Skip to main content

Melatonin and the Metabolism of Reactive Oxygen Species (ROS) in Higher Plants

  • Chapter
  • First Online:
Melatonin: Role in Plant Signaling, Growth and Stress Tolerance

Part of the book series: Plant in Challenging Environments ((PCE,volume 4))

  • 229 Accesses

Abstract

Melatonin, designated in plants as phytomelatonin, is a key biomolecule in both animal and plant cells. This is because, in addition to the detoxifying capacity melatonin has against different reactive oxygen species (ROS), it also has signaling properties that boost certain metabolic pathways and trigger both enzymatic and non-enzymatic antioxidant systems. This review aims to give a wide perspective of melatonin biosynthesis in plant cells and the relevance of this molecule to palliate certain environmental stresses, many of which have been accompanied by oxidative stress. Likewise, it evaluates the data which documents the beneficial effects of melatonin when it is applied exogenously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas F, Zhou Y, He J, Ke Y, Qin W, Yu R, Fan Y (2021) Metabolite and transcriptome profiling analysis revealed that melatonin positively regulates floral scent production in Hedychium coronarium. Front Plant Sci 12:808899

    Article  PubMed  PubMed Central  Google Scholar 

  • Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ (2023) Functions of melatonin during postharvest of horticultural crops. Plant Cell Physiol 63(12):1764–1786

    Article  PubMed  Google Scholar 

  • Ahammed GJ, Mao Q, Yan Y, Wu M, Wang Y, Ren J, Guo P, Liu A, Chen S (2020) Role of melatonin in arbuscular mycorrhizal fungi-induced resistance to fusarium wilt in cucumber. Phytopathology 110:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Su W, Kamran M, Ahmad I, Meng X, Wu X, Javed T, Han Q (2020) Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions. Protoplasma 257:1079–1092

    Article  CAS  PubMed  Google Scholar 

  • Alghamdi BS (2018) The neuroprotective role of melatonin in neurological disorders. J Neurosci Res 96:1136–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L, Livrea MA (2003) The chemistry of melatonin’s interaction with reactive species. J Pineal Res 34:1–10

    Article  CAS  PubMed  Google Scholar 

  • Arabia A, Munné-Bosch S, Muñoz P (2022) Melatonin triggers tissue-specific changes in anthocyanin and hormonal contents during postharvest decay of Angeleno plums. Plant Sci. 320:111287

    Article  CAS  PubMed  Google Scholar 

  • Aranda-Caño L, Sánchez-Calvo B, Begara-Morales JC, Chaki M, Mata-Pérez C, Padilla MN, Valderrama R, Barroso JB (2019) Post-translational modification of proteins mediated by nitro-fatty acids in plants: nitroalkylation. Plants (Basel) 8(4):82

    Article  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res 2:152–168

    Article  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019a) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2020) Melatonin in flowering, fruit set and fruit ripening. Plant Reprod 33:77–87

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2021) Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol 23:7–19

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Cano A, Hernandez-Ruiz J (2022) Phytomelatonin: an unexpected molecule with amazing performances in plants. J Exp Bot 73:5779–5800

    Article  PubMed  Google Scholar 

  • Axelrod J, Weissbach H (1960) Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 131:1312

    Article  CAS  PubMed  Google Scholar 

  • Back K (2021) Melatonin metabolism, signaling and possible roles in plants. Plant J 105:376–391

    Article  CAS  PubMed  Google Scholar 

  • Back K, Lee HY (2020) The phytomelatonin receptor (PMRT1) Arabidopsis Cand2 is not a bona fde G protein–coupled melatonin receptor. Melatonin Res 3:177–186

    Article  Google Scholar 

  • Back K, Hwang OJ, Lee K (2020) Rice N-acetylserotonin deacetylase regulates melatonin levels in transgenic rice. Melatonin Res 3:32–42

    Article  Google Scholar 

  • Back K, Tan DX, Reiter RJ (2021) Strategies to generate melatonin-enriched transgenic rice to respond to the adverse effects on rice production potentially caused by global warming. Melatonin Res 4:501–506

    Article  Google Scholar 

  • Blask DE, Dauchy RT, Sauer LA, Krause JA (2004) Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response to dietary melatonin: melatonin receptor-mediated inhibition of tumor linoleic acid metabolism to the growth signaling molecule 13-hydroxyoctadecadi¬enoic acid and the potential role of phytomelatonin. Carcinogenesis 25:951–960

    Article  CAS  PubMed  Google Scholar 

  • Blume C, Angerer M, Raml M, del Giudice R, Santhi N, Pichler G, Kunz AB, Scarpatetti M, Trinka E, Schabus M (2019) Healthier rhythm, healthier brain? Integrity of circadian melatonin and temperature rhythms relates to the clinical state of brain-injured patients. Eur J Neurol 26:1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101

