Skip to main content

Novel Targets in Development for Advanced Renal Cell Carcinoma

  • Chapter
  • First Online:
Integrating Multidisciplinary Treatment for Advanced Renal Cell Carcinoma

Abstract

Renal cell carcinoma (RCC) is estimated to account for 14,890 deaths in the year 2023 in the USA alone. Despite recent therapeutic advances, prognosis for patients with advanced disease remains poor and most succumb to their disease. RCC is a heterogeneous tumor with complex molecular pathophysiology and hence a better understanding of tumor biology, genetics and mechanism of resistance will help improve outcomes. An urgent need exists for the discovery of novel targets and therapies aimed at such targets in this population. This chapter outlines our current knowledge of molecular pathophysiology, tumor microenvironment, and resistance mechanisms in clear cell RCC and subsequently discusses novel targets and therapies in development in both preclinical and clinical setting. We categorize novel therapeutic approaches into several groups based on mechanism of action which include cell cycle inhibition, epigenetic modulation, metabolic pathway alteration, and immune checkpoint inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Motzer RJ, Escudier B, McDermott DF, et al. Survival outcomes and independent response assessment with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma: 42-month follow-up of a randomized phase 3 clinical trial. J Immunother Cancer. 2020;8(2):e000891. https://doi.org/10.1136/jitc-2020-000891.

    Article  PubMed  Google Scholar 

  2. Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27. https://doi.org/10.1056/NEJMoa1816714.

    Article  CAS  PubMed  Google Scholar 

  3. Choueiri TK, Powles T, Burotto M, et al. 696O_PR nivolumab + cabozantinib vs sunitinib in first-line treatment for advanced renal cell carcinoma: first results from the randomized phase III CheckMate 9ER trial. Ann Oncol. 2020;31:S1159. https://doi.org/10.1016/j.annonc.2020.08.2257.

    Article  Google Scholar 

  4. Yang DC, Chen CH. Potential new therapeutic approaches for renal cell carcinoma. Semin Nephrol. 2020;40(1):86–97. https://doi.org/10.1016/j.semnephrol.2019.12.010.

    Article  CAS  PubMed  Google Scholar 

  5. Ballesteros PÁ, Chamorro J, Román-Gil MS, et al. Molecular mechanisms of resistance to immunotherapy and antiangiogenic treatments in clear cell renal cell carcinoma. Cancers (Basel). 2021;13(23):5981. https://doi.org/10.3390/cancers13235981.

    Article  CAS  PubMed  Google Scholar 

  6. Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009. https://doi.org/10.1038/nrdp.2017.9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Signoretti S, Flaifel A, Chen YB, Reuter VE. Renal cell carcinoma in the era of precision medicine: from molecular pathology to tissue-based biomarkers. J Clin Oncol. 2018;36(36):3553–9. https://doi.org/10.1200/JCO.2018.79.2259.

    Article  CAS  PubMed Central  Google Scholar 

  8. Creighton CJ, Morgan M, Gunaratne PH, et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9. https://doi.org/10.1038/nature12222.

    Article  CAS  Google Scholar 

  9. Mitchell TJ, Turajlic S, Rowan A, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 2018;173(3):611–623.e17. https://doi.org/10.1016/j.cell.2018.02.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smits KM, Schouten LJ, van Dijk BAC, et al. Genetic and epigenetic alterations in the von Hippel-Lindau gene: the influence on renal cancer prognosis. Clin Cancer Res. 2008;14(3):782–7. https://doi.org/10.1158/1078-0432.CCR-07-1753.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Li Z, Qi F, Hu X, Luo J. Exploration of the relationships between tumor mutation burden with immune infiltrates in clear cell renal cell carcinoma. Ann Transl Med. 2019;7(22):648. https://doi.org/10.21037/atm.2019.10.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mier JW. The tumor microenvironment in renal cell cancer. Curr Opin Oncol. 2019;31(3):194–9. https://doi.org/10.1097/CCO.0000000000000512.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Joosten SC, Hamming L, Soetekouw PM, et al. Resistance to sunitinib in renal cell carcinoma: from molecular mechanisms to predictive markers and future perspectives. Biochim Biophys Acta. 2015;1855(1):1–16. https://doi.org/10.1016/j.bbcan.2014.11.002.

    Article  CAS  PubMed  Google Scholar 

  14. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. https://doi.org/10.1038/nrc2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bielecka ZF, Czarnecka AM, Solarek W, Kornakiewicz A, Szczylik C. Mechanisms of acquired resistance to tyrosine kinase inhibitors in clear - cell renal cell carcinoma (ccRCC). Curr Signal Transduct Ther. 2013;8(3):219–28. https://doi.org/10.2174/1574362409666140206223014.

    Article  CAS  PubMed Central  Google Scholar 

  16. Mathew LK, Lee SS, Skuli N, et al. Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2α activity. Cancer Discov. 2014;4(1):53–60. https://doi.org/10.1158/2159-8290.CD-13-0291.

    Article  CAS  PubMed  Google Scholar 

  17. Braun DA, Bakouny Z, Hirsch L, et al. Beyond conventional immune-checkpoint inhibition - novel immunotherapies for renal cell carcinoma. Nat Rev Clin Oncol. 2021;18(4):199–214. https://doi.org/10.1038/s41571-020-00455-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tian T, Olson S, Whitacre JM, Harding A. The origins of cancer robustness and evolvability. Integr Biol (Camb). 2011;3(1):17–30. https://doi.org/10.1039/c0ib00046a.

    Article  CAS  PubMed  Google Scholar 

  19. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1–2):48–61. https://doi.org/10.1016/j.cell.2014.12.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Şenbabaoğlu Y, Gejman RS, Winer AG, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17(1):231. https://doi.org/10.1186/s13059-016-1092-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36. https://doi.org/10.1038/nri3084.

    Article  CAS  PubMed  Google Scholar 

  22. Fu Q, Xu L, Wang Y, et al. Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion. Eur Urol. 2019;75(5):752–63. https://doi.org/10.1016/j.eururo.2018.09.030.

    Article  CAS  PubMed  Google Scholar 

  23. Jubb AM, Pham TQ, Hanby AM, et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1alpha, and carbonic anhydrase IX in human tumours. J Clin Pathol. 2004;57(5):504–12. https://doi.org/10.1136/jcp.2003.012963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Negrier S, Escudier B, Lasset C, et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. N Engl J Med. 1998;338(18):1272–8. https://doi.org/10.1056/NEJM199804303381805.

    Article  CAS  PubMed  Google Scholar 

  25. McDermott DF, Regan MM, Clark JI, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol. 2005;23(1):133–41. https://doi.org/10.1200/JCO.2005.03.206.

