

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739

    Article  PubMed  Google Scholar 

  • Singh J, Singh P, Vaishnav A, Ray S, Rajput RS, Singh SM, Singh HB (2021) Belowground fungal volatiles perception in okra (Abelmoschus esculentus) facilitates plant growth under biotic stress. Microbiol Res 246:126721

    Article  CAS  PubMed  Google Scholar 

  • Sneeden EY, Harris HH, Pickering J, Prince RC, Johnson S, Li X, Block E, George GH (2004) The sulfur chemistry of shitake mushroom. J Am Chem Soc 126:458–459

    Article  CAS  PubMed  Google Scholar 

  • Soria AC, García-Sarrió MJ, Sanz ML (2015) Volatile sampling by headspace techniques. TrAC Trends Anal Chem 71:85–99

    Article  CAS  Google Scholar 

  • Splivallo R, Culleré L (2016) The smell of truffles: from aroma biosynthesis to product quality. True truffle (tuber spp.) in the world: Soil ecology, systematics and biochemistry, pp 393–407

    Google Scholar 

  • Splivallo R, Ebeler SE (2015) Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Appl Microbiol Biotechnol 99:2583–2592

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Bossi S, Maffei M, Bonfante P (2007a) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007b) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Deveau A, Valdez N, Kirchhoff N, Frey-Klett P, Karlovsky P (2015) Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol 17(8):2647–2660

    Article  PubMed  Google Scholar 

  • Stefanini I (2018) Yeast-insect associations: it takes guts. Yeast 35:315–330

    Article  CAS  PubMed  Google Scholar 

  • Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922

    Article  CAS  Google Scholar 

  • Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193

    Article  CAS  PubMed  Google Scholar 

  • Straus DC (2009) Molds, mycotoxins, and sick building syndrome. Toxicol Ind Health 25:617–635

    Article  CAS  PubMed  Google Scholar 

  • Straus DC, Cooley JD, Wong WC, Jumper CA (2003) Studies on the role of fungi in sick building syndrome. Arch Environ Health 58:475–478

    Article  PubMed  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus a novel endophytic fungus. Microbiology 147:2943–2950

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94

    Article  CAS  PubMed  Google Scholar 

  • Ström G, West J, Wessen B, Palmgren U (1994) Health implications of fungi in indoor environments: quantitative analysis of microbial volatiles in damp Swedish houses. Air Qual Monogr 2:291–305

    Google Scholar 

  • Sunesson AL, Vaes WHJ, Nilsson CA, Blomquist G, Andersson B, Carlson R (1995) Identification of volatile metabolites from five fungal species cultivated on two media. Appl Environ Microbiol 61:2911–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunesson AL, Nilsson CA, Andersson B, Blomquist G (1996) Volatile metabolites produced by two fungal species cultivated on building materials. Ann Occup Hyg 40(4):397–410

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N (1986) Chemistry of plant hormones. CRC Press, Boca Raton, FL

    Google Scholar 

  • Tan RX, Zou WV (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Tarkka MT, Piechulla B (2007) Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol 175:381–383

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Hossain O, Weinhold A, Röse USR, Wei Q (2021) Trends and applications in plant volatile sampling and analysis. Plant J 106:314–325

    Article  CAS  PubMed  Google Scholar 

  • Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GPC (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556

    Article  CAS  PubMed  Google Scholar 

  • Thorn J (2001) The inflammatory response in humans after inhalation of bacterial endotoxin: a review. Inflamm Res 50:254–261

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Ding H, Ke W, Wang L (2021) Quorum sensing in fungal species. Annu Rev Microbiol 75:449–469

    Article  CAS  PubMed  Google Scholar 

  • Tirillini B, Verdelli G, Paolocci F, Ciccioli P, Frattoni M (2000) The volatile organic compounds from the mycelium of Tuber borchii Vitt. Phytochemistry 55:983–985

    Article  CAS  PubMed  Google Scholar 

  • Trinci APJ, Whittaker C (1968) Self-inhibition of spore germination in Aspergillus nidulans. Trans Brit Mycol Soc 51:594–596

    Article  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118

    Article  CAS  PubMed  Google Scholar 

  • Tsurushima T, Ueno T, Fukami H, Irie H, Inoue M (1995) Germination self-inhibitors from Colletotrichum gloeosporioides f.sp jussiaea. Mol Plant-Microbe Interact 8:652–657

    Article  CAS  Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic, London

    Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic, London

    Google Scholar 

  • Vajzovic A, Bura R, Kohlmeier K, Doty SL (2012) Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors. J Ind Microbiol Biotechnol 39(10):1453–1463

    Article  CAS  PubMed  Google Scholar 

  • Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4(4):551–560

    PubMed  PubMed Central  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73(17):5639–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vita F, Taiti C, Pompeiano A, Bazihizina N, Lucarotti V, Mancuso S, Alpi A (2015) Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons. Sci Rep 5:1–15

    Article  Google Scholar 

  • Vivaldo G, Masi E, Taiti C, Caldarelli G, Mancuso S (2017) The network of plants volatile organic compounds. Sci Rep 7(1):11050

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Rosenkranz M (2022) Volatile compounds-the language of all kingdoms? J Exp Bot 73(2):445–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  Google Scholar 

  • Wadood SA, Guo B, Zhang X, Raza A, Wei Y (2020) Geographical discrimination of Chinese winter wheat using volatile compound analysis by HS-SPME/GC-MS coupled with multivariate statistical analysis. J Mass Spectrom 55:e4453

    Article  CAS  PubMed  Google Scholar 

  • Walinder R, Ernstgard L, Johanson G, Venge P, Wieslander G (2005) Acute effects of a fungal volatile compound. Environ Health Perspect 113:1775–1778

    Article  PubMed  PubMed Central  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Watson SB, Brownlee B, Satchwill T, Hargesheimer EE (2000) Quantitative analysis of trace levels of geosmin and MIB in source and drinking water using headspace SPME. Water Res 34:2818–2828

    Article  CAS  Google Scholar 

  • Weeks EN, Birkett MA, Cameron MM, Pickett JA, Logan JG (2011) Semiochemicals of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), and their potential for use in monitoring and control. Pest Manag Sci 67:10–20

    Article  CAS  PubMed  Google Scholar 

  • Weisskopf L, Schulz S, Garbeva P (2021) Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol 19:391–404

    Article  CAS  PubMed  Google Scholar 

  • Wheatley R, Hackett C, Bruce A, Kundzewicz A (1997) Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int Biodeterior Biodegrad 39(2–3):199–205

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(suppl 1):487–511

    Article  CAS  PubMed  Google Scholar 

  • Whitehead NA, Barnard ANL, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770

    Article  CAS  PubMed  Google Scholar 

  • WHO (2009) Guidelines for indoor air quality: Dampness and mold. Druckpartner Moser, Rheinbach

    Google Scholar 

  • Wilkins K, Larsen K, Simkus M (2000) Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 41:437–446

    Article  CAS  PubMed  Google Scholar 

  • Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9:5099–5148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AD, Baietto M (2011) Advances in electronic-nose technologies developed for biomedical applications. Sensors 11:1105–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wongsuk T, Pumeesat P, Luplertlop N (2016) Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenecity. J Basic Microbiol 56:440–447

    Article  CAS  PubMed  Google Scholar 

  • Wood WF, Fesler M (1986) Mushroom odors: Student synthesis of the odoriferous compounds of the matsutake mushroom. J Chem Educ 63:92

    Article  CAS  Google Scholar 

  • Wurzenberger M, Grosch W (1984) The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochim Biophys Acta - Lipids Lipid Metab 794:25–30

    Article  CAS  Google Scholar 

  • Xie X, Zhang H, Pare P (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan JS, Himanen SJ, Holopainen JK, Chen F, Stewart CN (2009) Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 24(6):323–331

    Article  PubMed  Google Scholar 

  • Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma–chemistry meets genomics. Fungal Biol Rev 30(2):74–90

    Article  Google Scholar 

  • Zhang Z, Li G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J 95:127–139

    Article  CAS  Google Scholar 

  • Zhang QH, Schlyter F (2004) Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric For Entomol 6:1–19

    Article  CAS  Google Scholar 

  • Zhang Y-Q, Wilkinson H, Keller NP, Tsitsigiannis D (2005) Secondary metabolite gene clusters. In: An Z (ed) Handbook of industrial microbiology. Marcel Dekker, pp 355–386

    Google Scholar 

  • Zhang H, Kim M-S, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag M, Ryu C-M, Allen R, Melo I, Paré P (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Pare PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M, Yuan ZL, Lin FC, Druzhinina IS, Kubicek CP (2010) Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol 114:797–808

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Yin G, Inamdar AA, Luo J, Zhang N, Yang I, Buckley B, Bennett JW (2017) Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay. Indoor Air 27:518–528

    Article  CAS  PubMed  Google Scholar 

  • Zogorski JS, Carter JM, Ivahnenko T, Lapham WW, Moran MJ, Rowe BL, Squillace PJ, Toccalino PL (2006) The quality of our nation’s waters – volatile organic compounds in the nation’s ground water and drinking-water supply wells. In: U.S. Geological Survey Circular 1292. USGS, Reston, VA

    Google Scholar 

Download references

Acknowledgments

Research in the Bennett laboratory has been funded by the Northeast Sustainable Agriculture Research and Education Grant (GNE14-084-27806); the U.S. Fish & Wildlife Service Grant (WNS 2016-6); USDA-ARS Cooperative Agreement (Grant No. 2-47012); the Rutgers University Research Fund; and the Sloane and Eppley Foundations. JWB is grateful to the late Karl Esser for his mentorship and to Olivia Froehlich, Arati Inamdar, Shannon Morath, Sally Padhi, Kayla Pennerman, and Guohua Yin for years of fruitful conversations and collaborations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, S., Hung, R., Bennett, J.W. (2024). An Overview of Fungal Volatile Organic Compounds (VOCs). In: Hsueh, YP., Blackwell, M. (eds) Fungal Associations. The Mycota, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-41648-4_4

Download citation

Publish with us

Policies and ethics