    Article  CAS  Google Scholar 

  • Byeon Y, Back K (2015) Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). J Pineal Res 58:343–351

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Park S, Lee HY, Kim YS, Back K (2014a) Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase. J Pineal Res 56:275–282

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Back K (2014b) Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. J Pineal Res 57:219–227

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Choi GH, Lee HY, Back K (2015a) Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice. J Exp Bot 66:6917–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byeon Y, Tan DX, Reiter RJ, Back K (2015b) Predominance of 2-hydroxymelatonin over melatonin in plants. J Pineal Res 59:448–454

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Hwang OJ, Lee HJ, Lee K, Back K (2015c) Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. J Pineal Res 58:470–478

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Back K (2016) Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa). J Pineal Res 61:198–207

    Article  CAS  PubMed  Google Scholar 

  • Cardinali D, Brown G, Pandi-Perumal SR (2020) Can melatonin be a potential ‘Silver Bullet’ in treating COVID-19 patients? Diseases 8:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Vico A, Lardone P, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero J (2013) Melatonin: buffering the immune system. Int J Mol Sci 14(4):8638–8683

    Article  PubMed  PubMed Central  Google Scholar 

  • Champney TH, Holtorf AP, Steger RW, Reiter RJ (1984) Concurrent determination of enzymatic activities and substrate concentrations in the melatonin synthetic pathway within the same rat pineal gland. J Neurosci Res 11:59–66

    Article  CAS  PubMed  Google Scholar 

  • Choi GH, Back K (2019a) Cyclic 3-hydroxymelatonin exhibits diurnal rhythm and cyclic 3-hydroxymelatonin overproduction increases secondary tillers in rice by upregulating MOC1 expression. Melatonin Res 2:120–138

    Article  Google Scholar 

  • Choi GH, Back K (2019b) Suppression of melatonin 2-hydroxylase increases melatonin production leading to the enhanced abiotic stress tolerance against cadmium, senescence, salt, and tunicamycin in rice plants. Biomolecules 9:589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Alché JD, Barroso JB (2013) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Gupta DK, Palma JM (2015) Production sites of reactive oxygen species (ROS) in organelles from plant cells. In: Gupta DK, Palma JM, Corpas FJ (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer International Publishing, Cham, pp 1–22. https://doi.org/10.1007/978-3-319-20421-5_1

    Chapter  Google Scholar 

  • Corpas FJ, González-Gordo S, Palma JM (2020a) Nitric oxide: a radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 324:211–219

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, González-Gordo S, Palma JM (2020b) Plant Peroxisomes: a factory of reactive species. Front Plant Sci 11:853

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Gupta DK, Palma JM (2021) Tryptophan: a precursor of signaling molecules in higher plants. In: Hormones and plant response, Plant in challenging environments series 2. Springer Nature, pp 273–290

    Chapter  Google Scholar 

  • Corpas FJ, González-Gordo S, Palma JM (2022a) NO source in higher plants: present and future of an unresolved question. Trends Plant Sci 27(2):116–119

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, Muñoz-Vargas MA, Palma JM (2022b) Thiol-based oxidative posttranslational modifications (OxiPTMs) of plant proteins. Plant Cell Physiol 63(7):889–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Freschi L, Palma JM (2023) ROS metabolism and ripening of fleshy fruits. Adv Bot Res. https://doi.org/10.1016/bs.abr.2022.08.024

  • Dai L, Li J, Harmens H, Zheng X, Zhang C (2020) Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiol Biochem 149:86–95

    Article  CAS  PubMed  Google Scholar 

  • Debnath B, Hussain M, Irshad M, Mitra S, Li M, Liu S, Qiu D (2018) Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules 23:388

    Article  PubMed  PubMed Central  Google Scholar 

  • Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D (2019) Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci 20(5):1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  PubMed  Google Scholar 

  • del Río LA, Corpas FJ, López-Huertas E, Palma JM (2018) Plant superoxide dismutases: function under abiotic stress conditions. In: Antioxidants and antioxidant enzymes in higher plants. Springer International Publishing, Cham, pp 1–26. https://doi.org/10.1007/978-3-319-75088-0_1

    Chapter  Google Scholar 

  • Di Bella G, Mascia F, Gualano L, Di Bella L (2013) Melatonin anticancer effects: review. Int J Mol Sci 14:2410–2430

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding F, Ren L, Xie F, Wang M, Zhang S (2022) Jasmonate and melatonin act synergistically to potentiate cold tolerance in tomato plants. Front Plant Sci 12:763284

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong J, Kebbeh M, Yan R, Huan C, Jiang T, Zheng X (2021) Melatonin treatment delays ripening in mangoes associated with maintaining the membrane integrity of fruit exocarp during postharvest. Plant Physiol Biochem 169:22–28