    Article  CAS  PubMed  Google Scholar 

  26. Gulati S, Vaishampayan U. current state of systemic therapies for advanced renal cell carcinoma. Curr Oncol Rep. 2020;22(3):26. https://doi.org/10.1007/s11912-020-0892-1.

    Article  PubMed  Google Scholar 

  27. Ratain MJ, Eisen T, Stadler WM, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24(16):2505–12. https://doi.org/10.1200/JCO.2005.03.6723.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt AL, Tabakin AL, Singer EA, Choueiri TK, McKay RR. Next steps: sequencing therapies in metastatic kidney cancer in the contemporary era. Am Soc Clin Oncol Educ Book. 2021;41:1–11. https://doi.org/10.1200/EDBK_320785.

    Article  PubMed  Google Scholar 

  29. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81. https://doi.org/10.1056/NEJMoa066838.

    Article  CAS  PubMed  Google Scholar 

  30. Motzer RJ, Hutson TE, Glen H, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16(15):1473–82. https://doi.org/10.1016/S1470-2045(15)00290-9.

    Article  CAS  PubMed  Google Scholar 

  31. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449–56. https://doi.org/10.1016/S0140-6736(08)61039-9.

    Article  CAS  PubMed  Google Scholar 

  32. Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90. https://doi.org/10.1056/NEJMoa1712126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1103–15. https://doi.org/10.1056/NEJMoa1816047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choueiri TK, Powles T, Burotto M, et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2021;384(9):829–41. https://doi.org/10.1056/NEJMoa2026982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Motzer R, Alekseev B, Rha SY, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–300. https://doi.org/10.1056/NEJMoa2035716.

    Article  CAS  PubMed  Google Scholar 

  36. Rankin EB, Fuh KC, Castellini L, et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci U S A. 2014;111(37):13373–8. https://doi.org/10.1073/pnas.1404848111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gibney GT, Aziz SA, Camp RL, et al. c-Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma. Ann Oncol. 2013;24(2):343–9. https://doi.org/10.1093/annonc/mds463.

    Article  CAS  PubMed  Google Scholar 

  38. Miyata Y, Kanetake H, Kanda S. Presence of phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor progression and survival in patients with conventional renal cell carcinoma. Clin Cancer Res. 2006;12(16):4876–81. https://doi.org/10.1158/1078-0432.CCR-06-0362.

    Article  CAS  PubMed  Google Scholar 

  39. Gustafsson A, Martuszewska D, Johansson M, et al. Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival. Clin Cancer Res. 2009;15(14):4742–9. https://doi.org/10.1158/1078-0432.CCR-08-2514.

    Article  CAS  PubMed  Google Scholar 

  40. Green J, Ikram M, Vyas J, et al. Overexpression of the Axl tyrosine kinase receptor in cutaneous SCC-derived cell lines and tumours. Br J Cancer. 2006;94(10):1446–51. https://doi.org/10.1038/sj.bjc.6603135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies. Mol Cancer Ther. 2018;17(7):1355–64. https://doi.org/10.1158/1535-7163.MCT-17-1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tamaskar I, Dhillon J, Pili R. Resistance to angiogenesis inhibitors in renal cell carcinoma. Clin Adv Hematol Oncol. 2011;9(2):101–10.

    PubMed  Google Scholar 

  43. Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F, Porta C. The role of endothelial colony forming cells in kidney cancer’s pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: a speculative review. Crit Rev Oncol Hematol. 2018;132:89–99. https://doi.org/10.1016/j.critrevonc.2018.09.005.

    Article  PubMed  Google Scholar 

  44. Pezzella F, Ribatti D. Vascular co-option and vasculogenic mimicry mediate resistance to antiangiogenic strategies. Cancer Rep (Hoboken). 2022;5(12):e1318. https://doi.org/10.1002/cnr2.1318.

    Article  CAS  PubMed  Google Scholar 

  45. Chen CY, Chen J, He L, Stiles BL. PTEN: tumor suppressor and metabolic regulator. Front Endocrinol. 2018;9:338. https://www.frontiersin.org/article/10.3389/fendo.2018.00338. Accessed 18 Jan 2022.

    Article  Google Scholar 

  46. van der Mijn JC, Mier JW, Broxterman HJ, Verheul HM. Predictive biomarkers in renal cell cancer: insights in drug resistance mechanisms. Drug Resist Updat. 2014;17(4–6):77–88. https://doi.org/10.1016/j.drup.2014.10.003.

    Article  PubMed  Google Scholar 

  47. Carew JS, Kelly KR, Nawrocki ST. Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol. 2011;6(1):17–27. https://doi.org/10.1007/s11523-011-0167-8.

    Article  PubMed  Google Scholar 

  48. Gotink KJ, Broxterman HJ, Labots M, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res. 2011;17(23):7337–46. https://doi.org/10.1158/1078-0432.CCR-11-1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gotink KJ, Rovithi M, de Haas RR, et al. Cross-resistance to clinically used tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib. Cell Oncol (Dordr). 2015;38(2):119–29. https://doi.org/10.1007/s13402-015-0218-8.

    Article  CAS  PubMed  Google Scholar 

  50. Diekstra MHM, Swen JJ, Boven E, et al. CYP3A5 and ABCB1 polymorphisms as predictors for sunitinib outcome in metastatic renal cell carcinoma. Eur Urol. 2015;68(4):621–9. https://doi.org/10.1016/j.eururo.2015.04.018.

    Article  CAS  PubMed  Google Scholar 

  51. Beuselinck B, Lambrechts D, Van Brussel T, et al. Efflux pump ABCB1 single nucleotide polymorphisms and dose reductions in patients with metastatic renal cell carcinoma treated with sunitinib. Acta Oncol. 2014;53(10):1413–22. https://doi.org/10.3109/0284186X.2014.918276.

    Article  CAS  PubMed  Google Scholar 

  52. Piva F, Giulietti M, Santoni M, et al. Epithelial to mesenchymal transition in renal cell carcinoma: implications for cancer therapy. Mol Diagn Ther. 2016;20(2):111–7. https://doi.org/10.1007/s40291-016-0192-5.

    Article  CAS  PubMed  Google Scholar 

  53. Hammers HJ, Verheul HM, Salumbides B, et al. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: evidence from a xenograft study. Mol Cancer Ther. 2010;9(6):1525–35. https://doi.org/10.1158/1535-7163.MCT-09-1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu L, Li Y, Wen H, Feng C. Overexpression of miR-15b promotes resistance to sunitinib in renal cell carcinoma. J Cancer. 2019;10(15):3389–96. https://doi.org/10.7150/jca.31676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiao W, Lou N, Ruan H, et al. Mir-144-3p promotes cell proliferation, metastasis, sunitinib resistance in clear cell renal cell carcinoma by downregulating ARID1A. Cell Physiol Biochem. 2017;43(6):2420–33. https://doi.org/10.1159/000484395.

