Skip to main content

The Role of Cholesterol Crystals in Plaque Rupture Leading to Acute Myocardial Infarction and Stroke

  • Chapter
  • First Online:
Cholesterol Crystals in Atherosclerosis and Other Related Diseases

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 152 Accesses

Abstract

It is now evident that cholesterol crystals (CCs) in atherosclerotic plaques are not innocent bystanders but rather active contributors to plaque growth and rupture. Bench experiments have revealed that as cholesterol undergoes phase transition from a liquid to a solid crystalline it rapidly expands to occupy a greater volume. When this process occurs within the core of an atherosclerotic plaque the rapid volume expansion can lead to disruption of the plaque architecture resulting in rupture and/or erosion. The ability for CCs to disrupt fibrous tissue has been demonstrated in both in vitro and ex vivo studies using various microscopic techniques and a modified tissue preparation method that avoids ethanol in order to preserve CCs. In specimens of coronary arteries of patients who died with myocardial infarction, CCs were found to be perforating the fibrous caps of ruptured plaques. Furthermore, crystals in the interstitial space can be recognized as a foreign body by the innate immune system that then triggers an inflammatory response contributing to plaque destabilization. Following plaque rupture, CCs released into the circulation can scrape the endothelial surface causing arterial spasm, obstruct the microcirculation, and trigger a local tissue inflammation that altogether cause a combined ischemic and inflammatory tissue injury. Thus, CCs continual formation and growth plays a critical role throughout the atherosclerotic process, up to and including their role in causing myocardial infarction while further aggravating muscle injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abela GS, Aziz K. Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis. Clin Cardiol. 2005;28:413–20.

    Article  PubMed  Google Scholar 

  2. Abela GS, Aziz K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events: a novel inghight into plaque rupture by scanning electron microscopy. Scanning. 2006;28:1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Hammer SS, Dorweiler TF, McFarland D, et al. Cholesterol crystal formation is a unifying pathogenic mechanism in the development of diabetic retinopathy. Diabetologia. 2023;66(9):1705–18.

    Google Scholar 

  4. El-Khatib LA, de Feijter-Rupp H, Janoudi A, Fry L, Kehdi M, Abela GS. Cholesterol induced heart valve inflammation and injury: efficacy of cholesterol lowering treatment. Open Heart. 2020;7:e001274.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abela GS, Leja M, Janoudi A, Perry D, Richard J, De Feijter-Rupp H, Vanderberg A. Relationship between atherosclerosis and certain solid cancer tumors. J Am Coll Cardiol. 2019;73(9 Suppl 1):156.

    Article  Google Scholar 

  6. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  CAS  PubMed  Google Scholar 

  7. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103:604–16.

    Article  CAS  PubMed  Google Scholar 

  8. Henney AM, Wakeley PR, Davies MJ, Foster K, Hembry R, Murphy G, Humphries S. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci U S A. 1991;88:8154–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad and the ugly. Circ Res. 2002;90:251–62.

    Article  CAS  PubMed  Google Scholar 

  10. Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res. 1992;71:850–8.

    Article  CAS  PubMed  Google Scholar 

  11. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1986;78:1157.

    Article  Google Scholar 

  12. Nobuyoshi M, Tanaka M, Nosaka H, Kimura T, Yokoi H, Hamasaki N, Kim K, Shindo T, Kimura K. Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol. 1991;18:904–10. https://doi.org/10.1016/0735-1097.

    Article  CAS  PubMed  Google Scholar 

  13. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92:657–71. https://doi.org/10.1161/01.cir.92.3.657.91)90745-u.

    Article  CAS  PubMed  Google Scholar 

  14. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Morsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12:56–62.

    Article  CAS  PubMed  Google Scholar 

  15. Giroud D, Li JM, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol. 1992;69:729–32. https://doi.org/10.1016/0002-9149(92)90495-k.

