Skip to main content

Advertisement

Log in

A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma

  • PHASE II STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background DNA aptamers represent a novel strategy in anti-cancer medicine. AS1411, a DNA aptamer targeting nucleolin (a protein which is overexpressed in many tumor types), was evaluated in patients with metastatic, clear-cell, renal cell carcinoma (RCC) who had failed treatment with ≥1 prior tyrosine kinase inhibitor. Methods In this phase II, single-arm study, AS1411 was administered at 40 mg/kg/day by continuous intravenous infusion on days 1–4 of a 28-day cycle, for two cycles. Primary endpoint was overall response rate; progression-free survival (PFS) and safety were secondary endpoints. Results 35 patients were enrolled and treated. One patient (2.9 %) had a response to treatment. The response was dramatic (84 % reduction in tumor burden by RECIST 1.0 criteria) and durable (patient remains free of progression 2 years after completing therapy). Whole exome sequencing of this patient’s tumor revealed missense mutations in the mTOR and FGFR2 genes which is of interest because nucleolin is known to upregulate mTOR pathway activity by enhancing AKT1 mRNA translation. No other responses were seen. Thirty-four percent of patients had an AS1411-related adverse event, all of which were mild or moderate. Conclusions AS1411 appears to have minimal activity in unselected patients with metastatic RCC. However, rare, dramatic and durable responses can be observed and toxicity is low. One patient in this study had an excellent response and was found to have FGFR2 and mTOR mutations which will be of interest in future efforts to discover and validate predictive biomarkers of response to nucleolin targeted compounds. DNA aptamers represent a novel way to target cancer cells at a molecular level and continue to be developed with a view to improving treatment and imaging in cancer medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Motzer RJ, Hutson TE, Tomczak P et al (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27:3584–3590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  CAS  PubMed  Google Scholar 

  4. Escudier B, Pluzanska A, Koralewski P et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370:2103–2111

    Article  PubMed  Google Scholar 

  5. Hudes G, Carducci M, Tomczak P et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    Article  CAS  PubMed  Google Scholar 

  6. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  7. Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Esposito CL, Catuogno S, de Franciscis V, Cerchia L (2011) New insight into clinical development of nucleic acid aptamers. Discov Med 11:487–496

    PubMed  Google Scholar 

  9. Abdelmohsen K, Gorospe M (2012) RNA-binding protein nucleolin in disease. RNA Biol 9:799–808

    Google Scholar 

  10. Hovanessian AG, Soundaramourty C, El Khoury D, Nondier I, Svab J, Krust B (2010) Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS One 5:e15787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Xu Z, Joshi N, Agarwal A et al (2012) Knocking down nucleolin expression in gliomas inhibits tumor growth and induces cell cycle arrest. J Neurooncol 108:59–67

    Article  PubMed  Google Scholar 

  12. Chen W, Sridharan V, Soundararajan S et al (2007) Activity and mechanism of action of AS1411 in acute myeloid leukemia cells. Blood 110:1604

    Google Scholar 

  13. Xu X, Hamhouyia F, Thomas SD et al (2001) Inhibition of DNA replication and induction of S phase cell cycle arrest by G-rich oligonucleotides. J Biol Chem 276:43221–43230

    Article  CAS  PubMed  Google Scholar 

  14. Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ (2008) The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68:2358–2365

    Article  CAS  PubMed  Google Scholar 

  15. Miller DM, Laber DA, Bates PJ et al (2006) Extended phase I study of AS1411 in renal and non-small cell lung cancers. Ann Oncol 17(suppl 9):ix144–ix157, 450P

    Google Scholar 

  16. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  17. Fisher S, Barry A, Abreu J et al (2011) A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol 12:R1

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cibulskis K, Lawrence MS, Carter SL, et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219

    Google Scholar 

  19. Katoh M (2009) FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol 129:1861–1867

    Article  CAS  PubMed  Google Scholar 

  20. Hakimi AA, Pham CG, Hsieh JJ (2013) A clear picture of renal cell carcinoma. Nat Genet 45:849–850

    Article  CAS  PubMed  Google Scholar 

  21. Cancer Genome Atlas Research N (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49

    Article  Google Scholar 

  22. Abdelmohsen K, Gorospe M (2012) RNA-binding protein nucleolin in disease. RNA Biol 9:799–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Liu Z, Duan JH, Song YM et al (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Aravind A, Jeyamohan P, Nair R, et al (2012) AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng 109(11):2920–2931

    Google Scholar 

  25. Kim JK, Choi KJ, Lee M, Jo MH, Kim S (2012) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–217

    Article  CAS  PubMed  Google Scholar 

  26. Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kerr D (2012) Is oncology ready for 1000 rare diseases? In Medscape oncology. www.medscape.com. Accessed June 2012

Download references

Disclosure of potential conflicts of interest

Frederik Erlandsson – employee of Antisoma.

ClinicalTrials.gov identifier

NCT00740441

Grant support

This study was sponsored by Antisoma Research, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Rosenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, J.E., Bambury, R.M., Van Allen, E.M. et al. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs 32, 178–187 (2014). https://doi.org/10.1007/s10637-013-0045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-013-0045-6

Keywords

Navigation