    Article  CAS  PubMed  Google Scholar 

  56. Chowell D, Morris LGT, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018;359(6375):582–7. https://doi.org/10.1126/science.aao4572.

    Article  CAS  PubMed  Google Scholar 

  57. Conforti F, Pala L, Bagnardi V, et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 2018;19(6):737–46. https://doi.org/10.1016/S1470-2045(18)30261-4.

    Article  CAS  PubMed  Google Scholar 

  58. Garcia-Diaz A, Shin DS, Moreno BH, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19(6):1189–201. https://doi.org/10.1016/j.celrep.2017.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018;18(9):545–58. https://doi.org/10.1038/s41577-018-0029-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29. https://doi.org/10.1056/NEJMoa1604958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang S, Zhang E, Long J, et al. Immune infiltration in renal cell carcinoma. Cancer Sci. 2019;110(5):1564–72. https://doi.org/10.1111/cas.13996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sade-Feldman M, Jiao YJ, Chen JH, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8(1):1136. https://doi.org/10.1038/s41467-017-01062-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holtzhausen A, Zhao F, Evans KS, et al. Melanoma-derived Wnt5a promotes local dendritic-cell expression of IDO and immunotolerance: opportunities for pharmacologic enhancement of immunotherapy. Cancer Immunol Res. 2015;3(9):1082–95. https://doi.org/10.1158/2326-6066.CIR-14-0167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Spranger S, Gajewski TF. A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. J Immunother Cancer. 2015;3:43. https://doi.org/10.1186/s40425-015-0089-6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kruck S, Eyrich C, Scharpf M, et al. Impact of an altered Wnt1/β-catenin expression on clinicopathology and prognosis in clear cell renal cell carcinoma. Int J Mol Sci. 2013;14(6):10944–57. https://doi.org/10.3390/ijms140610944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arai E, Sakamoto H, Ichikawa H, et al. Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome. Int J Cancer. 2014;135(6):1330–42. https://doi.org/10.1002/ijc.28768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Elkrief A, El Raichani L, Richard C, et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology. 2019;8(4):e1568812. https://doi.org/10.1080/2162402X.2019.1568812.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018;29(6):1437–44. https://doi.org/10.1093/annonc/mdy103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Derosa L, Routy B, Fidelle M, et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur Urol. 2020;78(2):195–206. https://doi.org/10.1016/j.eururo.2020.04.044.

    Article  CAS  PubMed  Google Scholar 

  70. Pal SK, Li SM, Wu X, et al. Stool bacteriomic profiling in patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor-tyrosine kinase inhibitors. Clin Cancer Res. 2015;21(23):5286–93. https://doi.org/10.1158/1078-0432.CCR-15-0724.

    Article  CAS  PubMed  Google Scholar 

  71. Dizman N, Hsu J, Bergerot PG, et al. Randomized trial assessing impact of probiotic supplementation on gut microbiome and clinical outcome from targeted therapy in metastatic renal cell carcinoma. Cancer Med. 2021;10(1):79–86. https://doi.org/10.1002/cam4.3569.

    Article  CAS  PubMed  Google Scholar 

  72. Dizman N, Meza L, Bergerot P, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med. 2022;28(4):704–12. https://doi.org/10.1038/s41591-022-01694-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choueiri TK, Albiges L, Atkins MB, et al. From basic science to clinical translation in kidney cancer: a report from the second kidney cancer research summit. Clin Cancer Res. 2022;28:831–9. https://doi.org/10.1158/1078-0432.CCR-21-3238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yuan K, Wang X, Dong H, Min W, Hao H, Yang P. Selective inhibition of CDK4/6: a safe and effective strategy for developing anticancer drugs. Acta Pharm Sin B. 2021;11(1):30–54. https://doi.org/10.1016/j.apsb.2020.05.001.

    Article  CAS  PubMed  Google Scholar 

  75. Hedberg Y, Ljungberg B, Roos G, Landberg G. Retinoblastoma protein in human renal cell carcinoma in relation to alterations in G1/S regulatory proteins. Int J Cancer. 2004;109(2):189–93. https://doi.org/10.1002/ijc.11665.

    Article  CAS  PubMed  Google Scholar 

  76. Maruschke M, Thur S, Kundt G, Nizze H, Hakenberg OW. Immunohistochemical expression of retinoblastoma protein and p16 in renal cell carcinoma. Urol Int. 2011;86(1):60–7. https://doi.org/10.1159/000320510.

    Article  CAS  PubMed  Google Scholar 

  77. Kwapisz D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res Treat. 2017;166(1):41–54. https://doi.org/10.1007/s10549-017-4385-3.

    Article  CAS  PubMed  Google Scholar 

  78. Karim S, Al-Maghrabi JA, Farsi HMA, et al. Cyclin D1 as a therapeutic target of renal cell carcinoma—a combined transcriptomics, tissue microarray and molecular docking study from the Kingdom of Saudi Arabia. BMC Cancer. 2016;16(Suppl 2):741. https://doi.org/10.1186/s12885-016-2775-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hedberg Y, Davoodi E, Roos G, Ljungberg B, Landberg G. Cyclin-D1 expression in human renal-cell carcinoma. Int J Cancer. 1999;84(3):268–72. https://doi.org/10.1002/(SICI)1097-0215(19990621)84:3<268::AID-IJC12>3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  80. Baba M, Hirai S, Yamada-Okabe H, et al. Loss of von Hippel-Lindau protein causes cell density dependent deregulation of CyclinD1 expression through hypoxia-inducible factor. Oncogene. 2003;22(18):2728–38. https://doi.org/10.1038/sj.onc.1206373.

    Article  CAS  PubMed  Google Scholar 

  81. Bindra RS, Vasselli JR, Stearman R, Linehan WM, Klausner RD. VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. Cancer Res. 2002;62(11):3014–9.

    CAS  PubMed  Google Scholar 

  82. Small J, Washburn E, Millington K, Zhu J, Holder SL. The addition of abemaciclib to sunitinib induces regression of renal cell carcinoma xenograft tumors. Oncotarget. 2017;8(56):95116–34. https://doi.org/10.18632/oncotarget.19618.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Joosten SC, Smits KM, Aarts MJ, et al. Epigenetics in renal cell cancer: mechanisms and clinical applications. Nat Rev Urol. 2018;15(7):430–51. https://doi.org/10.1038/s41585-018-0023-z.