    Article  CAS  PubMed  Google Scholar 

  16. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz G, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, for the PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  PubMed  Google Scholar 

  17. Constantinides P. Plaque fissures in human coronary thrombosis. J Atheroscler Res. 1996;6:1–17.

    Article  Google Scholar 

  18. Davies MJ, Thomas AC. Plaque fissuring: the cause of acute myocardial infarction causing sudden ischaemic death, and crecendo angina. Br Heart J. 1985;53:363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steffel J, Luscher TF, Tanner FC. Tissue factor in cardiovascular diseases: molecular mechanism and clinical implications. Circulation. 2006;113:722–31. https://doi.org/10.1161/CIRCULATIONAHA.105.567297.

    Article  CAS  PubMed  Google Scholar 

  20. DeWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS, Lang HT. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med. 1980;303:897–902. https://doi.org/10.1056/NEJM198010163031601.

    Article  CAS  PubMed  Google Scholar 

  21. Sherman CT, Litvack F, Grundfest W, et al. Coronary angioscopy in patients with unstable angina pectoris. N Engl J Med. 1986;315:913–9.

    Article  CAS  PubMed  Google Scholar 

  22. Muller JE, Abela GS, Nesto RW, Tofler GH. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol. 1994;23:809–13. https://doi.org/10.1016/0735-1097(94)90772-2.

    Article  CAS  PubMed  Google Scholar 

  23. Schaar JA, Muller JE, Falk E, et al. Terminology for high-risk and vulnerable coronary artery plaques. Eur Heart J. 2004;25:1077–82.

    Article  PubMed  Google Scholar 

  24. Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J. 2016;37:1959–67. https://doi.org/10.1093/eurheartj/ehv653.

    Article  CAS  PubMed  Google Scholar 

  25. Kolodgie FD, Burke AP, Nakazawa G, Cheng Q, Xu X, Virmani R. Free cholesterol in atherosclerotic plaques: where does it come from? Curr Opin Lipidol. 2007;18:500–7.

    Article  CAS  PubMed  Google Scholar 

  26. Small DM. George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arterioscler Thromb Vasc Biol. 1988;8:103–29.

    CAS  Google Scholar 

  27. Guyton JR, Klemp KF. Transitional features in human atherosclerosis: intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks. Am J Pathol. 1993;143:1444–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Atheroscler Thromb Vasc Biol. 2000;20:1262–75. https://doi.org/10.1161/01.atv.20.5.1262.

    Article  CAS  Google Scholar 

  29. Nasiri M, Janoudi A, Vanderberg AFM, Flegler C, Flegler S, Abela GS. Role of cholesterol crystals in atherosclerosis is unmasked by altering tissue preparation methods. Microsc Res Tech. 2015;78:969–74. https://doi.org/10.1002/jemt.22560.

    Article  CAS  PubMed  Google Scholar 

  30. Abela GS. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol. 2010;4:156–64. https://doi.org/10.1016/j.jacl.2010.03.003.

    Article  PubMed  Google Scholar 

  31. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733–43.

    Article  CAS  PubMed  Google Scholar 

  32. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–51. https://doi.org/10.1161/ATVBAHA.108.179705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Virchow R. Cellular pathology as based upon physiological and pathological histology (translated by frank chance from 2nd German edition). London: John Churchill; 1860. p. 360.

    Google Scholar 

  34. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  35. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524. https://doi.org/10.1038/s41586-021-03392-8.

    Article  CAS  PubMed  Google Scholar 

  36. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94:2494–503. https://doi.org/10.1172/JCI117619.

    Article  Google Scholar 

  37. Lendon CL, Davies MJ, Born GV, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis. 1991;87(1):87–90.

    Article  CAS  PubMed  Google Scholar 

  38. Naghavi M, Libby P, Falk E, et al. From the vulnerable plaque to the vulnerable patient. Circulation. 2003;108:1664–72.

    Article  PubMed  Google Scholar 

  39. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O’Neill WW. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med. 2000;343:915–22.

    Article  CAS  PubMed  Google Scholar 

  40. Rossi A, Franceschini L, Fusaro M, et al. Carotid atherosclerotic plaque instability in patients with acute myocardial infarction. Int J Cardiol. 2006;111:263–6.