    Article  CAS  PubMed  Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    Article  CAS  PubMed  Google Scholar 

  • Erdal S (2019) Melatonin promotes plant growth by maintaining integration and coordination between carbon and nitrogen metabolisms. Plant Cell Reports 38:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Fu X, Han L, Xu C, Liu C, Bi H, Ai X (2021) Nitric oxide functions as a downstream signal for melatonin-induced cold tolerance in cucumber seedlings. Front Plant Sci 12:686545

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Hanke G (2022) ROS production and signalling in chloroplasts: cornerstones and evolving concepts. Plant J 111:642–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong HL, Kawasaki T, Shimamoto K (2010) Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem 285:11308–11313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65:e12514

    Article  PubMed  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54:245–257

    Article  CAS  PubMed  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2014) Cyclic 3-hydroxymelatonin, a key metabolite enhancing the peroxyl radical scavenging activity of melatonin. RSC Adv. 4:5220–5227

    Article  CAS  Google Scholar 

  • Gao H, Zhang ZK, Chai HK, Cheng N, Yang Y, Wang DN, Yang T, Cao W (2016) Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol Technol 118:103–110

    Article  CAS  Google Scholar 

  • Guo Y, Zhu J, Liu J, Xue Y, Chang J, Zhang Y, Ahammed GJ, Wei C, Ma J, Li P, Zhang X, Li H (2022) Melatonin delays ABA-induced leaf senescence via H2O2-dependent calcium signalling. Plant Cell Environ. https://doi.org/10.1111/pce.14482

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, pp 1–25

    Google Scholar 

  • Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55:325–356

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R (2014) Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. J Exp Bot 66:627–646

    Article  PubMed  Google Scholar 

  • Hardeland R (2017) Taxon- and site-specific melatonin catabolism. Molecules 22:2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardeland R (2019) Melatonin in the evolution of plants and other phototrophs. Melatonin Res 2:10–36

    Article  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Int J Biochem Mol 35:627–634

    CAS  Google Scholar 

  • Hernández-Ruiz J, Giraldo-Acosta M, El Mihyaoui A, Cano A, Arnao MB (2023) Melatonin as a possible natural anti-viral compound in plant biocontrol. Plants (Basel). 12(4):781

    Article  PubMed  PubMed Central  Google Scholar 

  • Herxheimer A (2005) Jet lag. Clin Evid 13:2178–2183

    Google Scholar 

  • Hirata F, Hayaishi O, Tokuyama T, Seno S (1974) In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem 249:1311–1313

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Zhang Y, Sinumporn S, Yu N, Zhan X, Shen X, Chen D, Yu P, Wu W, Liu Q, Cao Z, Zhao C, Cheng S, Cao L (2018) Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice. Plant J 95:877–891

    Article  CAS  Google Scholar 

  • Imran M, Khan AL, Mun BG, Bilal S, Shaffique S, Kwon EH, Kang SM, Yun BW, Lee IJ (2022) Melatonin and nitric oxide: dual players inhibiting hazardous metal toxicity in soybean plants via molecular and antioxidant signaling cascades. Chemosphere. 308:136575

    Article  CAS  PubMed  Google Scholar 

  • Jafari M, Shahsavar A (2021) The effect of foliar application of melatonin on changes in secondary metabolite contents in two Citrus species under drought stress conditions. Front Plant Sci 12:692735

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Chen Z, He M, Tao M, Sun J, Guo S (2019) Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol 19:414

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan J, Reiter R, Wasdell M, Bax M (2009) The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. J Pineal Res 46:1–7

    Article  CAS  PubMed  Google Scholar 

  • Jensen NB, Ottosen CO, Zhou R (2023) Exogenous melatonin alters stomatal regulation in tomato seedlings subjected to combined heat and drought stress through mechanisms distinct from ABA signaling. Plants (Basel). 12(5):1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kámán-Tóth E, Dankó T, Gullner G, Bozsó Z, Palkovics L, Pogány M (2019) Contribution of cell wall peroxidase- and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis. Mol Plant Pathol 20:485–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang K, Kong K, Park S, Natsagdorj U, Kim YS, Back K (2011) Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. J Pineal Res 50:304–309

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Lee K, Park S, Byeon Y, Back K (2013) Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J Pineal Res 55:7–13

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ugurlar F, Ashraf M, Alyemeni MN, Bajguz A, Ahmad P (2022) The involvement of hydrogen sulphide in melatonin-induced tolerance to arsenic toxicity in pepper (Capsicum annuum L.) plants by regulating sequestration and subcellular distribution of arsenic, and antioxidant defense system. Chemosphere 309:136678