    Article  CAS  PubMed  Google Scholar 

  84. Li Q, Zhang Z, Fan Y, Zhang Q. Epigenetic alterations in renal cell cancer with TKIs resistance: from mechanisms to clinical applications. Front Genet. 2021;11:562868. https://www.frontiersin.org/article/10.3389/fgene.2020.562868. Accessed 23 Jan 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ramakrishnan S, Pili R. Histone deacetylase inhibitors and epigenetic modifications as a novel strategy in renal cell carcinoma. Cancer J. 2013;19(4):333–40. https://doi.org/10.1097/PPO.0b013e3182a09e07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kiweler N, Brill B, Wirth M, et al. The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch Toxicol. 2018;92(7):2227–43. https://doi.org/10.1007/s00204-018-2229-5.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang C, Yang C, Feldman MJ, et al. Vorinostat suppresses hypoxia signaling by modulating nuclear translocation of hypoxia inducible factor 1 alpha. Oncotarget. 2017;8(34):56110–25. https://doi.org/10.18632/oncotarget.18125.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pili R, Liu G, Chintala S, et al. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: a multicentre, single-arm phase I/II clinical trial. Br J Cancer. 2017;116(7):874–83. https://doi.org/10.1038/bjc.2017.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ngamphaiboon N, Dy GK, Ma WW, et al. A phase I study of the histone deacetylase (HDAC) inhibitor entinostat, in combination with sorafenib in patients with advanced solid tumors. Invest New Drugs. 2015;33(1):225–32. https://doi.org/10.1007/s10637-014-0174-6.

    Article  CAS  PubMed  Google Scholar 

  90. Zibelman M, Wong YN, Devarajan K, et al. Phase I study of the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat in advanced renal cell carcinoma and other solid tumors. Invest New Drugs. 2015;33(5):1040–7. https://doi.org/10.1007/s10637-015-0261-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Molina AM, van der Mijn JC, Christos P, et al. NCI 6896: a phase I trial of vorinostat (SAHA) and isotretinoin (13-cis retinoic acid) in the treatment of patients with advanced renal cell carcinoma. Invest New Drugs. 2020;38(5):1383–9. https://doi.org/10.1007/s10637-019-00880-7.

    Article  CAS  PubMed  Google Scholar 

  92. Aggarwal R, Thomas S, Pawlowska N, et al. Inhibiting histone deacetylase as a means to reverse resistance to angiogenesis inhibitors: phase I study of abexinostat plus pazopanib in advanced solid tumor malignancies. J Clin Oncol. 2017;35(11):1231–9. https://doi.org/10.1200/JCO.2016.70.5350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shorstova T, Foulkes WD, Witcher M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br J Cancer. 2021;124(9):1478–90. https://doi.org/10.1038/s41416-021-01321-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol. 2017;28(8):1776–87. https://doi.org/10.1093/annonc/mdx157.

    Article  CAS  PubMed  Google Scholar 

  95. Wu X, Liu D, Gao X, et al. Inhibition of BRD4 suppresses cell proliferation and induces apoptosis in renal cell carcinoma. CPB. 2017;41(5):1947–56. https://doi.org/10.1159/000472407.

    Article  CAS  Google Scholar 

  96. Lu J, Qian C, Ji Y, Bao Q, Lu B. Gene signature associated with bromodomain genes predicts the prognosis of kidney renal clear cell carcinoma. Front Genet. 2021;12:643935. https://www.frontiersin.org/article/10.3389/fgene.2021.643935. Accessed 11 Apr 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen W, Zhang H, Chen Z, et al. Development and evaluation of a novel series of nitroxoline-derived BET inhibitors with antitumor activity in renal cell carcinoma. Oncogenesis. 2018;7(11):1–11. https://doi.org/10.1038/s41389-018-0093-z.

    Article  Google Scholar 

  98. Choueiri TK, Kaelin WG. Targeting the HIF2–VEGF axis in renal cell carcinoma. Nat Med. 2020;26(10):1519–30. https://doi.org/10.1038/s41591-020-1093-z.

    Article  CAS  PubMed  Google Scholar 

  99. Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH. Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. PNAS. 2009;106(2):450–5. https://doi.org/10.1073/pnas.0808092106.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rogers JL, Bayeh L, Scheuermann TH, et al. Development of inhibitors of the PAS-B domain of the HIF-2α transcription factor. J Med Chem. 2013;56(4):1739–47. https://doi.org/10.1021/jm301847z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Scheuermann TH, Li Q, Ma HW, et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat Chem Biol. 2013;9(4):271–6. https://doi.org/10.1038/nchembio.1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wehn PM, Rizzi JP, Dixon DD, et al. Design and activity of specific hypoxia-inducible factor-2α (HIF-2α) inhibitors for the treatment of clear cell renal cell carcinoma: discovery of clinical candidate (S)-3-((2,2-difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (PT2385). J Med Chem. 2018;61(21):9691–721. https://doi.org/10.1021/acs.jmedchem.8b01196.

    Article  CAS  PubMed  Google Scholar 

  103. Courtney KD, Infante JR, Lam ET, et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol. 2018;36(9):867–74. https://doi.org/10.1200/JCO.2017.74.2627.

    Article  CAS  PubMed  Google Scholar 

  104. Rini BI, Appleman LJ, Figlin RA, et al. Results from a phase I expansion cohort of the first-in-class oral HIF-2α inhibitor PT2385 in combination with nivolumab in patients with previously treated advanced RCC. JCO. 2019;37(7 Suppl):558. https://doi.org/10.1200/JCO.2019.37.7_suppl.558.

    Article  Google Scholar 

  105. Xu R, Wang K, Rizzi JP, et al. 3-[(1S,2S,3R)-2,3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J Med Chem. 2019;62(15):6876–93. https://doi.org/10.1021/acs.jmedchem.9b00719.

    Article  CAS  PubMed  Google Scholar 

  106. Papadopoulos KP, Jonasch E, Zojwalla NJ, Wang K, Bauer TM. A first-in-human phase 1 dose-escalation trial of the oral HIF-2a inhibitor PT2977 in patients with advanced solid tumors. JCO. 2018;36(15 Suppl):2508. https://doi.org/10.1200/JCO.2018.36.15_suppl.2508.

    Article  Google Scholar 

  107. Choueiri TK, Plimack ER, Bauer TM, et al. Phase I/II study of the oral HIF-2 α inhibitor MK-6482 in patients with advanced clear cell renal cell carcinoma (RCC). JCO. 2020;38(6 Suppl):611. https://doi.org/10.1200/JCO.2020.38.6_suppl.611.

    Article  Google Scholar 

  108. Srinivasan R, Donskov F, Iliopoulos O, et al. Phase 2 study of belzutifan (MK-6482), an oral hypoxia-inducible factor 2α (HIF-2α) inhibitor, for Von Hippel-Lindau (VHL) disease-associated clear cell renal cell carcinoma (ccRCC). JCO. 2021;39(15 Suppl):4555. https://doi.org/10.1200/JCO.2021.39.15_suppl.4555.