    Article  PubMed  Google Scholar 

  41. Barger AC, Beeuwkes R 3rd, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med. 1984;310:175–7.

    Article  CAS  PubMed  Google Scholar 

  42. MacIsaac AI, Thomas JD, Topol EJ. Towards the quiescent coronary plaque. JACC. 1993;22:1228–41.

    Article  CAS  PubMed  Google Scholar 

  43. Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA, Bearman G, Willerson JT. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implication of thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet. 1996;347(9013):1422–3.

    Article  Google Scholar 

  44. Kellner-Weibel G, Jerome WG, et al. Effect of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death. Arterioscler Thromb Vasc Biol. 1998;18:423–31.

    Article  CAS  PubMed  Google Scholar 

  45. Geng Y-J, Phillips JE, Mason RP, Casscells SW. Cholesterol crystallization and macrophage apoptosis: implication for atherosclerotic plaque instability and rupture. Biochem Pharmacol. 2003;66:1485–92.

    Article  CAS  PubMed  Google Scholar 

  46. Shi C, Kim T, Steiger S, Mulay SR, Klinkhammer BM, Bäuerle T, Melica ME, Romagnani P, Möckel D, Baues M, Yang L, Brouns SLN, Heemskerk JWM, Braun A, Lammers T, Boor P, Anders H-J. Crystal clots as therapeutic target in cholesterol crystal embolism. Circ Res. 2020;126:e37–52.

    Article  CAS  PubMed  Google Scholar 

  47. Aschoff A. Zur Morphologie der lipoiden Substanzen. Über Entwicklungs-Wachstums-und Altersvorgänge an den Gefäßen. Path Anat. 1909;47:1.

    Google Scholar 

  48. Kramsch DM, Franzblau C, Hollander W. The protein and lipid composition of arterial elastin and its relationship to lipid accumulation in the atherosclerotic plaque. J Clin Invest. 1971;50:1660–77.

    Article  Google Scholar 

  49. Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013;4:31. https://doi.org/10.3389/fphys.2013.00031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fahed AC, Sfa RM, Haddad FF, Bitar FF, Andary RR, Arabi MT, Azar ST, Nemer G. Homozygous familial hypercholesterolemia in Lebanon: a genotype/phenotype correlation. Mol Genet Metab. 2011;102:181–8.

    Article  CAS  PubMed  Google Scholar 

  51. Baumer Y, McCurdy S, Weatherby TM, Mehta NN, Halvherr S, Halbherr P, Yamazaki N, Boisvert WA. Hyperlipideia-induced cholesterol crystal production by endothelial cells promotes atherogenesis. Nat Commun. 2017;8:1129.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mason RP, Jacob RF. Membrane microdomains and vascular biology emerging role in atherogenesis. Circulation. 2003;107:2270–3.

    Article  PubMed  Google Scholar 

  53. Samstad EO, Niyonzima N, Nymo S, Aune MH, Ryan L, Bakke SS, Lappegård KT, Brekke OL, Lambris JD, Damås JK, Latz E, Mollnes TE, Espevik T. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol. 2014;192:2837–45. https://doi.org/10.4049/jimmunol.1302484.

    Article  CAS  PubMed  Google Scholar 

  54. Varsano N, Fargion I, Wolf SG, Leiserowitz L, Addadi L. Formation of 3D cholesterol crystals from 2D nucleation sites in lipid bilayer membranes: implications for atherosclerosis. J Am Chem Soc. 2015;137:1601–7.

    Article  CAS  PubMed  Google Scholar 

  55. Vedre A, Pathak DR, Crimp M, Lum C, Koochesfahani M, Abela GS. Physical factors that trigger cholesterol crystallization leading to plaque rupture. Atherosclerosis. 2008;203:89–96.

    Article  PubMed  Google Scholar 

  56. Abela GS, Aziz K, Vedre A, Pathak D, Talbott JD, DeJong J. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol. 2009;103:959–68.

    Article  CAS  PubMed  Google Scholar 

  57. Abela GS, Kalavakunta JK, Janoudi A, Leffler D, Dhar G, Salehi N, Cohn J, Shah I, Karve M, Kotaru VPK, Gupta V, David S, Narisetty KK, Rich M, Vanderberg A, Pathak DR, Shamoun FE. Frequency of cholesterol crystals in culprit coronary artery aspirate during acute myocardial infarction and their relation to inflammation and myocardial injury. Am J Cardiol. 2017;120:1699–707. https://doi.org/10.1016/j.amjcard.2017.07.075.