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Numan M, Khan AL, Lee IJ, Imran M, Asaf S, Al-Harrasi A (2020) Melatonin: awakening the defense mechanisms during plant oxidative stress. Plants (Basel) 9:407

    Article  CAS  PubMed  Google Scholar 

  • Khan TA, Saleem M, Fariduddin Q (2022a) Recent advances and mechanistic insights on melatonin-mediated salt stress signaling in plants. Plant Physiol Biochem 188:97–107

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Jie Z, Xiangjun K, Ullah N, Short AW, Diao Y, Zhou R, Xiong YC (2022b) Pretreatment of melatonin rescues cotton seedlings from cadmium toxicity by regulating key physio-biochemical and molecular pathways. J Hazard Mater 445:130530

    Article  PubMed  Google Scholar 

  • Kohli SK, Khanna K, Bhardwaj R, Abd Allah EF, Ahmad P, Corpas FJ (2019) Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants (Basel) 8(12):641

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Back K (2016a) Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. J Pineal Res 60(327):335

    Google Scholar 

  • Lee HJ, Back K (2016b) 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J Pineal Res 61:303–316

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Back K (2017) Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res 62:e12379

    Article  Google Scholar 

  • Lee HY, Back K (2018) Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana. J Pineal Res 65:e12504

    Article  PubMed  Google Scholar 

  • Lee K, Back K (2019a) Melatonin-deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis. J Pineal Res 66:e12537

    Article  PubMed  Google Scholar 

  • Lee HJ, Back K (2019b) 2-Hydroxymelatonin confers tolerance against combined cold and drought stress in tobacco, tomato, and cucumber as a potent anti-stress compound in the evolution of land plants. Melatonin Res 2:35–46

    Article  Google Scholar 

  • Lee HY, Back K (2021a) 2-Hydroxymelatonin, rather than melatonin, is responsible for RBOH-dependent reactive oxygen species production leading to premature senescence in plants. Antioxidants 10:1782

    Article  Google Scholar 

  • Lee HY, Back K (2021b) Melatonin regulates chloroplast protein quality control via a mitogen-activated protein kinase signaling pathway. Antioxidants (Basel) 10(4):511

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Back K (2022a) 2-hydroxymelatonin promotes seed germination by increasing reactive oxygen species production and gibberellin synthesis in Arabidopsis thaliana. Antioxidants 11(4):737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Back K (2022b) The antioxidant cyclic 3-hydroxymelatonin promotes the growth and flowering of Arabidopsis thaliana. Antioxidants 11(6):1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Byeon Y, Lee K, Lee HJ, Back K (2014) Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. J Pineal Res 57:418–426

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Byeon Y, Tan D-X, Reiter RJ, Back K (2015) Arabidopsis serotonin-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J Pineal Res 58:291–299

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Zawadzka A, Czarnocki Z, Reiter RJ, Back K (2016) Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J Pineal Res 61:470–478

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Choi GH, Back K (2017) Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase. J Pineal Res 63:e12441

    Article  Google Scholar 

  • Lee K, Lee HY, Back K (2018) Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. J Pineal Res 64:e12460

    Article  Google Scholar 

  • Lee HY, Hwang OJ, Back K (2022) Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin–proteasome systems in plants. J Exp Bot 73:5863–5873

    Article  PubMed  Google Scholar 

  • Lei XY, Zhu RY, Zhang GY, Dai YR (2004) Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. J Pineal Res 36:126–131

    Article  CAS  PubMed  Google Scholar 

  • Lemke MD, Fisher KE, Kozlowska MA, Tano DW, Woodson JD (2021) The core autophagy machinery is not required for chloroplast singlet oxygen-mediated cell death in the Arabidopsis thaliana plastid ferrochelatase two mutant. BMC Plant Biol 21:342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587

    Article  CAS  Google Scholar 

  • Lerner AB, Case JD, Heinzelmann RV (1959a) Structure of melatonin. J Am Chem Soc 81:6084–6085

    Article  CAS  Google Scholar 

  • Lerner AB, Case JD, Mori W, Wright MR (1959b) Melatonin in peripheral nerve. Nature 183:1821

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang Y, Sun K, Chen Y, Chen X, Li X (2019) Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules 24:1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Bi R, Cai H, Zhao J, Sun P, Xu W, Zhou Y, Yang W, Zheng L, Chen XL, Wang G, Wang D, Liu J, Teng H, Li G (2023) Melatonin functions as a broad-spectrum antifungal by targeting a conserved pathogen protein kinase. J Pineal Res. 74(1):e12839

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Yu H, Ouyang B, Shi C, Demidchik V, Hao Z, Yu M, Shabala S (2020) NADPH oxidases and the evolution of plant salinity tolerance. Plant Cell Environ 43:2957–2968

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang X, Lv H, Cao M, Li Y, Yuan X, Zhang X, Guo Y-D, Zhang N (2022) Anabolism and signaling pathways of phytomelatonin. J Exp Bot 73:5801–5817

    Article  PubMed  Google Scholar 

  • Ludwig-Müller J, Lüthen H (2015) From facts and false routes: how plant hormone research developed. J Plant Growth Regul 34:697–701

    Article  Google Scholar 

  • Ma X, Idle JR, Krausz KW, Gonzalez FJ (2005) Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos 33:489–494

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Pei ZQ, Bai X, Feng JY, Zhang L, Fan JR, Wang J, Zhang TG, Zheng S (2022) Involvement of NO and Ca2+ in the enhancement of cold tolerance induced by melatonin in winter turnip rape (Brassica rapa L.). Plant Physiol Biochem 190:262–276

    Article  CAS  PubMed  Google Scholar 

  • Magri A, Petriccione M (2022) Melatonin treatment reduces qualitative decay and improves antioxidant system in highbush blueberry fruit during cold storage. J Sci Food Agric 102:4229–4237

    Article  CAS  PubMed  Google Scholar 

  • Maity S, Guchhait R, Pramanick K (2022) Melatonin mediated activation of MAP kinase pathway may reduce DNA damage stress in plants: a review. Biofactors 48:965–971

    Article  CAS  PubMed  Google Scholar 

  • Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419

    Article  CAS  PubMed  Google Scholar 

  • Mannino G, Caradonna F, Cruciata I, Lauria A, Perrone A, Gentile C (2019) Melatonin reduces inflammatory response in human intestinal epithelial cells stimulated by interleukin-1β. J Pineal Res 67:e12598

    Article  PubMed  Google Scholar 

  • Mannino G, Pernici C, Serio G, Gentile C, Bertea CM (2021) Melatonin and phytomelatonin: chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals-an overview. Int. J Mol Sci 22:9996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marta B, Szafrańska K, Posmyk MM (2015) Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci 7:575

    Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Morales JC, Luque F, Melguizo M, Jiménez-Ruiz J, Fierro-Risco J, Peñas-Sanjuán A, Valderrama R, Corpas FJ, Barroso JB (2016) Nitro-fatty acids in plant signaling: nitro-linolenic acid induces the molecular chaperone network in Arabidopsis. Plant Physiol 170:686–701

    Article  PubMed  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Morales JC, Valderrama R, Corpas FJ, Barroso JB (2017) Nitro-fatty acids in plant signaling: new key mediators of nitric oxide metabolism. Redox Biol 11:554–561

    Article  PubMed  PubMed Central  Google Scholar 

  • Mengel A, Ageeva A, Georgii E, Bernhardt J, Wu K, Durner J, Lindermayr C (2017) Nitric oxide modulates histone acetylation at stress genes by inhibition of histone deacetylases. Plant Physiol 173:1434–1452

    Article  CAS  PubMed  Google Scholar 

  • Mérillon JM, Doireau P, Guillot A, Chénieux JC, Rideau M (1986) Indole alkaloid accumulation and tryptophan decarboxylase activity in Catharanthus roseus cells cultured in three different media. Plant Cell Rep. 5(1):23–26

    Article  PubMed  Google Scholar 

  • Mohamadi Esboei M, Ebrahimi A, Amerian MR, Alipour H (2022) Melatonin confers fenugreek tolerance to salinity stress by stimulating the biosynthesis processes of enzymatic, non-enzymatic antioxidants, and diosgenin content. Front Plant Sci 13:890613

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohn MA, Thaqi B, Fischer-Schrader K (2019) Isoform-specific NO synthesis by Arabidopsis thaliana nitrate reductase. Plants (Basel) 8(3):67

    Article  CAS  PubMed  Google Scholar 

  • Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao M, Li L, Ai S (2019) Melatonin and its protective role against biotic stress impacts on plants. Biomolecules 10(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni J, Wang Q, Shah F, Liu W, Wang D, Huang S, Fu S, Wu L (2018) Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23(4):799

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M (2015) Oxidative stress alters global histone modification and DNA methylation. Free Rad Biol Med 82:22–28

    Article  CAS  PubMed  Google Scholar 

  • Noé W, Mollenschott C, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol. 3(5):281–288

    Article  PubMed  Google Scholar 

  • Okeke ES, Ogugofor MO, Nkwoemeka NE, Nweze EJ, Okoye CO (2022) Phytomelatonin: a potential phytotherapeutic intervention on COVID- 19-exposed individuals. Microbes Infect 24:104886

    Article  CAS  PubMed  Google Scholar 

  • Onik JC, Wai SC, Li A, Lin Q, Sun Q, Wang Z, Duan Y (2021) Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chem 337:127753

    Article  CAS  PubMed  Google Scholar 

  • Ou C, Cheng W, Wang Z, Yao X, Yang S (2023) Exogenous melatonin enhances Cd stress tolerance in Platycladus orientalis seedlings by improving mineral nutrient uptake and oxidative stress. Ecotoxicol Environ Saf. 252:114619

    Article  CAS  PubMed  Google Scholar 

  • Palego L, Betti L, Rossi A, Giannaccini G (2016) Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids 2016:8952520

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan P, Zhang H, Su L, Wang X, Liu D (2018) Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy. Molecules 23:675

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandi-Perumal SR, Cardinali D, Reiter R, Brown G (2020) Low melatonin as a contributor to SARS-CoV-2 disease. Melatonin Res 3:558–576

    Article  Google Scholar 

  • Pang X, Wei Y, Cheng Y, Pan L, Ye Q, Wang R, Ruan M, Zhou G, Yao Z, Li Z, Yang Y, Liu W, Wan H (2018) The tryptophan decarboxylase in Solanum lycopersicum. Molecules. 23(5):998

    Article  PubMed  PubMed Central  Google Scholar 

  • Park S, Byeon Y, Back K (2013) Transcriptional suppression of tryptamine 5-hydroxylase, a terminal serotonin biosynthetic gene, induces melatonin biosynthesis in rice (Oryza sativa L.). J Pineal Res 55:131–137

    Article  CAS  PubMed  Google Scholar 

  • Pérez-González A, Galano A, Alvarez-Idaboy JR, Tan DX, Reiter RJ (2017) Radical-trapping and preventive antioxidant effects of 2-hydroxymelatonin and 4-hydroxymelatonin: contributions to the melatonin protection against oxidative stress. Biochim Biophys Acta Gen Subj 1861:2206–2217

    Article  PubMed  Google Scholar 

  • Pieri C, Moroni F, Marra M, Marcheselli F, Recchioni R (1995) Melatonin is an efficient antioxidant. Arch Gerontol Geriatr 20:159–165

    Article  CAS  PubMed  Google Scholar 

  • Podgórska A, Burian M, Szal B (2017) Extra-cellular but extra-ordinarily important for cells: apoplastic reactive oxygen species metabolism. Front Plant Sci 8:1353

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ, Tan DX (2002) Melatonin: an antioxidant in edible plants. Ann N Y Acad Sci 957:341–344

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Guerrero JM, Escames G, Pappolla MA, Acuna-Castroviejo D (1997) Prophylactic actions of melatonin in oxidative neurotoxicity. Ann NY Acad Sci 825:70–78

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress. J Biomed Sci 7:444–458

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Burkhardt S, Manchester LC (2001a) Melatonin in plants. Nutr Rev 59:286–290

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Manchester LC, Qi W (2001b) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34:237–256

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Rosales-Corral S, Manchester LC (2013) The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives. Mini Rev Med Chem 13:373–384

    CAS  PubMed  Google Scholar 

  • Reiter R, Tan DX, Zhou Z, Cruz M, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Chen L, Xie ZM, Peng X (2022) Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of Gossypium hirsutum L. seedlings in response to exogenous melatonin application. BMC Plant Biol 22:552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riga P, Medina S, García-Flores LA, Gil-Izquierdo Á (2014) Melatonin content of pepper and tomato fruits: effects of cultivar and solar radiation. Food Chem. 156:347–352

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Corrionero Á, Sánchez-Vicente I, González-Pérez S, Corrales A, Krieger-Liszkay A, Lorenzo Ó, Arellano JB (2017) Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress. J Plant Physiol. 216:188–196

    Article  PubMed  Google Scholar 

  • Schmid J, Amrhein N (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39:737–749

    Article  CAS  Google Scholar 

  • Semak I, Naumova M, Korik E, Terekhovich V, Wortsman J, Slominski A (2005) A novel metabolic pathway of melatonin: oxidation by cytochrome C. Biochemistry 44:9300–9307

    Article  CAS  PubMed  Google Scholar 

  • Shah AA, Ahmed S, Ali A, Yasin NA (2020) 2-Hydroxymelatonin mitigates cadmium stress in Cucumis sativus seedlings: modulation of antioxidant enzymes and polyamines. Chemosphere 243:125308

    Article  CAS  PubMed  Google Scholar 

  • Sharif R, Xie C, Zhang H, Arnao M, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz M, Chen P, Li Y (2018) Melatonin and its effects on plant systems. Molecules 23:2352

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen M, Cao Y, Jiang Y, Wei Y, Liu H (2018) Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: implication of an antioxidation-independent mechanism. Redox Biol 18:138–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Chen Y, Tan DX, Reiter RJ, Chan Z, He C (2015) Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. J Pineal Res 59:102–108

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Khan MN, Corpas FJ, Alsubaie QD, Ali HM, Ahmad P, Kalaji HM (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater 398:122882

    Article  CAS  PubMed  Google Scholar 

  • Sofic E, Rimpapa Z, Kundurovic Z, Sapcanin A, Tahirovic I, Rustembegovic A, Cao G (2005) Antioxidant capacity of the neurohormone melatonin. J Neural Transm 112:349–358

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Yang Q, Dong B, Li N, Wang M, Du T, Liu N, Niu L, Jin H, Meng D, Fu Y (2022) Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. J Exp Bot 73:5992–6008

    Article  PubMed  Google Scholar 

  • Stein RM, Kang HJ, McCorvy JD et al (2020) Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579:609–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Lv T, Huang L, Liu X, Jin C, Lin X (2020a) Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat. J Pineal Res:e12642

    Google Scholar 

  • Sun Q, Liu L, Zhang L, Lv H, He Q, Guo L, Zhang X, He H, Ren S, Zhang N, Zhao B, Guo YD (2020b) Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. Plant Sci 298:110580

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Liu L, Wang L, Li B, Jin C, Lin X (2021) Melatonin: a master regulator of plant development and stress responses. J Integr Plant Biol 63:126–145

    Article  CAS  PubMed  Google Scholar 

  • Taboada J, González-Gordo S, Reiter RJ, Palma JM, Corpas FJ (2023) Tryptophan decarboxylase in pepper (Capsicum annuum L.): gene expression analysis during fruit ripening and after nitric oxide exposure. Melatonin Research in press

    Google Scholar 

  • Tan DX, Hardeland R (2021) The reserve/maximum capacity of melatonin’s synthetic function for the potential dimorphism of melatonin production and its biological significance in mammals. Molecules. 26(23):7302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan DX, Reiter R (2020) An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J Exp Bot 71:4677–4689

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Burkhardt S, Sainz RM, Mayo JC, Kohen R, Shohami E, Huo YS, Hardeland R, Reiter RJ (2001) N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 15:2294-2296.

    Google Scholar 

  • Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Galano A, Reiter RJ (2014) Cyclic-3-hydroxymelatonin (C3HOM), a potent antioxidant, scavenges free radicles and suppresses oxidative reactions. Curr Med Chem 21:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61:27–40

    Article  CAS  PubMed  Google Scholar 

  • Tian X, He X, Xu J, Yang Z, Fang W, Yin Y (2022) Mechanism of calcium in melatonin enhancement of functional substance-phenolic acid in germinated hulless barley. RSC Adv 12:29214–29222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M (2021) Insight into melatonin-mediated response and signaling in the regulation of plant defense under Biotic Stress. Plant Mol Biol 109(4-5):385–399

    Article  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Turkan I (2018) ROS and RNS: key signalling molecules in plants. J Exp Bot 69:3313–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadnie CA, McClung CA (2017) Circadian rhythm disturbances in mood disorders: insights into the role of the suprachiasmatic nucleus. Neural Plast 2017:1504507

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. J Pineal Res 53:11–20

    Article  PubMed  Google Scholar 

  • Wang L, Feng C, Zheng X, Guo Y, Zhou F, Shan D, Liu X, Kong J (2017) Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J Pineal Res 63:e12429

    Article  Google Scholar 

  • Wang Y, Russel JR, Chen Z (2018) Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69:963–974

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhang X, Yang Q, Zhao Q (2019) Exogenous melatonin delays postharvest fruit senescence and maintains the quality of Sweet Cherries. Food Chem 301:125311

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lv P, Yan D, Zhang Z, Xu X, Wang T, Wang Y, Peng Z, Yu C, Gao Y, Duan L, Li R (2022a) Exogenous melatonin improves seed germination of wheat (Triticum aestivum L.) under salt stress. Int J Mol Sci 23:8436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Mu Y, Hao X, Yang J, Zhang D, Jin Z, Pei Y (2022b) H2S aids osmotic stress resistance by S-sulfhydration of melatonin production-related enzymes in Arabidopsis thaliana. Plant Cell Rep 41:365–376

    Article  PubMed  Google Scholar 

  • Wang X, Wang W, Zhang R, Ma B, Ni L, Feng H, Liu C (2023a) Melatonin attenuates high glucose-induced endothelial cell pyroptosis by activating the Nrf2 pathway to inhibit NLRP3 inflammasome activation. Mol Med Rep. 27(3):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li L, Khan D, Chen Y, Pu X, Wang X, Guan M, Rengel Z, Chen Q (2023b) Nitric oxide acts downstream of reactive oxygen species in phytomelatonin receptor 1 (PMTR1)-mediated stomatal closure in Arabidopsis. J Plant Physiol. 282:153917

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 65:e12500

    Article  PubMed  Google Scholar 

  • Xiao W, Xiong Z, Xiong W et al (2019) Melatonin/PGC1A/UCP1 promotes tumor slimming and represses tumor progression by initiating autophagy and lipid browning. J Pineal Res 67:e12607

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Chen F, Li WA, Geng X, Li C, Meng X, Feng Y, Liu W, Yu F (2017) A review of sleep disorders and melatonin. Neurol Res 39:559–565

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Zhang Y, Cheng Y, Tian Y, Luo J, Hu Z, Chen G (2022a) The role of melatonin in tomato stress response, growth and development. Plant Cell Rep 41:1631–1650

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Han Y, Yuan X, Zhang M, Li P, Ding A, Wang J, Cheng T, Zhang Q (2022b) Transcriptome analysis reveals that exogenous melatonin confers lilium disease resistance to Botrytis elliptica. Front Genet 13:892674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhang F, Tang M, Wang Y, Dong J, Ying J, Chen Y, Hu B, Li C, Liu L (2020) Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. J Pineal Res 69:e12659

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Ren J, Lin X, Yang Z, Deng X, Ke Q (2023) Melatonin alleviates chromium toxicity in maize by modulation of cell wall polysaccharides biosynthesis, glutathione metabolism, and antioxidant capacity. Int J Mol Sci. 24(4):3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yiang GT, Wu CC, Lu CL, Hu WC, Tsai YJ, Huang YM, Su WL, Lu KC (2023) Endoplasmic reticulum stress in elderly patients with COVID-19: potential of melatonin treatment. Viruses. 15(1):156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Wang P, Li M, Ke X, Li C, Liang D, Wu S, Ma X, Li C, Zou Y, Ma F (2013) Exogenous melatonin improves malus resistance to Marssonina Apple blotch. J Pineal Res 54:426–434

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Hu J, Tian X, Yang Z, Fang W (2022a) Nitric oxide mediates melatonin-induced isoflavone accumulation and growth improvement in germinating soybeans under NaCl stress. J Plant Physiol 279:153855

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Tian X, He X, Yang J, Yang Z, Fang W (2022b) Exogenous melatonin stimulated isoflavone biosynthesis in NaCl-stressed germinating soybean (Glycine max L.). Plant Physiol Biochem 185:123–131

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Bai Y, Wei Y, Reiter RJ, Shi H (2022) Phytomelatonin as a central molecule in plant disease resistance. J Exp Bot 73:5874–5885

    Article  PubMed  Google Scholar 

  • Zhan HS, Nie XJ, Zhang T, Li S, Wang XY, Du XH, Tong W, Song WN (2019) Melatonin: a small molecule but important for salt stress tolerance in plants. Int J Mol Sci 20:709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang Y (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57:131–146

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Ren S, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Gao C, Xu L, Niu H, Liu Q, Huang Y, Lv G, Yang H, Li M (2022a) melatonin and indole-3-acetic acid synergistically regulate plant growth and stress resistance. Cells 11:3250

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Qin B, Wang GD, Zhang WJ, Li M, Yin ZG, Yuan X, Sun HY, Du JD, Du YL, Jia P (2022b) Exogenous melatonin enhances cell wall response to salt stress in common bean (Phaseolus vulgaris) and the development of the associated predictive molecular markers. Front Plant Sci 13:1012186

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Zhao Y, Yu X, Kiprotich F, Han H, Guan R, Wang R, Shen W (2018) Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings. Int J Mol Sci 19:1912

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Wang H, Chen S, Yu D, Reiter RJ (2021) Phytomelatonin: an emerging regulator of plant biotic stress resistance. Trends Plant Sci 26:70–82

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Zheng S, Fan W, Zhang M, Xia Z, Chen X, Zhao A (2022) Ectopic overexpression of mulberry MnT5H2 enhances melatonin production and salt tolerance in tobacco. Front Plant Sci. 13:1061141

    Article  PubMed  PubMed Central  Google Scholar 

  • Zisapel N (2018) New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. British J Phar 175:3190–3199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our research work is supported by a European Regional Development Fund-cofinanced grant from the Ministry of Economy and Competitiveness/Science and Innovation (PID2019-10103924GB-I00), the Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) (P18-FR-1359) and Junta de Andalucía (group BIO192), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Corpas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taboada, J., Reiter, R.J., Palma, J.M., Corpas, F.J. (2023). Melatonin and the Metabolism of Reactive Oxygen Species (ROS) in Higher Plants. In: Mukherjee, S., Corpas, F.J. (eds) Melatonin: Role in Plant Signaling, Growth and Stress Tolerance. Plant in Challenging Environments, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-031-40173-2_1

Download citation

Publish with us

Policies and ethics