    Article  Google Scholar 

  109. Wong SC, Cheng W, Hamilton H, et al. HIF2α-targeted RNAi therapeutic inhibits clear cell renal cell carcinoma. Mol Cancer Ther. 2018;17(1):140–9. https://doi.org/10.1158/1535-7163.MCT-17-0471.

    Article  CAS  PubMed  Google Scholar 

  110. Brugarolas J, Beckermann K, Rini BI, et al. Initial results from the phase 1 study of ARO-HIF2 to silence HIF2-alpha in patients with advanced ccRCC (AROHIF21001). JCO. 2022;40(6 Suppl):339. https://doi.org/10.1200/JCO.2022.40.6_suppl.339.

    Article  Google Scholar 

  111. Kushal S, Lao BB, Henchey LK, et al. Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. PNAS. 2013;110(39):15602–7. https://doi.org/10.1073/pnas.1312473110.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Xiao Y, Zhao H, Tian L, et al. S100A10 is a critical mediator of GAS6/AXL-induced angiogenesis in renal cell carcinoma. Cancer Res. 2019;79(22):5758–68. https://doi.org/10.1158/0008-5472.CAN-19-1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fuh KC, Bookman MA, Liu JF, et al. Phase 1b study of AVB-500 in combination with paclitaxel or pegylated liposomal doxorubicin platinum-resistant recurrent ovarian cancer. Gynecol Oncol. 2021;163(2):254–61. https://doi.org/10.1016/j.ygyno.2021.08.020.

    Article  CAS  PubMed  Google Scholar 

  114. Beckermann K, Vogelzang N, Shifeng M, et al. 424 A phase 1b/2 randomized study of AVB-S6–500 in combination with cabozantinib versus cabozantinib alone in patients with advanced clear cell renal cell carcinoma who have received front-line treatment. J Immunother Cancer. 2021;9(Suppl 2). https://doi.org/10.1136/jitc-2021-SITC2021.424.

  115. Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–49. https://doi.org/10.1182/blood-2013-06-507947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhuang J, Tu X, Cao K, et al. The expression and role of tyrosine kinase ETK/BMX in renal cell carcinoma. J Exp Clin Cancer Res. 2014;33(1):25. https://doi.org/10.1186/1756-9966-33-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–86. https://doi.org/10.1158/2159-8290.CD-18-0367.

    Article  PubMed  Google Scholar 

  118. Parikh M, Tenold ME, Qi L, et al. Phase Ib/II trial of ibrutinib and nivolumab in patients with advanced refractory renal cell carcinoma. Kidney Cancer. 2021;5(4):181–7. https://doi.org/10.3233/KCA-210128.

    Article  CAS  Google Scholar 

  119. Suzuki H, Nagase S, Saito C, et al. 10P DS-6000a, a novel CDH6-targeting antibody-drug conjugate with a novel DNA topoisomerase I inhibitor DXd, demonstrates potent antitumor activity in preclinical models. Ann Oncol. 2021;32:S363–4. https://doi.org/10.1016/j.annonc.2021.08.288.

    Article  Google Scholar 

  120. Hamilton EP, Jauhari S, Moore KN, et al. Phase I, two-part, multicenter, first-in-human (FIH) study of DS-6000a in subjects with advanced renal cell carcinoma (RCC) and ovarian tumors (OVC). JCO. 2022;40(16 Suppl):3002. https://doi.org/10.1200/JCO.2022.40.16_suppl.3002.

    Article  Google Scholar 

  121. Hoerner CR, Chen VJ, Fan AC. The ‘Achilles Heel’ of metabolism in renal cell carcinoma: glutaminase inhibition as a rational treatment strategy. Kidney Cancer. 2019;3(1):15–29. https://doi.org/10.3233/KCA-180043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Emberley E, Pan A, Chen J, et al. The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma. PLoS One. 2021;16(11):e0259241. https://doi.org/10.1371/journal.pone.0259241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Meric-Bernstam F, Lee RJ, Carthon BC, et al. CB-839, a glutaminase inhibitor, in combination with cabozantinib in patients with clear cell and papillary metastatic renal cell cancer (mRCC): results of a phase I study. JCO. 2019;37(7 Suppl):549. https://doi.org/10.1200/JCO.2019.37.7_suppl.549.

    Article  Google Scholar 

  124. Tannir NM, Agarwal N, Porta C, et al. CANTATA: primary analysis of a global, randomized, placebo (Pbo)-controlled, double-blind trial of telaglenastat (CB-839) + cabozantinib versus Pbo + cabozantinib in advanced/metastatic renal cell carcinoma (mRCC) patients (pts) who progressed on immune checkpoint inhibitor (ICI) or anti-angiogenic therapies. JCO. 2021;39(15 Suppl):4501. https://doi.org/10.1200/JCO.2021.39.15_suppl.4501.

    Article  Google Scholar 

  125. Prendergast GC, Mondal A, Dey S, Laury-Kleintop L, Muller AJ. Inflammatory reprogramming with IDO1 inhibitors: turning immunologically unresponsive ‘cold’ tumors ‘hot’. Trends Cancer. 2018;4(1):38–58. https://doi.org/10.1016/j.trecan.2017.11.005.

    Article  CAS  PubMed  Google Scholar 

  126. Théate I, van Baren N, Pilotte L, et al. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues. Cancer Immunol Res. 2015;3(2):161–72. https://doi.org/10.1158/2326-6066.CIR-14-0137.

    Article  CAS  PubMed  Google Scholar 

  127. Okamoto A, Nikaido T, Ochiai K, et al. Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res. 2005;11(16):6030–9. https://doi.org/10.1158/1078-0432.CCR-04-2671.

    Article  CAS  PubMed  Google Scholar 

  128. Liu X, Shin N, Koblish HK, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010;115(17):3520–30. https://doi.org/10.1182/blood-2009-09-246124.

    Article  CAS  PubMed  Google Scholar 

  129. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer. 2014;2:3. https://doi.org/10.1186/2051-1426-2-3.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lara P, Bauer TM, Hamid O, et al. Epacadostat plus pembrolizumab in patients with advanced RCC: preliminary phase I/II results from ECHO-202/KEYNOTE-037. JCO. 2017;35(15 Suppl):4515. https://doi.org/10.1200/JCO.2017.35.15_suppl.4515.

    Article  Google Scholar 

  131. Mitchell TC, Hamid O, Smith DC, et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J Clin Oncol. 2018;36(32):3223–30. https://doi.org/10.1200/JCO.2018.78.9602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ren C, Shi H, Jiang J, et al. The effect of CM082, an oral tyrosine kinase inhibitor, on experimental choroidal neovascularization in rats. J Ophthalmol. 2017;2017:e6145651. https://doi.org/10.1155/2017/6145651.

    Article  CAS  Google Scholar 

  133. Moore KN, Jones SF, Kurkjian C, et al. Phase I, first-in-human trial of an oral VEGFR tyrosine kinase inhibitor (TKI) x-82 in patients (pts) with advanced solid tumors. JCO. 2012;30(15 Suppl):3041. https://doi.org/10.1200/jco.2012.30.15_suppl.3041.

    Article  Google Scholar 

  134. Liang C, Yuan X, Shen Z, Wang Y, Ding L. Vorolanib, a novel tyrosine receptor kinase receptor inhibitor with potent preclinical anti-angiogenic and anti-tumor activity. Mol Ther Oncolytics. 2022;24:577–84. https://doi.org/10.1016/j.omto.2022.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sheng X, Yan X, Chi Z, et al. Phase 1 trial of vorolanib (CM082) in combination with everolimus in patients with advanced clear-cell renal cell carcinoma. eBioMedicine. 2020;55:102755. https://doi.org/10.1016/j.ebiom.2020.102755.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Hsu J, Chong C, Serrill J, et al. Abstract P248: The tyrosine kinase inhibitor XL092 promotes an immune-permissive tumor microenvironment and enhances the anti-tumor activity of immune checkpoint inhibitors in preclinical models. Mol Cancer Ther. 2021;20(12 Suppl):P248. https://doi.org/10.1158/1535-7163.TARG-21-P248.

    Article  Google Scholar 

  137. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71. https://doi.org/10.1146/annurev-immunol-031210-101324.

    Article  CAS  PubMed  Google Scholar 

  138. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7. https://doi.org/10.1073/pnas.192461099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30(8):660–9. https://doi.org/10.1038/s41422-020-0343-4.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin Immunol. 2019;42:101305. https://doi.org/10.1016/j.smim.2019.101305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–13. https://doi.org/10.1016/j.immuni.2004.08.010.

    Article  CAS  PubMed  Google Scholar 

  142. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78. https://doi.org/10.1007/82_2010_114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–9. https://doi.org/10.1038/ni.2035.

    Article  CAS  PubMed  Google Scholar 

  144. Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4):917–27. https://doi.org/10.1158/0008-5472.CAN-11-1620.

    Article  CAS  PubMed  Google Scholar 

  145. Zelba H, Bedke J, Hennenlotter J, et al. PD-1 and LAG-3 dominate checkpoint receptor–mediated T-cell inhibition in renal cell carcinoma. Cancer Immunol Res. 2019;7(11):1891–9. https://doi.org/10.1158/2326-6066.CIR-19-0146.

    Article  CAS  PubMed  Google Scholar 

  146. Giraldo NA, Becht E, Pagès F, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res. 2015;21(13):3031–40. https://doi.org/10.1158/1078-0432.CCR-14-2926.

    Article  CAS  PubMed  Google Scholar 

  147. Brignone C, Escudier B, Grygar C, Marcu M, Triebel F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res. 2009;15(19):6225–31. https://doi.org/10.1158/1078-0432.CCR-09-0068.

    Article  CAS  PubMed  Google Scholar 

  148. Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34. https://doi.org/10.1056/NEJMoa2109970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004. https://doi.org/10.1016/j.immuni.2016.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111. https://doi.org/10.1111/imr.12520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cai C, Xu YF, Wu ZJ, et al. Tim-3 expression represents dysfunctional tumor infiltrating T cells in renal cell carcinoma. World J Urol. 2016;34(4):561–7. https://doi.org/10.1007/s00345-015-1656-7.

    Article  CAS  PubMed  Google Scholar 

  152. Komohara Y, Morita T, Annan DA, et al. The coordinated actions of TIM-3 on cancer and myeloid cells in the regulation of tumorigenicity and clinical prognosis in clear cell renal cell carcinomas. Cancer Immunol Res. 2015;3(9):999–1007. https://doi.org/10.1158/2326-6066.CIR-14-0156.

    Article  CAS  PubMed  Google Scholar 

  153. Granier C, Dariane C, Combe P, et al. Tim-3 expression on tumor-infiltrating PD-1+CD8+ T cells correlates with poor clinical outcome in renal cell carcinoma. Cancer Res. 2017;77(5):1075–82. https://doi.org/10.1158/0008-5472.CAN-16-0274.

    Article  CAS  PubMed  Google Scholar 

  154. Kato R, Jinnouchi N, Tuyukubo T, et al. TIM3 expression on tumor cells predicts response to anti-PD-1 therapy for renal cancer. Transl Oncol. 2021;14(1):100918. https://doi.org/10.1016/j.tranon.2020.100918.

    Article  CAS  PubMed  Google Scholar 

  155. Curigliano G, Gelderblom H, Mach N, et al. Abstract CT183: phase (Ph) I/II study of MBG453± spartalizumab (PDR001) in patients (pts) with advanced malignancies. Cancer Res. 2019;79(13 Suppl):CT183. https://doi.org/10.1158/1538-7445.AM2019-CT183.

    Article  Google Scholar 

  156. Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers (Basel). 2019;11(11):1756. https://doi.org/10.3390/cancers11111756.

    Article  CAS  PubMed  Google Scholar 

  157. Rodriguez-Abreu D, Johnson ML, Hussein MA, et al. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). JCO. 2020;38(15 Suppl):9503. https://doi.org/10.1200/JCO.2020.38.15_suppl.9503.

    Article  Google Scholar 

  158. Phase Ia/Ib dose-escalation study of the anti-TIGIT antibody tiragolumab as a single agent and in combination with atezolizumab in patients with advanced solid tumors. https://www.abstractsonline.com/pp8/#!/9045/presentation/11341. Accessed 1 Feb 2022.

  159. Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci U S A. 1989;86(6):1963–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131(1):49–57. https://doi.org/10.1182/blood-2017-06-741041.

    Article  CAS  PubMed  Google Scholar 

  161. Palazón A, Martínez-Forero I, Teijeira A, et al. The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov. 2012;2(7):608–23. https://doi.org/10.1158/2159-8290.CD-11-0314.

    Article  CAS  PubMed  Google Scholar 

  162. Tolcher AW, Sznol M, Hu-Lieskovan S, et al. Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res. 2017;23(18):5349–57. https://doi.org/10.1158/1078-0432.CCR-17-1243.

    Article  CAS  PubMed  Google Scholar 

  163. Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood. 2018;131(1):39–48. https://doi.org/10.1182/blood-2017-07-741025.

    Article  CAS  PubMed  Google Scholar 

  164. Alves Costa Silva C, Facchinetti F, Routy B, Derosa L. New pathways in immune stimulation: targeting OX40. ESMO Open. 2020;5(1):e000573. https://doi.org/10.1136/esmoopen-2019-000573.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Diab A, Hamid O, Thompson JA, et al. A phase I, open-label, dose-escalation study of the OX40 agonist ivuxolimab in patients with locally advanced or metastatic cancers. Clin Cancer Res. 2022;28(1):71–83. https://doi.org/10.1158/1078-0432.CCR-21-0845.

    Article  CAS  PubMed  Google Scholar 

  166. Sharma M, Khong H, Fa’ak F, et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat Commun. 2020;11(1):661. https://doi.org/10.1038/s41467-020-14471-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang X, Rickert M, Garcia KC. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science. 2005;310(5751):1159–63. https://doi.org/10.1126/science.1117893.

    Article  CAS  PubMed  Google Scholar 

  168. Charych DH, Hoch U, Langowski JL, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. 2016;22(3):680–90. https://doi.org/10.1158/1078-0432.CCR-15-1631.

    Article  CAS  PubMed  Google Scholar 

  169. Charych D, Khalili S, Dixit V, et al. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS One. 2017;12(7):e0179431. https://doi.org/10.1371/journal.pone.0179431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Diab A, Tannir NM, Bentebibel SE, et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. 2020;10(8):1158–73. https://doi.org/10.1158/2159-8290.CD-19-1510.

    Article  CAS  PubMed  Google Scholar 

  171. Tannir N, Formiga MN, Agarwal N, et al. LBA68 bempegaldesleukin (BEMPEG) plus nivolumab (NIVO) compared to the investigator’s choice of sunitinib or cabozantinib in previously untreated advanced renal cell carcinoma (RCC): results from a phase III randomized study (PIVOT-09). Ann Oncol. 2022;33:S1433. https://doi.org/10.1016/j.annonc.2022.08.073.

    Article  Google Scholar 

  172. Boni V, Winer IS, Gilbert L, et al. ARTISTRY-1: nemvaleukin alfa monotherapy and in combination with pembrolizumab in patients (pts) with advanced solid tumors. JCO. 2021;39(15 Suppl):2513. https://doi.org/10.1200/JCO.2021.39.15_suppl.2513.

    Article  Google Scholar 

  173. McDermott DF, Vaishampayan U, Matrana M, et al. Safety and efficacy of the oral CXCR4 inhibitor X4P-001 + axitinib in advanced renal cell carcinoma patients: an analysis of subgroup responses by prior treatment. Ann Oncol. 2019;30:v482–3. https://doi.org/10.1093/annonc/mdz253.012.

    Article  Google Scholar 

  174. Choueiri TK, Atkins MB, Rose TL, et al. A phase 1b trial of the CXCR4 inhibitor mavorixafor and nivolumab in advanced renal cell carcinoma patients with no prior response to nivolumab monotherapy. Invest New Drugs. 2021;39(4):1019–27. https://doi.org/10.1007/s10637-020-01058-2.

    Article  CAS  PubMed  Google Scholar 

  175. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461(7265):788–92. https://doi.org/10.1038/nature08476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sokolowska O, Nowis D. STING signaling in cancer cells: important or not? Arch Immunol Ther Exp. 2018;66(2):125–32. https://doi.org/10.1007/s00005-017-0481-7.

    Article  CAS  Google Scholar 

  177. Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J Immunol. 2014;193(12):6124–34. https://doi.org/10.4049/jimmunol.1401869.

    Article  CAS  PubMed  Google Scholar 

  178. Harrington KJ, Brody J, Ingham M, et al. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann Oncol. 2018;29:viii712. https://doi.org/10.1093/annonc/mdy424.015.

    Article  Google Scholar 

  179. Gessi S, Varani K, Merighi S, et al. A(3) adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. Mol Pharmacol. 2002;61(2):415–24. https://doi.org/10.1124/mol.61.2.415.

    Article  CAS  PubMed  Google Scholar 

  180. MacKenzie WM, Hoskin DW, Blay J. Adenosine suppresses alpha(4)beta(7) integrin-mediated adhesion of T lymphocytes to colon adenocarcinoma cells. Exp Cell Res. 2002;276(1):90–100. https://doi.org/10.1006/excr.2002.5514.

    Article  CAS  PubMed  Google Scholar 

  181. Antonioli L, Blandizzi C, Pacher P, Haskó G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer. 2013;13(12):842–57. https://doi.org/10.1038/nrc3613.

    Article  CAS  PubMed  Google Scholar 

  182. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev. 2017;276(1):121–44. https://doi.org/10.1111/imr.12528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer. 2018;6(1):57. https://doi.org/10.1186/s40425-018-0360-8.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Giannakis M, Li H, Jin C, et al. Metabolomic correlates of response in nivolumab-treated renal cell carcinoma and melanoma patients. JCO. 2017;35(15 Suppl):3036. https://doi.org/10.1200/JCO.2017.35.15_suppl.3036.

    Article  Google Scholar 

  185. Yi Y, Zhou Y, Chu X, et al. Blockade of adenosine A2b receptor reduces tumor growth and migration in renal cell carcinoma. J Cancer. 2020;11(2):421–31. https://doi.org/10.7150/jca.31245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Fong L, Hotson A, Powderly JD, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 2020;10(1):40–53. https://doi.org/10.1158/2159-8290.CD-19-0980.

    Article  CAS  PubMed  Google Scholar 

  187. Willingham SB, Ho PY, Hotson A, et al. A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L)1 and anti-CTLA-4 in preclinical models. Cancer Immunol Res. 2018;6(10):1136–49. https://doi.org/10.1158/2326-6066.CIR-18-0056.

    Article  CAS  PubMed  Google Scholar 

  188. Leone RD, Sun IM, Oh MH, et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother. 2018;67(8):1271–84. https://doi.org/10.1007/s00262-018-2186-0.

    Article  CAS  PubMed  Google Scholar 

  189. Fabbi M, Carbotti G, Ferrini S. Dual roles of IL-27 in cancer biology and immunotherapy. Mediators Inflamm. 2017;2017:3958069. https://doi.org/10.1155/2017/3958069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity. 2002;16(6):779–90. https://doi.org/10.1016/s1074-7613(02)00324-2.

    Article  CAS  PubMed  Google Scholar 

  191. Pflanz S, Hibbert L, Mattson J, et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol. 2004;172(4):2225–31. https://doi.org/10.4049/jimmunol.172.4.2225.

    Article  CAS  PubMed  Google Scholar 

  192. Rausch M, Hua J, Moodley D, et al. Abstract 4550: Increased IL-27 is associated with poor prognosis in renal cell carcinoma and supports use of SRF388, a first-in-class IL-27p28 blocking antibody, to counteract IL-27-mediated immunosuppression in this setting. Cancer Res. 2020;80(16 Suppl):4550. https://doi.org/10.1158/1538-7445.AM2020-4550.