    Article  CAS  PubMed  Google Scholar 

  58. Patel R, Janoudi A, Vedre A, Aziz K, Tamhane U, Rubinstein J, Abela OG, Berger K, Abela GS. Plaque rupture and thrombosis is reduced by lowering cholesterol levels and crystallization with ezetimibe and is correlated with FDG-PET. Arterioscler Thromb Vasc Biol. 2011;31:2007–14.

    Article  CAS  PubMed  Google Scholar 

  59. Xu J, Lu X, Shi G-P. Vasa Vasorum in atherosclerosis and clinical significance. Int J Mol Sci. 2015;16:11574–608. https://doi.org/10.3390/ijms160511574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NP. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg. 2007;45:155–9.

    Article  PubMed  Google Scholar 

  61. Kaartinen M, Penttila A, Kovanen PT. Mast cells accompany microvessels in human coronary atheromas: implications for intimal neovascularization and hemorrhage. Atherosclerosis. 1996;123:123–31.

    Article  CAS  PubMed  Google Scholar 

  62. Zemplenyi T, Crawford DW, Cole MA. Adaptation to arterial wall hypoxia demonstrated in vivo with oxygen microcathodes. Atherosclerosis. 1989;76:173–9.

    Article  CAS  PubMed  Google Scholar 

  63. Al-Handawi MB, Commins P, Prasad Karothu D, Raj G, Li L, Naumov P. Mechanical and crystallographic analysis of cholesterol crystals puncturing biological membranes. Chem A Eur J. 2018;24:11493–7.

    Article  CAS  Google Scholar 

  64. Lundber B. Chemical composition and physical state of lipid deposits in atherosclerosis. Atherosclerosis. 1985;56:93–110.

    Article  Google Scholar 

  65. Jandacek RJ, Webb MR, Mattson FH. Effect of an aqueous phase on the solubility of cholesterol in an oil phase. J Lipid Res. 1977;18:203–10.

    Article  CAS  PubMed  Google Scholar 

  66. Luo Y, et al. Modeling of mechanical stress exerted by cholesterol crystallization on atherosclerotic plaques. PloS One. 2016;11(5):e0155117. https://doi.org/10.1371/journal.pone.0155117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques—role of extracellular lipid, macrophage, and smooth-muscle cell content. Br Heart J. 1993;69(5):377–81. PMID: 8518056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Richardson PD, Davies MJ, Born GVR. Influence of plaque configuration and stress-distribution on fissuring of Coronary atherosclerotic plaques. Lancet. 1989;2(8669):941–4. PMID: 2571862.

    Article  CAS  PubMed  Google Scholar 

  69. Frink RJ. Parallel cholesterol crystals: a sign of impending plaque rupture? J Invasive Cardiol. 2010;22(9):406–11. PMID: 20814046.

    PubMed  Google Scholar 

  70. Qin Z, Cao M, Xi X, Zhang Y, Wang Z, Zhao S, Tian Y, Xu Q, Yu H, Tian J, Yu B. Cholesterol crystals in non-culptrin plaques of STEMI patients: a 3-vessel OCT study. Int J Cardiol. 2022;364:162. https://doi.org/10.1016/j.ijcard.2022.06.016.

    Article  PubMed  Google Scholar 

  71. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Wilich SN, Gleason SN, Williams GH, Muller JE. Current morning increase in platelet aggregability and the risk of myocardial infarction and sudden death. N Engl J Med. 1987;316:1514–8.

    Article  CAS  PubMed  Google Scholar 

  72. Gerber Y, Jacobsen SJ, Killian JM, Weston SA, Roger VL. Seasonability and daily weather conditions in relation to myocardial infarction and sudden cardiac death in Olmsted County, Minnesota 1979 to 2002. J Am Coll Cardiol. 2006;48:287–92.

    Article  PubMed  Google Scholar 

  73. Franklin BA, George P, Henry R, Gordon S, Timmis GC, O’Neill WW. Acute myocardial infarction after manual or automated snow removal. Am J Cardiol. 2001;87:1282–3.

    Article  CAS  PubMed  Google Scholar 

  74. Li J, Ley K. Lymphocyte migration into atherosclerotic plaque. Arterioscler Thromb Vasc Biol. 2015;35(1):40–9. https://doi.org/10.1161/ATVBAHA.114.303227.

    Article  CAS  PubMed  Google Scholar 

  75. Leistner DM, Kränkel N, Meteva D, Abdelwahed YS, Seppelt C, Stähli BE, Rai H, Skurk C, Lauten A, Mochmann H-C, Fröhlich G, Rauch-Kröhnert U, Flores E, Riedel M, Sieronski L, Kia S, Strässler E, Haghikia A, Dirks F, Steiner JK, Mueller DN, Volk H-D, Klotsche J, Joner M, Libby P, Landmesser U. Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO-ACS study. Eur Heart J. 2020;41:3549–60. https://doi.org/10.1093/eurheartj/ehaa703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cardiosource American College of Cardiology: Annual Scientific Session 2006 March 11–14. Atlanta GA. Plaque Rupture by Cholesterol Crystallization—A Novel Concept for Acute Coronary Syndrome: Interviewee: George S. Abela, MD, FACC; Interviewer: C Richard Conti, MD, MACC.

    Google Scholar 

  77. Abela GS, Aziz K. Plaques are ruptured by cholesterol crystals during myocardial infarction. Scanning. 2006;28:59.

    Google Scholar 

  78. Düewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61. https://doi.org/10.1038/nature08938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rajamaki K, Lappalainen J, Oorni K, Valimaki E, Matikainen S, Kovanen PT, Eklund KK. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PloS One. 2010;5(7):e11765. https://doi.org/10.1371/journal.pone.0011765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41. https://doi.org/10.1038/nature04516.

    Article  CAS  PubMed  Google Scholar 

  81. Grebe A, Latz E. Cholesterol crystals and inflammation. Curr Rheumatol Rep. 2013;15(3):313. https://doi.org/10.1007/s11926-012-0313-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nidorf SM, Fiolet A, Abela GS. Viewing atherosclerosis through a crystal lens: how the evolving sturture of cholesterol crystals in atheroscleritc plaque alters its stability. J Clin Lipidol. 2020;14:619–30.

    Article  PubMed  Google Scholar 

  83. Cipolletta E, Tata LJ, Nakafero G, Avery AJ, Mamas MA, Abhishek A. Association between gout flare and subsequent cardiovascular events. JAMA. 2022;328:440–50. https://doi.org/10.1001/jama.2022.11390.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gadeela N, Rubinstein J, Tamhane U, Huang R, Pathak DR, Hosein HA, Rich M, Dhar G, Abela GS. The impact of circulating cholesterol crystals on vasomotor function: implications for no-reflow phenomenon. JACC Cardiovasc Interv. 2011;4:521–9. https://doi.org/10.1016/j.jcin.2011.02.010.

    Article  PubMed  Google Scholar 

  85. Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH. Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation 1990;82(3 Suppl):II47-59. Coronary artery spasm. Multiple causes and multiple roles in heart disease. Biochem Pharmacol. 1995;30(49):859–71.

    Google Scholar 

  86. Kalsner S, Coronary artery spasm. Multiple causes and multiple roles in heart disease. Biochem Pharmacol. 1995;49:859–71. https://doi.org/10.1016/0006-2952(94)00447-t.

    Article  CAS  PubMed  Google Scholar 

  87. Katayama Y, Taruya A, Kashiwagi M, Ozaki Y, Shiono Y, Tanimoto T, Yoshikawa T, Kondo T, Tanaka A. No-reflow phenomenon and in vivo cholesterol crystals combined with lipid core in acute myocardial infarction. Int J Cardiol Heart Vasculature. 2022;38:100953. https://doi.org/10.1016/j.ijcha.2022.100953.

    Article  Google Scholar 

  88. Pervaiz MH, Durga S, Janoudi A, Berger K, Abela GS. PET/CTA detection of muscle inflammation related to cholesterol crystal emboli without arterial obstruction. J Nucl Cardiol. 2018;25:433–40. https://doi.org/10.1007/s12350-017-0826-y.67.

    Article  PubMed  Google Scholar 

  89. Yutani C, Nagano T, Komatsu S, Kodama. Visible-free cholesterol crystal emboli adjacent to microinfarcts in myocardial capillaries and arterioles on H&E—stained frozen sections of an autopsied patient. BMJ Case Rep. 2018;2018:bcr2018225558. https://doi.org/10.1136/bcr-2018-225558.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dey S, Flather MD, Devlin G, et al. Global registry of acute coronary events investigators: sex-related differences in the presentation, treatment and outcomes among patients with acute coronary syndromes: the global registry of acute coronary events. Heart. 2009;95(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  91. Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS. Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther. 2011;9:1315–30.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ota H, Reeves MJ, Zhu DC, et al. Sex differences in patients with asymptomatic carotid atherosclerotic plaque: in vivo 3.0-T magnetic resonance study. Stroke. 2010;41:1630–5.

    Article  PubMed  Google Scholar 

  93. Bots SH, Peteres SAE, Woodward M. Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Glob Health. 2017;2:e000298. https://doi.org/10.1136/bmjgh-2017-000298.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Arbustini E, Dal Bello B, Morbini P, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82:269–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang E, Al-Abcha A, Osman H, Oladeji A, Boumegouas M, Abela GS. The effect of estrogen and testosterone on cholesterol crystallization. J Clin Lipidol. 2022;16(3):e75–6. https://doi.org/10.1016/j.jacl.2022.05.063.

    Article  Google Scholar 

  96. Evans NR, Tarkin JM, Chowdhury MM, Warburton EA, Rudd JHF. PET imaging of atherosclerotic disease: advancing plaque assessment from anatomy to pathophysiology. Curr Atheroscler Rep. 2016;18(6):30. https://doi.org/10.1007/s11883-016-0584-3.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Couto RD, Dallan LAO, Lisboa LAF, Mesquita CH, Vinagre CGC, Maranhão RC. Deposition of free cholesterol in the blood vessels of patients with coronary artery disease. A possible novel mechanism for atherogenesis. Lipids. 2007;42:411–8.

    Article  CAS  PubMed  Google Scholar 

  98. Luo Y, Guo Y, Wang H, Yu M, Hong K, Li D, Li R, Wen B, Hu D, Chang L, Zhang J, Yang B, Sun D, Schwendeman AS, Chen YE. Phospholipid nanoparticles: therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation. EBioMed. 2021;74:103725. https://doi.org/10.1016/j.ebiom.2021.103725.

    Article  CAS  Google Scholar 

  99. Flores AM, Hosseini-Nassab N, Jarr KU, Ye J, Zhu X, Wirka R, Koh AL, Tsantilas P, Wang Y, Nanda V, Kojima Y, Zeng Y, Lotfi M, Sinclair R, Weissman IL, Ingelsson E, Smith BR, Leeper NJ. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat Nanotechnol. 2020;15:154–61. Epub 2020 Jan 27. https://doi.org/10.1038/s41565-019-0619-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Abela GS, Eisenberg JD, Mittleman M, Nesto RW, Leeman D, Zarich S, Waxman S, Prieto A, Manzo KS. Detecting and differentiating white from red coronary thrombus by angiography in angina pectoris and in acute myocardial infarction. Am J Cardiol. 1999;83:94–7.

    Article  CAS  PubMed  Google Scholar 

  101. Seeger JM, Abela GS. Angioscopy as an adjunct to arterial reconstructive surgery. J Vasc Surg. 1986;4:315–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Abela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abela, G.S., Aziz, K. (2023). The Role of Cholesterol Crystals in Plaque Rupture Leading to Acute Myocardial Infarction and Stroke. In: Abela, G.S., Nidorf, S.M. (eds) Cholesterol Crystals in Atherosclerosis and Other Related Diseases. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-41192-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41192-2_10

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-41191-5

  • Online ISBN: 978-3-031-41192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics