Skip to main content

Nanostructure-Based Smart Fertilizers and Their Interaction with Plants

  • Chapter
  • First Online:
Nanofertilizers for Sustainable Agroecosystems

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 224 Accesses

Abstract

The rapid growth of the population enhances the global food demand which creates pressure on the global food system and agriculture. Therefore, it is necessary to fulfill the requirement for food by improving crop production. Researchers significantly improved crop production by incorporating phytohormones and fertilizers (biological and chemical). Interestingly, there is a lot of reason for the use of chemical fertilizers that significantly improve the translocation ability, water uptake capacity, germination rate, and nutritional values, subsequently production of crops. However, continuous uses of chemical fertilizers decrease soil fertility because accumulation on the soil is one of the greatest challenges. In this aspect, nanostructure (NS)-based smart fertilizers might resolve issues associated with the fertilizers without any adverse effect. The use of NS-based smart fertilizers in agriculture can revolutionize crop production. This includes the synthesis of smart fertilizers with slow- or controlled-release of nutrients and enzymes, nanostructure-based smart fertilizers, and their benefits to the plants. This chapter provides information about the current and future status of global food demand, smart fertilizers, types of smart fertilizers, involvement of nanotechnology in the formulation of NS-based smart fertilizers, synthesis methods, their impact on agriculture, and the interaction of these fertilizers with plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz, H. M. M., Hasaneen, M. N. A., & Omer, A. M. (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14(1), e0902.

    Article  Google Scholar 

  • Abdulkarim, A. Y., Abdulsalam, S., El-Nafaty, U. A., & Muhammad, I. M. (2019). Bio-fertilizers via co-digestion: A review. Path Science, 5(6), 11.

    Article  Google Scholar 

  • Afreen, S., Omar, R. A., Talreja, N., Chauhan, D., & Ashfaq, M. (2018). Carbon-based nanostructured materials for energy and environmental remediation applications. In R. Prasad & E. Aranda (Eds.), Approaches in bioremediation: The new era of environmental microbiology and nanobiotechnology. Springer.

    Google Scholar 

  • Afreen, S., Omar, R. A., Talreja, N., Chauhan, D., Mangalaraja, R. V., & Ashfaq, M. (2022a). Chapter 15 – Nanostructured materials based on copper/carbon as a plant growth stimulant. In K. A. Abd-Elsalam (Ed.), Copper nanostructures: Next-generation of agrochemicals for sustainable agroecosystems. Elsevier.

    Google Scholar 

  • Afreen, S., Talreja, N., Ashfaq, M., & Chauhan, D. (2022b). Chapter 11 – Carbon nanostructure-based sensor: A promising tools for monitoring crops. In G. M. Balestra & E. Fortunati (Eds.), Nanotechnology-based sustainable alternatives for the management of plant diseases. Elsevier.

    Google Scholar 

  • Ahmed, D. F., Isawi, H., Badway, N. A., Elbayaa, A. A., & Shawky, H. (2021). Graphene oxide incorporated cellulose triacetate/cellulose acetate nanocomposite membranes for forward osmosis desalination. Arabian Journal of Chemistry, 14(3), 102995.

    Article  CAS  Google Scholar 

  • Ali, S. S., Kornaros, M., Manni, A., Al-Tohamy, R., El-Shanshoury, A. E.-R. R., Matter, I. M., Elsamahy, T., Sobhy, M., & Sun, J. (2021). Chapter 28 - Advances in microorganisms-based biofertilizers: Major mechanisms and applications. In A. Rakshit, V. S. Meena, M. Parihar, H. B. Singh, & A. K. Singh (Eds.), Biofertilizers. Woodhead Publishing.

    Google Scholar 

  • Allen, S. L., Sharma, J. N., & Zamborini, F. P. (2017). Aggregation-dependent oxidation of metal nanoparticles. Journal of the American Chemical Society, 139(37), 12895–12898.

    Article  CAS  PubMed  Google Scholar 

  • Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 17.

    Article  Google Scholar 

  • Ashfaq, M., Khan, S., & Verma, N. (2014). Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochemical Engineering Journal, 90, 79–89.

    Article  CAS  Google Scholar 

  • Ashfaq, M., Verma, N., & Khan, S. (2017). Carbon nanofibers as a micronutrient carrier in plants: Efficient translocation and controlled release of Cu nanoparticles. Environmental Science: Nano, 4(1), 138–148.

    CAS  Google Scholar 

  • Ashfaq, M., Verma, N., & Khan, S. (2018). Novel polymeric composite grafted with metal nanoparticle-dispersed CNFs as a chemiresistive non-destructive fruit sensor material. Materials Chemistry and Physics, 217, 216–227.

    Article  CAS  Google Scholar 

  • Ashfaq, M., Talreja, N., Chuahan, D., & Srituravanich, W. (2019). Carbon nanostructure-based materials: A novel tool for detection of alzheimer’s disease. In G. M. Ashraf & A. Alexiou (Eds.), Biological, diagnostic and therapeutic advances in Alzheimer’s disease: Non-pharmacological therapies for Alzheimer's disease. Singapore.

    Google Scholar 

  • Ashfaq, M., Talreja, N., Chauhan, D., Afreen, S., Sultana, A., & Srituravanich, W. (2022). Two-dimensional (2D) hybrid nanomaterials for diagnosis and treatment of cancer. Journal of Drug Delivery Science and Technology, 70, 103268.

    Article  CAS  Google Scholar 

  • Avellan, A., Yun, J., Zhang, Y., Spielman-Sun, E., Unrine, J. M., Thieme, J., Li, J., Lombi, E., Bland, G., & Lowry, G. V. (2019). Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano, 13(5), 5291–5305.

    Article  CAS  PubMed  Google Scholar 

  • Azam, M., Bhatti, H. N., Khan, A., Zafar, L., & Iqbal, M. (2022). Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments and antioxidant system of maize cultivar. Biocatalysis and Agricultural Biotechnology, 42, 102343.

    Article  CAS  Google Scholar 

  • Azeem, B., KuShaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181, 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Bahmanzadegan, A., Tavallali, H., Tavallali, V., & Karimi, M. A. (2022). Variations in biochemical characteristics of Zataria multiflora in response to foliar application of zinc nano complex formed on pomace extract of Punica granatum. Industrial Crops and Products, 187, 115369.

    Article  CAS  Google Scholar 

  • Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871.

    Article  Google Scholar 

  • Bansiwal, A. K., Rayalu, S. S., Labhasetwar, N. K., Juwarkar, A. A., & Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Journal of Agricultural and Food Chemistry, 54(13), 4773–4779.

    Article  CAS  PubMed  Google Scholar 

  • Barrios, A. C., Medina-Velo, I. A., Zuverza-Mena, N., Dominguez, O. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. Plant Physiology and Biochemistry, 110, 100–107.

    Article  CAS  PubMed  Google Scholar 

  • Barthod, J., Rumpel, C., Paradelo, R., & Dignac, M. F. (2016). The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts. SOIL, 2(4), 673–683.

    Article  CAS  Google Scholar 

  • Basavegowda, N., & Baek, K. H. (2021). Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer, 11(7), 357.

    Google Scholar 

  • Basit, F., Asghar, S., Ahmed, T., Ijaz, U., Noman, M., Hu, J., Liang, X., & Guan, Y. (2022). Facile synthesis of nanomaterials as nanofertilizers: A novel way for sustainable crop production. Environmental Science and Pollution Research International, 29(34), 51281–51297.

    Article  CAS  PubMed  Google Scholar 

  • Bauli, C. R., Lima, G. F., de Souza, A. G., Ferreira, R. R., & Rosa, D. S. (2021). Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126771.

    Article  CAS  Google Scholar 

  • Beig, B., Niazi, M. B., Jahan, Z., Pervaiz, E., Abbas Shah, G., Ul Haq, M., Zafar, M. I., & Zia, M. (2020). Slow-release urea prills developed using organic and inorganic blends in fluidized bed coater and their effect on spinach productivity. Sustainability, 12. [Online].

    Google Scholar 

  • Bernardo, M. P., Guimarães, G. G. F., Majaron, V. F., & Ribeiro, C. (2018). Controlled release of phosphate from layered double hydroxide structures: Dynamics in soil and application as smart fertilizer. ACS Sustainable Chemistry & Engineering, 6(4), 5152–5161.

    Article  CAS  Google Scholar 

  • Biały, M., Hasiak, M., & Łaszcz, A. (2022). Review on biocompatibility and prospect biomedical applications of novel functional metallic glasses. Journal of Functional Biomaterials, 13. [Online].

    Google Scholar 

  • Bortolin, A., Aouada, F. A., Mattoso, L. H. C., & Ribeiro, C. (2013). Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: Evidence of synergistic effects for the slow release of fertilizers. Journal of Agricultural and Food Chemistry, 61(31), 7431–7439.

    Article  CAS  PubMed  Google Scholar 

  • Burnett, S. E., Mattson, N. S., & Williams, K. A. (2016). Substrates and fertilizers for organic container production of herbs, vegetables, and herbaceous ornamental plants grown in greenhouses in the United States. Scientia Horticulturae, 208, 111–119.

    Article  CAS  Google Scholar 

  • Cai, Y., Qi, H., Liu, Y., & He, X. (2016). Sorption/desorption behavior and mechanism of NH4+ by biochar as a nitrogen fertilizer sustained-release material. Journal of Agricultural and Food Chemistry, 64(24), 4958–4964.

    Article  CAS  PubMed  Google Scholar 

  • Calabi-Floody, M., Medina, J., Rumpel, C., Condron, L. M., Hernandez, M., Dumont, M., & Mora, M. d. l. L. (2018). Chapter Three – Smart fertilizers as a strategy for sustainable agriculture. In D. L. Sparks (Ed.), Advances in agronomy. Academic Press.

    Google Scholar 

  • Cao, S., Zhao, C., Han, T., & Peng, L. (2016). Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers. Materials Letters, 169, 17–20.

    Article  CAS  Google Scholar 

  • Chakraborty, R., Mukhopadhyay, A., Paul, S., Sarkar, S., & Mukhopadhyay, R. (2023). Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. Science of The Total Environment, 863, 160859.

    Article  CAS  PubMed  Google Scholar 

  • Chalk, P. M., Craswell, E. T., Polidoro, J. C., & Chen, D. (2015). Fate and efficiency of 15N-labelled slow- and controlled-release fertilizers. Nutrient Cycling in Agroecosystems, 102(2), 167–178.

    Article  CAS  Google Scholar 

  • Chauhan, D., Afreen, S., Talreja, N., & Ashfaq, M. (2020). Chapter 8 - Multifunctional copper polymer-based nanocomposite for environmental and agricultural applications. In K. A. Abd-Elsalam (Ed.), Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems. Elsevier.

    Google Scholar 

  • Chauhan, D., Omar, R. A., Mangalaraja, R. V., Ashfaq, M., & Talreja, N. (2022). Chapter 13 – Metal-organic framework as an emerging material: A novel plant growth stimulant. In G. M. Balestra & E. Fortunati (Eds.), Nanotechnology-based sustainable alternatives for the management of plant diseases. Elsevier.

    Google Scholar 

  • Chauhan, D., Ashfaq, M., Mangalaraja, R. V., & Talreja, N. (2023). 2D-nanosheets based hybrid nanomaterials interaction with plants. In J. M. Al-Khayri, L. M. Alnaddaf, & S. M. Jain (Eds.), Nanomaterial interactions with plant cellular mechanisms and macromolecules and agricultural implications. Springer.

    Google Scholar 

  • Chen, H. (2018). Metal based nanoparticles in agricultural system: Behavior, transport, and interaction with plants. Chemical Speciation & Bioavailability, 30(1), 123–134.

    Article  CAS  Google Scholar 

  • Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M. (2018a). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Science of the Total Environment, 613-614, 829–839.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M. (2018b). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Science of The Total Environment, 613-614, 829–839.

    Article  CAS  PubMed  Google Scholar 

  • Chhowalla, M. (2017). Slow release nanofertilizers for bumper crops. ACS Central Science, 3(3), 156–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien, S. H., Prochnow, L. I., & Cantarella, H. (2009). Chapter 8 recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Academic Press.

    Book  Google Scholar 

  • Chivenge, P., Sharma, S., Bunquin, M. A., & Hellin, J. (2021). Improving nitrogen use efficiency—A key for sustainable rice production systems. Frontiers in Sustainable Food Systems, 5, 21.

    Article  Google Scholar 

  • Cota-Ruiz, K., Ye, Y., Valdes, C., Deng, C., Wang, Y., Hernández-Viezcas, J. A., Duarte-Gardea, M., & Gardea-Torresdey, J. L. (2020). Copper nanowires as nanofertilizers for alfalfa plants: Understanding nano-bio systems interactions from microbial genomics, plant molecular responses and spectroscopic studies. Science of The Total Environment, 742, 140572.

    Article  CAS  PubMed  Google Scholar 

  • da Cruz, T. N. M., Savassa, S. M., Montanha, G. S., Ishida, J. K., de Almeida, E., Tsai, S. M., Lavres Junior, J., & Pereira de Carvalho, H. W. (2019). A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants. Scientific Reports, 9(1), 10416.

    Article  PubMed  PubMed Central  Google Scholar 

  • da Rosa, G. S., & dos Santos Rocha, S. C. (2013). Use of vinasse to produce slow-release coated urea in spouted bed. The Canadian Journal of Chemical Engineering, 91(3), 589–597.

    Article  Google Scholar 

  • Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J., & Khorasani, R. (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae, 210, 57–64.

    Article  CAS  Google Scholar 

  • de la Rosa, G., Vázquez-Núñez, E., Molina-Guerrero, C., Serafín-Muñoz, A. H., & Vera-Reyes, I. (2021). Interactions of nanomaterials and plants at the cellular level: current knowledge and relevant gaps. Nanotechnology for Environmental Engineering, 6(1), 7.

    Article  Google Scholar 

  • de Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnology Advances, 32(8), 1550–1561.

    Article  PubMed  Google Scholar 

  • DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91–91.

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa, C. O. (2018). Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure. Current Opinion in Environmental Science & Health, 6, 1–8.

    Article  Google Scholar 

  • Elemike, E. E., Uzoh, I. M., Onwudiwe, D. C., & Babalola, O. O. (2019a). The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences, 9. [Online].

    Google Scholar 

  • Elemike, E. E., Uzoh, I. M., Onwudiwe, D. C., & Babalola, O. O. (2019b). The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences, 9(3), 499.

    Article  CAS  Google Scholar 

  • El-Saadony, M. T., Almoshadak, A. S., Shafi, M. E., Albaqami, N. M., Saad, A. M., El-Tahan, A. M., Desoky, E.-S. M., Elnahal, A. S. M., Almakas, A., Abd El-Mageed, T. A., Taha, A. E., Elrys, A. S., & Helmy, A. M. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi Journal of Biological Sciences, 28(12), 7349–7359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsayed, A. A. A., El-Gohary, A., Taha, Z. K., Farag, H. M., Hussein, M. S., & Abou Aitah, K. (2022). Hydroxyapatite nanoparticles as novel nano-fertilizer for production of rosemary plants. Scientia Horticulturae, 295, 110851.

    Article  CAS  Google Scholar 

  • Etxeberria, E., Gonzalez, P., Baroja-Fernandez, E., & Romero, J. P. (2006). Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav, 1(4), 196–200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fertahi, S., Bertrand, I., Amjoud, M. B., Oukarroum, A., Arji, M., & Barakat, A. (2019). Properties of coated slow-release triple superphosphate (tsp) fertilizers based on Lignin and Carrageenan formulations. ACS Sustainable Chemistry & Engineering, 7(12), 10371–10382.

    Article  CAS  Google Scholar 

  • Finch, H. J. S., Samuel, A. M., & Lane, G. P. F. (2014). 4 – Fertilisers and manures. In H. J. S. Finch, A. M. Samuel, & G. P. F. Lane (Eds.), Lockhart & Wiseman’s crop husbandry including grassland (9th ed.). Woodhead Publishing.

    Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Gahoi, P., Omar, R. A., Verma, N., & Gupta, G. S. (2021). Rhizobacteria and acylated homoserine lactone-based nanobiofertilizer to improve growth and pathogen defense in cicer arietinum and triticum aestivum plants. ACS Agricultural Science & Technology, 1(3), 240–252.

    Article  CAS  Google Scholar 

  • Gao, Y., Fang, Z., Van Zwieten, L., Bolan, N., Dong, D., Quin, B. F., Meng, J., Li, F., Wu, F., Wang, H., & Chen, W. (2022). A critical review of biochar-based nitrogen fertilizers and their effects on crop production and the environment. Biochar, 4(1), 36.

    Article  Google Scholar 

  • Garcia-Franco, N., Hobley, E., Hübner, R., & Wiesmeier, M. (2018). Chapter 23 – Climate-smart soil management in semiarid regions. In M. Á. Muñoz & R. Zornoza (Eds.), Soil management and climate change. Academic Press.

    Google Scholar 

  • Gerst, M. D., Cox, M. E., Locke, K. A., Laser, M., & Kapuscinski, A. R. (2015). A taxonomic framework for assessing governance challenges and environmental effects of integrated food-energy systems. Environmental Science & Technology, 49(2), 734–741.

    Article  CAS  Google Scholar 

  • Ghafoor, I., & Habib-Ur-Rahman, M. (2021). Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment, 28(32), 43528–43543.

    Google Scholar 

  • Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Advances, 29(6), 792–803.

    Article  CAS  Google Scholar 

  • Giannousi, K., Avramidis, I., & Dendrinou-Samara, C. (2013). Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against phytophthora infestans. RSC Advances, 3(44), 21743–21752.

    Article  CAS  Google Scholar 

  • Gil-Ortiz, R., Naranjo, M. Á., Ruiz-Navarro, A., Caballero-Molada, M., Atares, S., García, C., & Vicente, O. (2020). New eco-friendly polymeric-coated urea fertilizers enhanced crop yield in wheat. Agronomy, 10. [Online].

    Google Scholar 

  • Giroto, A. S., Guimarães, G. G. F., & Ribeiro, C. (2018). A novel, simple route to produce urea: Urea–formaldehyde composites for controlled release of fertilizers. Journal of Polymers and the Environment, 26(6), 2448–2458.

    Article  CAS  Google Scholar 

  • González, M. E., Cea, M., Medina, J., González, A., Diez, M. C., Cartes, P., Monreal, C., & Navia, R. (2015). Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Science of The Total Environment, 505, 446–453.

    Article  PubMed  Google Scholar 

  • Guha, T., Gopal, G., Mukherjee, A., & Kundu, R. (2022). Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution. Environmental Pollution, 292, 118301.

    Article  CAS  PubMed  Google Scholar 

  • Guo, H., White, J. C., Wang, Z., & Xing, B. (2018). Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science & Health, 6, 77–83.

    Article  Google Scholar 

  • Gupta, G. S., Kumar, A., & Verma, N. (2019). Bacterial homoserine lactones as a nanocomposite fertilizer and defense regulator for chickpeas. Environmental Science: Nano, 6(4), 1246–1258.

    CAS  Google Scholar 

  • He, Z., Cao, H., Liang, J., Hu, Q., Zhang, Y., Nan, X., & Li, Z. (2022). Effects of biochar particle size on sorption and desorption behavior of NH4+-N. Industrial Crops and Products, 189, 115837.

    Article  CAS  Google Scholar 

  • Hong, J., Peralta-Videa, J. R., Rico, C., Sahi, S., Viveros, M. N., Bartonjo, J., Zhao, L., & Gardea-Torresdey, J. L. (2014). Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environmental Science & Technology, 48(8), 4376–4385.

    Article  CAS  Google Scholar 

  • Hong, J., Wang, L., Sun, Y., Zhao, L., Niu, G., Tan, W., Rico, C. M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Science of The Total Environment, 563-564, 904–911.

    Article  CAS  PubMed  Google Scholar 

  • Horaruang, W., & Hills, A. (2020). Communication between the plasma membrane and tonoplast is an emergent property of ion transport, 182(4), 1833–1835.

    Google Scholar 

  • Hu, P., An, J., Faulkner, M. M., Wu, H., Li, Z., Tian, X., & Giraldo, J. P. (2020). Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano, 14(7), 7970–7986.

    Article  CAS  PubMed  Google Scholar 

  • Incrocci, L., Maggini, R., Cei, T., Carmassi, G., Botrini, L., Filippi, F., Clemens, R., Terrones, C., & Pardossi, A. (2020). Innovative controlled-release polyurethane-coated urea could reduce N leaching in tomato crop in comparison to conventional and stabilized fertilizers. Agronomy, 10. [Online].

    Google Scholar 

  • Irsad, Talreja, N., Chauhan, D., Rodríguez, C. A., Mera, A. C., & Ashfaq, M. (2020). Nanocarriers: An emerging tool for micronutrient delivery in plants. In T. Aftab & K. R. Hakeem (Eds.), Plant Micronutrients: Deficiency and Toxicity Management. Springer International Publishing.

    Google Scholar 

  • Irsad, Ahmad, S. K., Talreja, N., Chauhan, D., Rizvi, P. Q., & Ashfaq, M. (2022a). Current status, future challenges, and opportunities for improving the crop yields using microorganisms. In A. Kumar, K. Patruni, & V. Singh (Eds.), Recent Advances in Food Biotechnology. Singapore.

    Google Scholar 

  • Irsad, Talreja, N., Chauhan, D., Mangalaraja, R. V., Rizvi, P. Q., & Ashfaq, M. (2022b). Polymeric composites: A promising tool for enhancing photosyntheticy efficiency of crops. In T. Aftab & K. R. Hakeem (Eds.), Metabolic engineering in plants. Springer.

    Google Scholar 

  • Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Frontiers in Plant Science, 8, 1617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jintakanon, N., Opaprakasit, P., Petchsuk, A., & Opaprakasit, M. (2008). Controlled-release materials for fertilizer based on lactic acid polymers. Advanced Materials Research, 55-57, 905–908.

    Article  CAS  Google Scholar 

  • Joseph, S., Graber, E. R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C., Rutlidge, H., Pan, G. X., Li, L., Taylor, P., Rawal, A., & Hook, J. (2013). Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Management, 4(3), 323–343.

    Article  CAS  Google Scholar 

  • Kareem, S. A., Dere, I., Gungula, D. T., Andrew, F. P., Saddiq, A. M., Adebayo, E. F., Tame, V. T., Kefas, H. M., Joseph, J., & Patrick, D. O. (2021). Synthesis and characterization of slow-release fertilizer hydrogel based on hydroxy propyl methyl cellulose, polyvinyl alcohol, glycerol and blended paper. Gels, 7. [Online].

    Google Scholar 

  • Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J., & Schroeder, A. (2018). Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Scientific Reports, 8(1), 7589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36–51.

    Article  CAS  PubMed  Google Scholar 

  • Khan, H. A., Naqvi, S. R., Mehran, M. T., Khoja, A. H., Khan Niazi, M. B., Juchelková, D., & Atabani, A. (2021). A performance evaluation study of nano-biochar as a potential slow-release nano-fertilizer from wheat straw residue for sustainable agriculture. Chemosphere, 285, 131382.

    Article  CAS  PubMed  Google Scholar 

  • Khanra, A., Vasistha, S., Rai, M. P., Cheah, W. Y., Khoo, K. S., Chew, K. W., Chuah, L. F., & Show, P. L. (2022). Green bioprocessing and applications of microalgae-derived biopolymers as a renewable feedstock: Circular bioeconomy approach. Environmental Technology & Innovation, 28, 102872.

    Article  CAS  Google Scholar 

  • Kocsis, T., Ringer, M., & Biró, B. (2022). Characteristics and applications of biochar in soil–plant systems: A short review of benefits and potential drawbacks. Applied Sciences, 12. [Online].

    Google Scholar 

  • Koli, P., Bhardwaj, N. R., & Mahawer, S. K. (2019). Chapter 4 – Agrochemicals: Harmful and beneficial effects of climate changing scenarios. In K. K. Choudhary, A. Kumar, & A. K. Singh (Eds.), Climate Change and Agricultural Ecosystems. Woodhead Publishing.

    Google Scholar 

  • Kontárová, S., Přikryl, R., Škarpa, P., Kriška, T., Antošovský, J., Gregušková, Z., Figalla, S., Jašek, V., Sedlmajer, M., Menčík, P., & Mikolajová, M. (2022). Slow-release nitrogen fertilizers with biodegradable poly(3-hydroxybutyrate) coating: Their effect on the growth of maize and the dynamics of N release in soil. Polymers, 14. [Online].

    Google Scholar 

  • Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U. A., Berugoda Arachchige, D. M., Kumarasinghe, A. R., Dahanayake, D., Karunaratne, V., & Amaratunga, G. A. J. (2017). Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano, 11(2), 1214–1221.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, N., & Muddapur, U. (2014). Biosynthesis of metal nanoparticles: A review. Journal of Nanotechnology, 2014, 510246.

    Article  Google Scholar 

  • Kumar, R., Ashfaq, M., & Verma, N. (2018). Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. Journal of Materials Science, 53(10), 7150–7164.

    Article  CAS  Google Scholar 

  • Lalarukh, I., Zahra, N., Al Huqail, A. A., Amjad, S. F., Al-Dhumri, S. A., Ghoneim, A. M., Alshahri, A. H., Almutari, M. M., Alhusayni, F. S., Al-Shammari, W. B., Poczai, P., Mansoora, N., Ayman, M., Abbas, M. H. H., & Abdelhafez, A. A. (2022). Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars. Environmental Technology & Innovation, 27, 102799.

    Article  CAS  Google Scholar 

  • Lateef, A., Nazir, R., Jamil, N., Alam, S., Shah, R., Khan, M. N., Saleem, M., & Rehman, S.-u. (2019). Synthesis and characterization of environmental friendly corncob biochar based nano-composite – A potential slow release nano-fertilizer for sustainable agriculture. Environmental Nanotechnology, Monitoring & Management, 11, 100212.

    Article  Google Scholar 

  • Lawrencia, D., Wong, S. K., Low, D. Y., Goh, B. H., Goh, J. K., Ruktanonchai, U. R., Soottitantawat, A., Lee, L. H., & Tang, S. Y. (2021a). Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 10. [Online].

    Google Scholar 

  • Lawrencia, D., Wong, S. K., Low, D. Y. S., & Goh, B. H. (2021b). Controlled release fertilizers: A review on coating materials and mechanism of release, 10(2).

    Google Scholar 

  • Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T., Sen, P. T., Sessa, R., Shula, R., Tibu, A., & Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–1072.

    Article  Google Scholar 

  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment, 514, 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Liao, J., Song, H., Yang, Y., Guan, C., & Zhang, Z. (2019). A biochar-based route for environmentally friendly controlled release of nitrogen: Urea-loaded biochar and bentonite composite. Scientific Reports, 9(1), 9548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz, K., & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177(5), 651–670.

    Article  CAS  Google Scholar 

  • Lü, S., Feng, C., Gao, C., Wang, X., Xu, X., Bai, X., Gao, N., & Liu, M. (2016). Multifunctional environmental smart fertilizer based on l-aspartic acid for sustained nutrient release. Journal of Agricultural and Food Chemistry, 64(24), 4965–4974.

    Article  PubMed  Google Scholar 

  • Lu, H.-L., Nkoh, J. N., Abdulaha-Al Baquy, M., Dong, G., Li, J.-Y., & Xu, R.-K. (2020). Plants alter surface charge and functional groups of their roots to adapt to acidic soil conditions. Environmental Pollution, 267, 115590.

    Article  CAS  PubMed  Google Scholar 

  • Machell, J., Prior, K., Allan, R., & Andresen, J. M. (2015). The water energy food nexus – Challenges and emerging solutions. Environmental Science: Water Research & Technology, 1(1), 15–16.

    Google Scholar 

  • Marinescu, L., Ficai, D., Oprea, O., Marin, A., Ficai, A., Andronescu, E., & Holban, A.-M. (2020). Optimized synthesis approaches of metal nanoparticles with antimicrobial applications. Journal of Nanomaterials, 2020, 6651207.

    Article  Google Scholar 

  • Mastronardi, E., Tsae, P., Zhang, X., Monreal, C., & DeRosa, M. C. (2015). Strategic role of nanotechnology in fertilizers: Potential and limitations. In M. Rai, C. Ribeiro, L. Mattoso, & N. Duran (Eds.), Nanotechnologies in Food and Agriculture. Springer International Publishing.

    Google Scholar 

  • Matei, E., Predescu, A. M., & Râpă, M. (2022). Natural polymers and their nanocomposites used for environmental applications, 12(10).

    Google Scholar 

  • Mejias, J. H., Salazar, F., Pérez Amaro, L., Hube, S., Rodriguez, M., & Alfaro, M. (2021). Nanofertilizers: A cutting-edge approach to increase nitrogen use efficiency in grasslands. Frontiers in Environmental Science, 9, 21.

    Article  Google Scholar 

  • Mikula, K., Izydorczyk, G., Skrzypczak, D., Mironiuk, M., Moustakas, K., Witek-Krowiak, A., & Chojnacka, K. (2020). Controlled release micronutrient fertilizers for precision agriculture – A review. Science of The Total Environment, 712, 136365.

    Article  CAS  PubMed  Google Scholar 

  • Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology, 2, 20.

    Article  Google Scholar 

  • Mohamed Salem, G. E., Talreja, N., Chauhan, D., Mangalaraja, R. V., & Ashfaq, M. (2023). Chapter 11 – Cellulose degrading fungi: Nanocellulose production and its agri-environmental applications. In K. A. Abd-Elsalam (Ed.), Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications. Elsevier.

    Google Scholar 

  • Mohammad, A., Neetu, T., Divya, C., & Werayut, S. (2019). Polymeric nanocomposite-based agriculture delivery system: Emerging technology for agriculture. In J. Farrukh (Ed.), Genetic Engineering. Rijeka.

    Google Scholar 

  • Möller, K., Oberson, A., Bünemann, E. K., Cooper, J., Friedel, J. K., Glæsner, N., Hörtenhuber, S., Løes, A.-K., Mäder, P., Meyer, G., Müller, T., Symanczik, S., Weissengruber, L., Wollmann, I., & Magid, J. (2018). Chapter four – Improved phosphorus recycling in organic farming: navigating between constraints. In D. L. Sparks (Ed.), Advances in Agronomy. Academic Press.

    Google Scholar 

  • Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254–257.

    Article  CAS  PubMed  Google Scholar 

  • Mühlbachová, G., Růžek, P., Kusá, H., Vavera, R., & Káš, M. (2021). Winter wheat straw decomposition under different nitrogen fertilizers. Agriculture, 11. [Online].

    Google Scholar 

  • Mukherjee, A. K., & Batabyal, K. (2021). Climate-smart soil management: Prospect and challenges in indian scenario. In A. Rakshit, S. K. Singh, P. C. Abhilash, & A. Biswas (Eds.), Soil science: Fundamentals to recent advances. Springer.

    Google Scholar 

  • Mukherjee, A., Majumdar, S., Servin, A. D., Pagano, L., Dhankher, O. P., & White, J. C. (2016). Carbon nanomaterials in agriculture: A critical review. Frontiers in Plant Science, 7, 20.

    Article  Google Scholar 

  • Mustafa, A., Athar, F., Khan, I., Chattha, M. U., Nawaz, M., Shah, A. N., Mahmood, A., Batool, M., Aslam, M. T., Jaremko, M., Abdelsalam, N. R., Ghareeb, R. Y., & Hassan, M. U. (2022a). Improving crop productivity and nitrogen use efficiency using sulfur and zinc-coated urea: A review. Frontiers in Plant Science, 13, 942384.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustafa, A., Athar, F., Khan, I., Chattha, M. U., Nawaz, M., Shah, A. N., Mahmood, A., Batool, M., Aslam, M. T., Jaremko, M., Abdelsalam, N. R., Ghareeb, R. Y., & Hassan, M. U. (2022b). Improving crop productivity and nitrogen use efficiency using sulfur and zinc-coated urea: A review. Frontiers in Plant Science, 13, 13.

    Article  Google Scholar 

  • Naher, U. A., Ahmed, M. N., Sarkar, M. I. U., Biswas, J. C., & Panhwar, Q. A. (2019). Chapter 8 – Fertilizer management strategies for sustainable rice production. In S. Chandran, M. R. Unni, & S. Thomas (Eds.), Organic Farming. Woodhead Publishing.

    Google Scholar 

  • Naseri-Nosar, M., Salehi, M., & Hojjati-Emami, S. (2017). Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. International Journal of Biological Macromolecules, 103, 701–708.

    Article  CAS  PubMed  Google Scholar 

  • Naz, M. Y., & Sulaiman, S. A. (2016). Slow release coating remedy for nitrogen loss from conventional urea: A review. Journal of Controlled Release, 225, 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Ndaba, B., Roopnarain, A., Rama, H., & Maaza, M. (2022). Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy. Journal of Integrative Agriculture, 21(5), 1225–1242.

    Article  CAS  Google Scholar 

  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019, 5794869.

    Article  Google Scholar 

  • Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8(7), 543–557.

    Article  CAS  PubMed  Google Scholar 

  • Nongbet, A., & Mishra, A. K. (2022). Nanofertilizers: A smart and sustainable attribute to modern agriculture, 11(19).

    Google Scholar 

  • Nongbet, A., Mishra, A. K., Mohanta, Y. K., Mahanta, S., Ray, M. K., Khan, M., Baek, K.-H., & Chakrabartty, I. (2022). Nanofertilizers: A smart and sustainable attribute to modern agriculture. Plants, 11. [Online].

    Google Scholar 

  • Noufal, E., Farid, I., Attia, M. A., Ahmed, R., & Abbas, M. (2021). Effect of traditional sources of Zn and ZnO-nano-particles foliar application on productivity and P-uptake of maize plants grown on sandy and clay loam soils. Environment, Biodiversity and Soil Security, 5(2021), 59–72.

    Google Scholar 

  • Omar, R. A., & Jain, M. (2023). Preparation and applications of chitosan–gold bionanocomposites. In P. M. Visakh (Ed.), Biodegradable and environmental applications of bionanocomposites. Springer.

    Google Scholar 

  • Omar, R. A., Afreen, S., Talreja, N., Chauhan, D., & Ashfaq, M. (2019a). Impact of nanomaterials in plant systems. In R. Prasad (Ed.), Plant nanobionics: Volume 1, advances in the understanding of nanomaterials research and applications. Springer International Publishing.

    Google Scholar 

  • Omar, R. A., Afreen, S., Talreja, N., Chauhan, D., Ashfaq, M., & Srituravanich, W. (2019b). Impact of nanomaterials on the microbial system. In R. Prasad (Ed.), Microbial nanobionics: Volume 1, state-of-the-art. Springer.

    Google Scholar 

  • Omar, R. A., Verma, N., & Arora, P. K. (2020). Sequential desulfurization of thiol compounds containing liquid fuels: Adsorption over Ni-doped carbon beads followed by biodegradation using environmentally isolated Bacillus zhangzhouensis. Fuel, 277, 118208.

    Article  CAS  Google Scholar 

  • Omar, R. A., Chauhan, D., Talreja, N., Mangalaraja, R. V., & Ashfaq, M. (2022a). Chapter 12 – Vegetables waste for biosynthesis of various nanoparticles. In K. A. Abd-Elsalam, R. Periakaruppan, & S. Rajeshkumar (Eds.), Agri-waste and microbes for production of sustainable nanomaterials. Elsevier.

    Google Scholar 

  • Omar, R. A., Talreja, N., Chauhan, D., Mangalaraja, R. V., & Ashfaq, M. (2022b). Chapter 14 – Nano metal-carbon–based materials: Emerging platform for the growth and protection of crops. In G. M. Balestra & E. Fortunati (Eds.), Nanotechnology-based sustainable alternatives for the management of plant diseases. Elsevier.

    Google Scholar 

  • Osman, H. A., Ameen, H. H., Mohamed, M., El-Sayed, G. M., Dawood, M. G., & Elkelany, U. S. (2021). Bio-fertilizers’ protocol for controlling root knot nematode Meloidogyne javanica infecting peanut fields. Egyptian Journal of Biological Pest Control, 31(1), 130.

    Article  Google Scholar 

  • Panwar, N. L., Pawar, A., & Salvi, B. L. (2019). Comprehensive review on production and utilization of biochar. SN Applied Sciences, 1(2), 168.

    Article  Google Scholar 

  • Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5, 5.

    Article  Google Scholar 

  • Pradhan, S., Patra, P., Das, S., Chandra, S., Mitra, S., Dey, K. K., Akbar, S., Palit, P., & Goswami, A. (2013). Photochemical modulation of biosafe manganese nanoparticles on vigna radiata: A detailed molecular, biochemical, and biophysical study. Environmental Science & Technology, 47(22), 13122–13131.

    Article  CAS  Google Scholar 

  • Pradhan, S., Barik, S., & Goswami, A. (2019). Assessment of photo-modulation, nutrient-use efficiency and toxicity of iron nanoparticles in Vigna radiata. Environmental Science: Nano, 6(8), 2544–2552.

    CAS  Google Scholar 

  • Qi, M., Liu, Y., & Li, T. (2013). Nano-TiO(2) improve the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research, 156(1-3), 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Rajan, M., Shahena, S., Chandran, V., & Mathew, L. (2021). Chapter 3 – Controlled release of fertilizers—Concept, reality, and mechanism. In F. B. Lewu, T. Volova, S. Thomas, & K.R, R. (Eds.), Controlled Release Fertilizers for Sustainable Agriculture. Academic Press.

    Google Scholar 

  • Rajput, V. D., & Minkina, T. (2021). Effects of zinc oxide nanoparticles on physiological and anatomical indices in spring barley tissues. Nanomaterials, 11(7), 1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raliya, R., Saharan, V., Dimkpa, C., & Biswas, P. (2018). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry, 66(26), 6487–6503.

    Article  CAS  PubMed  Google Scholar 

  • Randive, K., Raut, T., & Jawadand, S. (2021). An overview of the global fertilizer trends and India’s position in 2020. Mineral Economics, 34(3), 371–384.

    Article  Google Scholar 

  • Rao, S., & Shekhawat, G. S. (2014). Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. Journal of Environmental Chemical Engineering, 2(1), 105–114.

    Article  CAS  Google Scholar 

  • Rashidzadeh, A., & Olad, A. (2014). Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydrate polymers, 114, 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485–3498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas, B. L., Urbano, B. F., & Sánchez, J. (2018). Water-soluble and insoluble polymers, nanoparticles, nanocomposites and hybrids with ability to remove hazardous inorganic pollutants in water. Frontiers in Chemistry, 6, 34.

    Article  Google Scholar 

  • Rizwan, M., Ali, S., ur Rehman, M. Z., Malik, S., Adrees, M., Qayyum, M. F., Alamri, S. A., Alyemeni, M. N., & Ahmad, P. (2019). Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiologiae Plantarum, 41(3), 35.

    Article  Google Scholar 

  • Roberts, A. G., & Oparka, K. J. (2003). Plasmodesmata and the control of symplastic transport. Plant, Cell & Environment, 26(1), 103–124.

    Article  Google Scholar 

  • Rodrigues, S. M., Demokritou, P., Dokoozlian, N., Hendren, C. O., Karn, B., Mauter, M. S., Sadik, O. A., Safarpour, M., Unrine, J. M., Viers, J., Welle, P., White, J. C., Wiesner, M. R., & Lowry, G. V. (2017). Nanotechnology for sustainable food production: Promising opportunities and scientific challenges. Environmental Science: Nano, 4(4), 767–781.

    CAS  Google Scholar 

  • Romero-Fierro, D., Bustamante-Torres, M., Bravo-Plascencia, F., Esquivel-Lozano, A., Ruiz, J.-C., & Bucio, E. (2022). Recent trends in magnetic polymer nanocomposites for aerospace applications: A review. Polymers, 14. [Online].

    Google Scholar 

  • Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, 160–166.

    Article  CAS  PubMed  Google Scholar 

  • Rumpel, C., Baumann, K., Remusat, L., Dignac, M.-F., Barré, P., Deldicque, D., Glasser, G., Lieberwirth, I., & Chabbi, A. (2015). Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth. Soil Biology and Biochemistry, 85, 82–88.

    Article  CAS  Google Scholar 

  • Saletnik, B., Zaguła, G., Bajcar, M., Tarapatskyy, M., Bobula, G., & Puchalski, C. (2019). Biochar as a Multifunctional Component of the Environment—A Review, Applied Sciences, 9. [Online].

    Google Scholar 

  • Sankararamakrishnan, N., Chauhan, D., & Dwivedi, J. (2016). Synthesis of functionalized carbon nanotubes by floating catalytic chemical vapor deposition method and their sorption behavior toward arsenic. Chemical Engineering Journal, 284, 599–608.

    Article  CAS  Google Scholar 

  • Sasidharan, V., Damiri, F., Talreja, N., Chauhan, D., Mangalaraja, R. V., Berrada, M., & Ashfaq, M. (2022). Carbon-based nanomaterials: an efficient tool for improving the nutritional quality of crops. In T. Aftab & K. R. Hakeem (Eds.), Metabolic engineering in plants. Springer.

    Google Scholar 

  • Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., & Wiesner, M. R. (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology, 10(3), 257–278.

    Article  CAS  PubMed  Google Scholar 

  • Schwabe, F., Tanner, S., Schulin, R., Rotzetter, A., Stark, W., von Quadt, A., & Nowack, B. (2015). Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics, 7(3), 466–477.

    Article  CAS  PubMed  Google Scholar 

  • Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L. C., Bacabac, R. G., & Klein-Nulend, J. (2021). Cellulose and its derivatives: towards biomedical applications. Cellulose, 28(4), 1893–1931.

    Article  CAS  Google Scholar 

  • Seo, J., & Kim, W. (2020). Plant leaf inspired evaporative heat sink with a binary porous structure. International Journal of Heat and Mass Transfer, 160, 120171.

    Article  CAS  Google Scholar 

  • Serag, M. F., Kaji, N., Gaillard, C., Okamoto, Y., Terasaka, K., Jabasini, M., Tokeshi, M., Mizukami, H., Bianco, A., & Baba, Y. (2011). Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano, 5(1), 493–499.

    Article  CAS  PubMed  Google Scholar 

  • Shalaby, T. A., Abd-Alkarim, E., El-Aidy, F., Hamed, E.-S., Sharaf-Eldin, M., Taha, N., El-Ramady, H., Bayoumi, Y., & dos Reis, A. R. (2021). Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicology and Environmental Safety, 212, 111962.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, L. K., & Bali, S. K. (2018). A review of methods to improve nitrogen use efficiency in agriculture. Sustainability, 10(1), 51.

    Google Scholar 

  • Sharma, S., Sudhakara, P., Omran, A. A. B., Singh, J., & Ilyas, R. A. (2021). Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers, 13. [Online].

    Google Scholar 

  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, P. K., Misra, P., & Kole, C. (2016). Uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. In C. Kole, D. S. Kumar, & M. V. Khodakovskaya (Eds.), Plant nanotechnology: Principles and practices. Springer.

    Google Scholar 

  • Siddiqi, K. S., & Husen, A. (2017). Plant Response to Engineered Metal Oxide Nanoparticles. Nanoscale Research Letters, 12(1), 92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, M. V. (2008). Micronutrient deficiencies in crops and soils in India. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production. Springer.

    Google Scholar 

  • Skopinska-Wisniewska, J., De la Flor, S., & Kozlowska, J. (2021). From supramolecular hydrogels to multifunctional carriers for biologically active substances. International Journal of Molecular Sciences, 22. [Online].

    Google Scholar 

  • Spielman-Sun, E., Avellan, A., Bland, G. D., Tappero, R. V., Acerbo, A. S., Unrine, J. M., Giraldo, J. P., & Lowry, G. V. (2019). Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environmental Science: Nano, 6(8), 2508–2519.

    CAS  Google Scholar 

  • Staiger, S., Seufert, P., Arand, K., Burghardt, M., Popp, C., & Riederer, M. (2019). The permeation barrier of plant cuticles: uptake of active ingredients is limited by very long-chain aliphatic rather than cyclic wax compounds. Pest Management Science, 75(12), 3405–3412.

    Article  CAS  PubMed  Google Scholar 

  • Talreja, N., Kumar, D., & Verma, N. (2014). Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads. Journal of Water Process Engineering, 3, 34–45.

    Article  Google Scholar 

  • Talreja, N., Verma, N., & Kumar, D. (2016). Carbon bead-supported ethylene diamine-functionalized carbon nanofibers: An efficient adsorbent for salicylic acid. CLEAN – Soil, Air, Water, 44(11), 1461–1470.

    Article  CAS  Google Scholar 

  • Tayade, R., Ghimire, A., Khan, W., Lay, L., Attipoe, J. Q., & Kim, Y. (2022). Silicon as a smart fertilizer for sustainability and crop improvement. Biomolecules, 12(8), 1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timilsena, Y. P., Adhikari, R., Casey, P., Muster, T., Gill, H., & Adhikari, B. (2015). Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns. Journal of the Science of Food and Agriculture, 95(6), 1131–1142.

    Article  CAS  PubMed  Google Scholar 

  • Tomaszewska, M., & Jarosiewicz, A. (2002). Use of polysulfone in controlled-release NPK fertilizer formulations. Journal of Agricultural and Food Chemistry, 50(16), 4634–4639.

    Article  CAS  PubMed  Google Scholar 

  • Tomaszewska, M., & Jarosiewicz, A. (2006). Encapsulation of mineral fertilizer by polysulfone using a spraying method. Desalination, 198(1), 346–352.

    Article  CAS  Google Scholar 

  • Trinh, T. H., & KuShaari, K. (2016). Dynamic of water absorption in controlled release fertilizer and its relationship with the release of nutrient. Procedia Engineering, 148, 319–326.

    Article  CAS  Google Scholar 

  • Udvardi, M., Below, F. E., Castellano, M. J., Eagle, A. J., Giller, K. E., Ladha, J. K., Liu, X., Maaz, T. M., Nova-Franco, B., Raghuram, N., Robertson, G. P., Roy, S., Saha, M., Schmidt, S., Tegeder, M., York, L. M., & Peters, J. W. (2021). A research road map for responsible use of agricultural nitrogen. Frontiers in Sustainable Food Systems, 5, 165.

    Article  Google Scholar 

  • Umesha, S., Manukumar, H. M. G., & Chandrasekhar, B. (2018). Chapter 3 – Sustainable agriculture and food security. In R. L. Singh & S. Mondal (Eds.), Biotechnology for Sustainable Agriculture. Woodhead Publishing.

    Chapter  Google Scholar 

  • Vanti, G. L., Nargund, V. B. N. B. K., Vanarchi, R., Kurjogi, M., Mulla, S. I., Tubaki, S., & Patil, R. R. (2019). Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Applied Organometallic Chemistry, 33(1), e4630.

    Article  Google Scholar 

  • Vejan, P., Khadiran, T., Abdullah, R., & Ahmad, N. (2021). Controlled release fertilizer: A review on developments, applications and potential in agriculture. Journal of Controlled Release, 339, 321–334.

    Article  CAS  PubMed  Google Scholar 

  • Venugopalan, V. K., Nath, R., & M. A, S. C. (2022). Smart fertilizers – A way ahead for sustainable agriculture. Journal of Plant Nutrition, 45(13), 2068–2076.

    Article  CAS  Google Scholar 

  • Wan, J., Chen, X., Wang, Z., Yang, X., & Qian, Y. (2005). A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. Journal of Crystal Growth, 276(3), 571–576.

    Article  CAS  Google Scholar 

  • Wong, M. H., Misra, R. P., Giraldo, J. P., Kwak, S.-Y., Son, Y., Landry, M. P., Swan, J. W., Blankschtein, D., & Strano, M. S. (2016). Lipid Exchange Envelope Penetration (LEEP) of nanoparticles for plant engineering: A universal localization mechanism. Nano Letters, 16(2), 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  • Wu, B., & Beitz, E. (2007). Aquaporins with selectivity for unconventional permeants. Cellular and Molecular Life Sciences, 64(18), 2413–2421.

    Article  CAS  PubMed  Google Scholar 

  • Wypij, M., Trzcińska-Wencel, J., Golińska, P., Avila-Quezada, G. D., Ingle, A. P., & Rai, M. (2023). The strategic applications of natural polymer nanocomposites in food packaging and agriculture: Chances, challenges, and consumers’ perception. Frontiers in Chemistry, 10, 230.

    Article  Google Scholar 

  • Xiong, T., Dumat, C., Dappe, V., & Vezin, H. (2017). Copper oxide nanoparticle foliar uptake. Phytotoxicity, and Consequences for Sustainable Urban Agriculture, 51(9), 5242–5251.

    CAS  Google Scholar 

  • Yamamoto, C. F., Pereira, E. I., Mattoso, L. H. C., Matsunaka, T., & Ribeiro, C. (2016). Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. Chemical Engineering Journal, 287, 390–397.

    Article  CAS  Google Scholar 

  • Yan, A., & Chen, Z. (2019). Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 20. [Online].

    Google Scholar 

  • Yu, J., Wang, D., Geetha, N., Khawar, K. M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 261, 117904.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, H., Yang, S., Yan, H., Guo, J., Zhang, W., Yu, Q., Yin, X., & Tan, Y. (2022a). Liquefied polysaccharides-based polymer with tunable condensed state structure for antimicrobial shield by multiple processing methods. Small Methods, 6(5), 2200129.

    Article  CAS  Google Scholar 

  • Yuan, L., Zhang, Z., Cao, X., & Wu, L. (2022b). Polyester sulfur-coated urea (PSCU) application enhances brown rice iron concentrations in two alkaline soils. Journal of the Science of Food and Agriculture, 102(3), 1040–1046.

    Article  CAS  PubMed  Google Scholar 

  • Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L. R. (2020). Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of The Total Environment, 738, 140240.

    Article  CAS  PubMed  Google Scholar 

  • Zhai, G., Walters, K. S., Peate, D. W., Alvarez, P. J. J., & Schnoor, J. L. (2014). Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environmental Science & Technology Letters, 1(2), 146–151.

    Article  CAS  Google Scholar 

  • Zhang, X., Xu, Z., Wu, M., Qian, X., Lin, D., Zhang, H., Tang, J., Zeng, T., Yao, W., Filser, J., Li, L., & Sharma, V. K. (2019). Potential environmental risks of nanopesticides: Application of Cu(OH)2 nanopesticides to soil mitigates the degradation of neonicotinoid thiacloprid. Environment International, 129, 42–50.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Peralta-Videa, J. R., Varela-Ramirez, A., Castillo-Michel, H., Li, C., Zhang, J., Aguilera, R. J., Keller, A. A., & Gardea-Torresdey, J. L. (2012). Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. Journal of Hazardous Materials, 225, 131–138.

    Article  PubMed  Google Scholar 

  • Zhu, Z.-J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O. R., Rotello, V. M., Xing, B., & Vachet, R. W. (2012). Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environmental Science & Technology, 46(22), 12391–12398.

    Article  CAS  Google Scholar 

  • Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omar, R.A., Talreja, N., Ashfaq, M., Chauhan, D. (2024). Nanostructure-Based Smart Fertilizers and Their Interaction with Plants. In: Abd-Elsalam, K.A., Alghuthaymi, M.A. (eds) Nanofertilizers for Sustainable Agroecosystems. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-41329-2_15

Download citation

Publish with us

Policies and ethics