    Article  Google Scholar 

  193. Massagué J. TGFbeta in cancer. Cell. 2008;134(2):215–30. https://doi.org/10.1016/j.cell.2008.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Morris JC, Tan AR, Olencki TE, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014;9(3):e90353. https://doi.org/10.1371/journal.pone.0090353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Schwaab T, Ernstoff MS. Therapeutic vaccines in renal cell carcinoma. Therapy. 2011;4(8):369–77. https://doi.org/10.2217/thy.11.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sönmez MG, Sönmez LÖ. New treatment modalities with vaccine therapy in renal cell carcinoma. Urol Ann. 2019;11(2):119–25. https://doi.org/10.4103/UA.UA_166_17.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Walter S, Weinschenk T, Stenzl A, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18(8):1254–61. https://doi.org/10.1038/nm.2883.

    Article  CAS  PubMed  Google Scholar 

  198. Rini BI, Stenzl A, Zdrojowy R, et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17(11):1599–611. https://doi.org/10.1016/S1470-2045(16)30408-9.

    Article  CAS  PubMed  Google Scholar 

  199. Figlin RA, Tannir NM, Uzzo RG, et al. Results of the ADAPT phase 3 study of rocapuldencel-t in combination with sunitinib as first-line therapy in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2020;26(10):2327–36. https://doi.org/10.1158/1078-0432.CCR-19-2427.

    Article  CAS  PubMed  Google Scholar 

  200. Sarkizova S, Klaeger S, Le PM, et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol. 2020;38(2):199–209. https://doi.org/10.1038/s41587-019-0322-9.

    Article  CAS  PubMed  Google Scholar 

  201. Attermann AS, Bjerregaard AM, Saini SK, Grønbæk K, Hadrup SR. Human endogenous retroviruses and their implication for immunotherapeutics of cancer. Ann Oncol. 2018;29(11):2183–91. https://doi.org/10.1093/annonc/mdy413.

    Article  CAS  PubMed  Google Scholar 

  202. de Cubas AA, Dunker W, Zaninovich A, et al. DNA hypomethylation promotes transposable element expression and activation of immune signaling in renal cell cancer. JCI Insight. 2020;5(11):e137569. https://doi.org/10.1172/jci.insight.137569.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Martin NT, Bell JC. Oncolytic virus combination therapy: killing one bird with two stones. Mol Ther. 2018;26(6):1414–22. https://doi.org/10.1016/j.ymthe.2018.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Oh CM, Chon HJ, Kim C. Combination immunotherapy using oncolytic virus for the treatment of advanced solid tumors. Int J Mol Sci. 2020;21(20):E7743. https://doi.org/10.3390/ijms21207743.

    Article  CAS  Google Scholar 

  205. Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother. 2018;14(4):839–46. https://doi.org/10.1080/21645515.2017.1412896.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Parato KA, Breitbach CJ, Le Boeuf F, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012;20(4):749–58. https://doi.org/10.1038/mt.2011.276.

    Article  CAS  PubMed  Google Scholar 

  207. Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329–36. https://doi.org/10.1038/nm.3089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Park JS, Lee ME, Jang WS, et al. Systemic injection of oncolytic vaccinia virus suppresses primary tumor growth and lung metastasis in metastatic renal cell carcinoma by remodeling tumor microenvironment. Biomedicines. 2022;10(1):173. https://doi.org/10.3390/biomedicines10010173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202. https://doi.org/10.1038/nrd.2016.199.

    Article  CAS  PubMed  Google Scholar 

  210. Fang X, Tan W. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res. 2010;43(1):48–57. https://doi.org/10.1021/ar900101s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Rosenberg JE, Bambury R, Drabkin HA, et al. A phase II trial of the nucleolin-targeted DNA aptamer AS1411 in metastatic refractory renal cell carcinoma. Invest New Drugs. 2014;32(1):178–87. https://doi.org/10.1007/s10637-013-0045-6.

    Article  CAS  PubMed  Google Scholar 

  212. Zhang H, Wang Z, Xie L, et al. Molecular recognition and in-vitro-targeted inhibition of renal cell carcinoma using a DNA aptamer. Mol Ther Nucleic Acids. 2018;12:758–68. https://doi.org/10.1016/j.omtn.2018.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Leibovich BC, Sheinin Y, Lohse CM, et al. Carbonic anhydrase IX is not an independent predictor of outcome for patients with clear cell renal cell carcinoma. J Clin Oncol. 2007;25(30):4757–64. https://doi.org/10.1200/JCO.2007.12.1087.

    Article  PubMed  Google Scholar 

  214. Ivanov SV, Kuzmin I, Wei MH, et al. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci. 1998;95(21):12596–601. https://doi.org/10.1073/pnas.95.21.12596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, et al. Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer. 1986;38(4):489–94. https://doi.org/10.1002/ijc.2910380406.

    Article  CAS  PubMed  Google Scholar 

  216. Divgi CR, Uzzo RG, Gatsonis C, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT Trial. JCO. 2013;31(2):187–94. https://doi.org/10.1200/JCO.2011.41.2445.

    Article  Google Scholar 

  217. Hekman MCH, Rijpkema M, Aarntzen EH, et al. Positron emission tomography/computed tomography with 89Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur Urol. 2018;74(3):257–60. https://doi.org/10.1016/j.eururo.2018.04.026.

    Article  PubMed  Google Scholar 

  218. Merkx RIJ, Lobeek D, Konijnenberg M, et al. Phase I study to assess safety, biodistribution and radiation dosimetry for 89Zr-girentuximab in patients with renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2021;48(10):3277–85. https://doi.org/10.1007/s00259-021-05271-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Muselaers CHJ, Boerman OC, Oosterwijk E, Langenhuijsen JF, Oyen WJG, Mulders PFA. Indium-111-labeled girentuximab immunoSPECT as a diagnostic tool in clear cell renal cell carcinoma. Eur Urol. 2013;63(6):1101–6. https://doi.org/10.1016/j.eururo.2013.02.022.

    Article  CAS  PubMed  Google Scholar 

  220. Chamie K, Donin NM, Klöpfer P, et al. Adjuvant weekly girentuximab following nephrectomy for high-risk renal cell carcinoma. JAMA Oncol. 2017;3(7):913–20. https://doi.org/10.1001/jamaoncol.2016.4419.

    Article  PubMed  Google Scholar 

  221. Muselaers CHJ, Boers-Sonderen MJ, van Oostenbrugge TJ, et al. Phase 2 study of lutetium 177–labeled anti–carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol. 2016;69(5):767–70. https://doi.org/10.1016/j.eururo.2015.11.033.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kilari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thapa, B., Nelson, A., Kilari, D. (2023). Novel Targets in Development for Advanced Renal Cell Carcinoma. In: McKay, R.R., Singer, E.A. (eds) Integrating Multidisciplinary Treatment for Advanced Renal Cell Carcinoma. Springer, Cham. https://doi.org/10.1007/978-3-031-40901-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40901-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40900-4

  • Online ISBN: 978-3-031-40901-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics