Skip to main content

Genetics of Type 2 Diabetes

  • Reference work entry
  • First Online:
Metabolic Syndrome
  • 269 Accesses

Abstract

The promise of high-throughput genomics has started to deliver novel insights in the genetic etiology of type 2 diabetes and its related traits. In particular, genome-wide association studies (GWAS) have revealed new biological underpinnings to metabolic traits, with particular focus being on the strongest loci TCF7L2 and FTO. However, many challenges still lie ahead as much of the “missing heritability” of such traits remains to be elucidated, with only a proportion of the genetic component to type 2 diabetes being characterized to date. Undeterred, investigators are aiming to use what has been found to already attempt risk prediction models, while laboratory-based researchers are trying to elucidate functional mechanisms. However, the latter have a number of challenges as these well-established signals still have to fully characterize the causal tissue, the causal variant, and often the actual causal gene. However, once advances are made of these fronts, the future looks bright with respect to the development of novel therapeutics and diagnostics for type 2 diabetes and its related traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes. 1990;39(11):1315–9.

    Article  CAS  PubMed  Google Scholar 

  2. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003;33(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  3. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  4. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568–72.

    Article  CAS  PubMed  Google Scholar 

  5. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet. 2000;26(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  6. Reynisdottir I, Thorleifsson G, Benediktsson R, Sigurdsson G, Emilsson V, Einarsdottir AS, et al. Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. Am J Hum Genet. 2003;73(2):323–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. The International HapMap Project. Nature. 2003;426(6968):789–96.

    Article  Google Scholar 

  8. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.

    Google Scholar 

  9. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68(4):978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–5.

    Article  CAS  PubMed  Google Scholar 

  11. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–3.

    Article  CAS  PubMed  Google Scholar 

  12. Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med. 2007;85(7):777–82.

    Article  CAS  PubMed  Google Scholar 

  13. Zeggini E, McCarthy MI. TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia. 2007;50(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  14. Weedon MN. The importance of TCF7L2. Diabet Med. 2007;24(10):1062–6.

    Article  CAS  PubMed  Google Scholar 

  15. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature. 2007;447(7145):661–78.

    Article  Google Scholar 

  16. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6.

    Article  CAS  PubMed  Google Scholar 

  17. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40(9):1098–102.

    Article  CAS  PubMed  Google Scholar 

  20. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092–7.

    Article  CAS  PubMed  Google Scholar 

  21. Williams AL, Jacobs SB, Moreno-Macias H, Huerta-Chagoya A, Churchhouse C, Marquez-Luna C, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014;506(7486):97–101. Epub 2014/01/07. https://doi.org/10.1038/nature12828.

  22. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44(9):981–90. Epub 2012/08/14. https://doi.org/10.1038/ng.2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39(6):770–5.

    Article  CAS  PubMed  Google Scholar 

  25. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proenca C, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41(10):1110–5.

    Article  CAS  PubMed  Google Scholar 

  27. Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39(8):977–83.

    Article  CAS  PubMed  Google Scholar 

  28. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 46(3):234–44. Epub 2014/02/11. https://doi.org/10.1038/ng.2897.

  30. Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2011;44(1):67–72. Epub 2011/12/14. https://doi.org/10.1038/ng.1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43(10):984–9. Epub 2011/08/30. https://doi.org/10.1038/ng.921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparso T, Holmkvist J, Marchand M, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  33. Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spegel P, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ng MC, Shriner D, Chen BH, Li J, Chen WM, Guo X, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10(8):e1004517. https://doi.org/10.1371/journal.pgen.1004517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao W, Rasheed A, Tikkanen E, Lee JJ, Butterworth AS, Howson JMM, et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nature genetics. 2017;49(10):1450–7. Epub 2017/09/05. https://doi.org/10.1038/ng.3943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J, Shojima N, et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet. 2019;51(3):379–86. Epub 2019/02/06. https://doi.org/10.1038/s41588-018-0332-4.

    Article  CAS  PubMed  Google Scholar 

  37. Spracklen CN, Horikoshi M, Kim YJ, Lin K, Bragg F, Moon S, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020;582(7811):240–5. Epub 2020/06/06. https://doi.org/10.1038/s41586-020-2263-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–13. Epub 2018/10/10. https://doi.org/10.1038/s41588-018-0241-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54(5):560–72. Epub 2022/05/14. https://doi.org/10.1038/s41588-022-01058-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52(7):680–91. Epub 2020/06/17. https://doi.org/10.1038/s41588-020-0637-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359(21):2208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359(21):2220–32. Epub 2008/11/21. https://doi.org/10.1056/NEJMoa0801869.

    Article  CAS  PubMed  Google Scholar 

  44. de Miguel-Yanes JM, Shrader P, Pencina MJ, Fox CS, Manning AK, Grant RW, et al. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care. 2011;34(1):121–5.

    Article  PubMed  Google Scholar 

  45. Hivert MF, Jablonski KA, Perreault L, Saxena R, McAteer JB, Franks PW, et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011;60(4):1340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andersson EA, Allin KH, Sandholt CH, Borglykke A, Lau CJ, Ribel-Madsen R, et al. Genetic risk socre of 46 type 2 diabetes risk variants with changes in plasma glucose and estimates of pancreatic β-cell function over 5 years of follow-up. Diabetes. 2013;62(10):3610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Talmud PJ, Cooper JA, Morris RW, Dudbridge F, Shah T, Engmann J, et al. Sixty-five common genetic variants and prediction of type 2 diabetes. Diabetes. 2015;64(5):1830–40. https://doi.org/10.2337/db14-1504.

    Article  CAS  PubMed  Google Scholar 

  48. Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet. 2018;50(4):559–71. Epub 2018/04/11. https://doi.org/10.1038/s41588-018-0084-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7. Epub 2016/07/12. https://doi.org/10.1038/nature18642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Steinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson A, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46(3):294–8. Epub 2014/01/28. https://doi.org/10.1038/ng.2882.

    Article  CAS  PubMed  Google Scholar 

  51. Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46(4):357–63. Epub 2014/03/04. https://doi.org/10.1038/ng.2915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Estrada K, Aukrust I, Bjorkhaug L, Burtt NP, Mercader JM, Garcia-Ortiz H, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311(22):2305–14. Epub 2014/06/11. https://doi.org/10.1001/jama.2014.6511.

    Article  CAS  PubMed  Google Scholar 

  53. Loos RJ, Barroso I, O’Rahilly S, Wareham NJ. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science. 2007;315(5809):187. author reply

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dina C, Meyre D, Samson C, Tichet J, Marre M, Jouret B, et al. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science. 2007;315(5809):187. author reply

    Article  CAS  PubMed  Google Scholar 

  55. Rosskopf D, Bornhorst A, Rimmbach C, Schwahn C, Kayser A, Kruger A, et al. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science. 2007;315, 187(5809) author reply

    Google Scholar 

  56. Lyon HN, Emilsson V, Hinney A, Heid IM, Lasky-Su J, Zhu X, et al. The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genet. 2007;3(4):e61.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hotta K, Nakamura M, Nakata Y, Matsuo T, Kamohara S, Kotani K, et al. INSIG2 gene rs7566605 polymorphism is associated with severe obesity in Japanese. J Hum Genet. 2008;53(9):857–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  60. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  61. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Okada Y, Kubo M, Ohmiya H, Takahashi A, Kumasaka N, Hosono N, et al. Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. Nat Genet. 2012;44(3):302–6. Epub 2012/02/22. https://doi.org/10.1038/ng.1086.

    Article  CAS  PubMed  Google Scholar 

  63. Monda KL, Chen GK, Taylor KC, Palmer C, Edwards TL, Lange LA, et al. A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Gen. 2013. Epub 2013/04/16. https://doi.org/10.1038/ng.2608.

  64. Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L, et al. Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet. 2012;44(3):307–11. Epub 2012/02/22. https://doi.org/10.1038/ng.1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. https://doi.org/10.1038/nature14177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700,000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9. Epub 2018/08/21. https://doi.org/10.1093/hmg/ddy271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724–6.

    Article  CAS  PubMed  Google Scholar 

  69. Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet. 2010;42(12):1086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359(24):2558–66.

    Article  CAS  PubMed  Google Scholar 

  71. Wardle J, Carnell S, Haworth CM, Farooqi IS, O’Rahilly S, Plomin R. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;93(9):3640–3.

    Article  CAS  PubMed  Google Scholar 

  72. Maller JB, McVean G, Byrnes J, Vukcevic D, Palin K, Su Z, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet. 2012. Epub 2012/10/30. https://doi.org/10.1038/ng.2435.

  73. Helgason A, Palsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S, et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet. 2007;39(2):218–25.

    Article  CAS  PubMed  Google Scholar 

  74. Palmer ND, Hester JM, An SS, Adeyemo A, Rotimi C, Langefeld CD, et al. Resequencing and analysis of variation in the TCF7L2 gene in African Americans suggests that SNP rs7903146 is the causal diabetes susceptibility variant. Diabetes. 2011;60(2):662–8. https://doi.org/10.2337/db10-0134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, Chiu KC, et al. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007;56(10):2631–7.

    Article  CAS  PubMed  Google Scholar 

  76. Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD, et al. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6719 Asians. Diabetes. 2008;57(8):2226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ng MC, Tam CH, Lam VK, So WY, Ma RC, Chan JC. Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese. J Clin Endocrinol Metab. 2007;92(9):3733–7.

    Article  CAS  PubMed  Google Scholar 

  78. Ren Q, Han XY, Wang F, Zhang XY, Han LC, Luo YY, et al. Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia. 2008;51(7):1146–52.

    Article  CAS  PubMed  Google Scholar 

  79. Yu M, Xu XJ, Yin JY, Wu J, Chen X, Gong ZC, et al. KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin Pharmacol Ther. 2010;87(3):330–5.

    Article  CAS  PubMed  Google Scholar 

  80. Zheng X, Ren W, Zhang S, Liu J, Li S, Li J, et al. Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population. Mol Biol Rep. 2012;39(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  81. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP, et al. A map of open chromatin in human pancreatic islets. Nat Genet. 2010;42(3):255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boj SF, van Es JH, Huch M, Li VS, Jose A, Hatzis P, et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell. 2012;151(7):1595–607. Epub 2012/12/25. https://doi.org/10.1016/j.cell.2012.10.053.

    Article  CAS  PubMed  Google Scholar 

  84. Kaminska D, Kuulasmaa T, Venesmaa S, Kakela P, Vaittinen M, Pulkkinen L, et al. Adipose tissue TCF7L2 splicing is regulated by weight loss and associates with glucose and fatty acid metabolism. Diabetes. 2012;61(11):2807–13. Epub 2012/10/23. https://doi.org/10.2337/db12-0239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem. 2005;280(2):1457–64. https://doi.org/10.1074/jbc.M411487200.

    Article  CAS  PubMed  Google Scholar 

  86. Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, Shuldiner AR, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355(3):241–50. Epub 2006/07/21. https://doi.org/10.1056/NEJMoa062418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Le Bacquer O, Kerr-Conte J, Gargani S, Delalleau N, Huyvaert M, Gmyr V, et al. TCF7L2 rs7903146 impairs islet function and morphology in non-diabetic individuals. Diabetologia. 2012;55(10):2677–81.

    Article  CAS  PubMed  Google Scholar 

  88. Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K. Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes. 2008;57(3):645–53.

    Article  CAS  PubMed  Google Scholar 

  89. Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem. 2008;283(13):8723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cauchi S, Froguel P. TCF7L2 genetic defect and type 2 diabetes. Curr Diab Rep. 2008;8(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  91. Elbein SC, Chu WS, Das SK, Yao-Borengasser A, Hasstedt SJ, Wang H, et al. Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis traits and gene expression in US participants of European and African descent. Diabetologia. 2007;50(8):1621–30.

    Article  CAS  PubMed  Google Scholar 

  92. Zhao J, Schug J, Li M, Kaestner KH, Grant SF. Disease-associated loci are significantly over-represented among genes bound by transcription factor 7-like 2 (TCF7L2) in vivo. Diabetologia. 2010;53(11):2340–6.

    Article  CAS  PubMed  Google Scholar 

  93. Boj SF, van Es JH, Huch M, Li VS, José A, Hatzis P, et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell. 2012;151(7):1595–607.

    Article  CAS  PubMed  Google Scholar 

  94. da Silva XG, Mondragon A, Sun G, Chen L, McGinty JA, French PM, et al. Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2-null mice. Diabetologia. 2012;55(10):2667–76.

    Article  Google Scholar 

  95. Savic D, Ye H, Aneas I, Park SY, Bell GI, Nobrega MA. Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res. 2011;21(9):1417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Duncan A, Heyer MP, Ishikawa M, Caligiuri SPB, Liu XA, Chen Z, et al. Habenular TCF7L2 links nicotine addiction to diabetes. Nature. 2019;574(7778):372–7. Epub 2019/10/18. https://doi.org/10.1038/s41586-019-1653-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet. 1998;19(4):379–83.

    Article  CAS  PubMed  Google Scholar 

  98. Hansson O, Zhou Y, Renström E, Osmark P. Molecular function of TCF7L2: Consequences of TCF7L2 splicing for molecular function and risk for type 2 diabetes. Curr Diab Rep. 2010;10(6):444–51.

    Article  CAS  PubMed  Google Scholar 

  99. Barker N, Huls G, Korinek V, Clevers H. Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. Am J Pathol. 1999;154(1):29–35. https://doi.org/10.1016/S0002-9440(10)65247-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R. The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res. 2000;60(14):3872–9.

    CAS  PubMed  Google Scholar 

  101. Cauchi S, Meyre D, Dina C, Choquet H, Samson C, Gallina S, et al. Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes. 2006;55(10):2903–8.

    Article  CAS  PubMed  Google Scholar 

  102. Kaminska D, Kuulasmaa T, Venesmaa S, Käkelä P, Vaittinen M, Pulkkinen L, et al. Adipose tissue TCF7L2 splicing is regulated by weight loss and associates with glucose and fatty acid metabolism. Diabetes. 2012;61(11):2807–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Prokunina-Olsson L, Kaplan LM, Schadt EE, Collins FS. Alternative splicing of TCF7L2 gene in omental and subcutaneous adipose tissue and risk of type 2 diabetes. PLoS One. 2009;4(9):e7231.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Prokunina-Olsson L, Welch C, Hansson O, Adhikari N, Scott LJ, Usher N, et al. Tissue-specific alternative splicing of TCF7L2. Hum Mol Genet. 2009;18(20):3795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, et al. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet. 2005;14(22):3389–96.

    Article  CAS  PubMed  Google Scholar 

  106. Woods A, James CG, Wang G, Dupuis H, Beier F. Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-alpha signalling in endochondral bone growth. J Cell Mol Med. 2009;13(9B):3497–516.

    Article  PubMed  Google Scholar 

  107. Baker N, Morin PJ, Clevers H. The Ying-Yang of TCF/beta-catenin signaling. Adv Cancer Res. 2000;77:1–24.

    Google Scholar 

  108. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;389(6726):422–6.

    Article  Google Scholar 

  109. Idris AI, van‘t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med. 2005;11(7):774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38(6):652–8.

    Article  CAS  PubMed  Google Scholar 

  111. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39(5):645–9.

    Article  CAS  PubMed  Google Scholar 

  112. Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet. 2007;39(5):638–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet. 2007;39(5):631–7.

    Article  CAS  PubMed  Google Scholar 

  114. Witte JS. Multiple prostate cancer risk variants on 8q24. Nat Genet. 2007;39(5):579–80.

    Article  CAS  PubMed  Google Scholar 

  115. Haiman CA, Le Marchand L, Yamamato J, Stram DO, Sheng X, Kolonel LN, et al. A common genetic risk factor for colorectal and prostate cancer. Nat Genet. 2007;39(8):954–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet. 2007;39(8):989–94.

    Article  CAS  PubMed  Google Scholar 

  117. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007;39(8):984–8.

    Article  CAS  PubMed  Google Scholar 

  118. Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet. 2011;19(7):807–12.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Golding J, Pembrey M, Jones R. ALSPAC—the Avon Longitudinal Study of Parents and Children. I. Study methodology. Paediatr Perinat Epidemiol. 2001;15(1):74–87.

    Article  CAS  PubMed  Google Scholar 

  120. Leary SD, Smith GD, Rogers IS, Reilly JJ, Wells JC, Ness AR. Smoking during pregnancy and offspring fat and lean mass in childhood. Obesity (Silver Spring, Md). 2006;14(12):2284–93.

    Article  PubMed  Google Scholar 

  121. Jones RW, Ring S, Tyfield L, Hamvas R, Simmons H, Pembrey M, et al. A new human genetic resource: a DNA bank established as part of the Avon longitudinal study of pregnancy and childhood (ALSPAC). Eur J Hum Genet. 2000;8(9):653–60.

    Article  CAS  PubMed  Google Scholar 

  122. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;

    Google Scholar 

  123. Enciso-Mora V, Broderick P, Ma Y, Jarrett RF, Hjalgrim H, Hemminki K, et al. A genome-wide association study of Hodgkin’s lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nat Genet. 2010;42(12):1126–30. Epub 2010/11/03. https://doi.org/10.1038/ng.696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41(8):882–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet. 2009;41(8):885–90.

    Article  CAS  PubMed  Google Scholar 

  126. Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. Obes Res. 1996;4(1):101. Epub 1996/01/01

    Article  CAS  PubMed  Google Scholar 

  127. Frayling TM, Colhoun H, Florez JC. A genetic link between type 2 diabetes and prostate cancer. Diabetologia. 2008;51(10):1757–60.

    Article  CAS  PubMed  Google Scholar 

  128. Houseknecht KL, Baile CA, Matteri RL, Spurlock ME. The biology of leptin: a review. J Anim Sci. 1998;76(5):1405–20. Epub 1998/06/11

    Article  CAS  PubMed  Google Scholar 

  129. Echwald SM, Rasmussen SB, Sorensen TI, Andersen T, Tybjaerg-Hansen A, Clausen JO, et al. Identification of two novel missense mutations in the human OB gene. Int J Obes Relat Metab Disord. 1997;21(4):321–6. Epub 1997/04/01

    Article  CAS  PubMed  Google Scholar 

  130. He X. A Wnt-Wnt situation. Dev Cell. 2003;4(6):791–7.

    Article  CAS  PubMed  Google Scholar 

  131. van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev. 2003;13(1):28–33.

    Article  PubMed  Google Scholar 

  132. Helgadottir A, Manolescu A, Helgason A, Thorleifsson G, Thorsteinsdottir U, Gudbjartsson DF, et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet. 2006;38(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  133. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–12.

    Article  CAS  PubMed  Google Scholar 

  134. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  135. Johnson ME, Zhao J, Schug J, Deliard S, Xia Q, Guy VC, et al. Two novel type 2 diabetes loci revealed through integration of TCF7L2 DNA occupancy and SNP association data. BMJ Open Diabetes Res Care. 2014;2(1):e000052. Epub 2014/12/04. https://doi.org/10.1136/bmjdrc-2014-000052.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Norton L, Fourcaudot M, Abdul-Ghani MA, Winnier D, Mehta FF, Jenkinson CP, et al. Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism. Diabetologia. 2011;54(12):3132–42.

    Article  CAS  PubMed  Google Scholar 

  137. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76. Epub 2006/12/08. https://doi.org/10.1038/nature05453.

    Article  CAS  PubMed  Google Scholar 

  139. Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, Gerken T, et al. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet. 2009;5(8):e1000599.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Bruning JC, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;458(7240):894–8.

    Article  CAS  PubMed  Google Scholar 

  141. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371–5. Epub 2014/03/22. https://doi.org/10.1038/nature13138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N Engl J Med. 2015;373(10):895–907. https://doi.org/10.1056/NEJMoa1502214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sobreira DR, Joslin AC, Zhang Q, Williamson I, Hansen GT, Farris KM, et al. Extensive pleiotropism and allelic heterogeneity mediate metabolic effects of IRX3 and IRX5. Science. 2021;372(6546):1085–91. Epub 2021/06/05. https://doi.org/10.1126/science.abf1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300(24):2886–97.

    Article  CAS  PubMed  Google Scholar 

  145. Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet. 1998;19(3):268–70. Epub 1998/07/14. https://doi.org/10.1038/953.

    Article  CAS  PubMed  Google Scholar 

  146. Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet. 1999;353(9166):1789–92. Epub 1999/05/29. https://doi.org/10.1016/S0140-6736(98)07546-1.

    Article  CAS  PubMed  Google Scholar 

  147. Freathy RM, Weedon MN, Bennett A, Hypponen E, Relton CL, Knight B, et al. Type 2 diabetes TCF7L2 risk genotypes alter birth weight: a study of 24,053 individuals. Am J Hum Genet. 2007;80(6):1150–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mook-Kanamori DO, de Kort SW, van Duijn CM, Uitterlinden AG, Hofman A, Moll HA, et al. Type 2 diabetes gene TCF7L2 polymorphism is not associated with fetal and postnatal growth in two birth cohort studies. BMC Med Genet. 2009;10:67. Epub 2009/07/21. https://doi.org/10.1186/1471-2350-10-67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pulizzi N, Lyssenko V, Jonsson A, Osmond C, Laakso M, Kajantie E, et al. Interaction between prenatal growth and high-risk genotypes in the development of type 2 diabetes. Diabetologia. 2009;52(5):825–9.

    Article  CAS  PubMed  Google Scholar 

  150. van Hoek M, Langendonk JG, de Rooij SR, Sijbrands EJ, Roseboom TJ. Genetic variant in the IGF2BP2 gene may interact with fetal malnutrition to affect glucose metabolism. Diabetes. 2009;58(6):1440–4. Epub 2009/03/05. https://doi.org/10.2337/db08-1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Freathy RM, Bennett AJ, Ring SM, Shields B, Groves CJ, Timpson NJ, et al. Type 2 diabetes risk alleles are associated with reduced size at birth. Diabetes. 2009;58(6):1428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhao J, Li M, Bradfield JP, Wang K, Zhang H, Sleiman P, et al. Examination of type 2 diabetes loci implicates CDKAL1 as a birth weight gene. Diabetes. 2009;58(10):2414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Morgan AR, Thompson JM, Murphy R, Black PN, Lam WJ, Ferguson LR, et al. Obesity and diabetes genes are associated with being born small for gestational age: results from the Auckland Birthweight Collaborative study. BMC Med Genet. 2010;11:125. Epub 2010/08/18. https://doi.org/10.1186/1471-2350-11-125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Freathy RM, Mook-Kanamori DO, Sovio U, Prokopenko I, Timpson NJ, Berry DJ, et al. Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat Genet. 2010;42(5):430–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Horikoshi M, Yaghootkar H, Mook-Kanamori DO, Sovio U, Taal HR, Hennig BJ, et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet. 2013;45(1):76–82. Epub 2012/12/04. https://doi.org/10.1038/ng.2477.

    Article  CAS  PubMed  Google Scholar 

  156. Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland O, Laurin C, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet. 2019;51(5):804–14. Epub 2019/05/03. https://doi.org/10.1038/s41588-019-0403-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538(7624):248–52. Epub 2016/09/30. https://doi.org/10.1038/nature19806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nicklas TA, Baranowski T, Cullen KW, Berenson G. Eating patterns, dietary quality and obesity. J Am Coll Nutr. 2001;20(6):599–608.

    Article  CAS  PubMed  Google Scholar 

  159. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med. 1997;337(13):869–73.

    Article  CAS  PubMed  Google Scholar 

  160. Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord. 1999;23(Suppl 8):S1–107.

    PubMed  Google Scholar 

  161. Hardy R, Wills AK, Wong A, Elks CE, Wareham NJ, Loos RJ, et al. Life course variations in the associations between FTO and MC4R gene variants and body size. Hum Mol Genet. 2010;19(3):545–52. Epub 2009/11/03. https://doi.org/10.1093/hmg/ddp504.

    Article  CAS  PubMed  Google Scholar 

  162. Andersson EA, Pilgaard K, Pisinger C, Harder MN, Grarup N, Faerch K, et al. Do gene variants influencing adult adiposity affect birth weight? A population-based study of 24 loci in 4744 Danish individuals. PLoS One. 2010;5(12):e14190. Epub 2010/12/15. https://doi.org/10.1371/journal.pone.0014190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Manco M, Dallapiccola B. Genetics of pediatric obesity. Pediatrics. 2012;130(1):123–33. Epub 2012/06/06. https://doi.org/10.1542/peds.2011-2717.

    Article  PubMed  Google Scholar 

  164. Bradfield JP, Taal HR, Timpson NJ, Scherag A, Lecoeur C, Warrington NM, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bradfield JP, Vogelezang S, Felix JF, Chesi A, Helgeland O, Horikoshi M, et al. A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Hum Mol Genet. 2019;28(19):3327–38. Epub 2019/09/11. https://doi.org/10.1093/hmg/ddz161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Grant SF, Hakonarson H, Schwartz S. Can the genetics of type 1 and type 2 diabetes shed light on the genetics of latent autoimmune diabetes in adults? Endocr Rev. 2010;31(2):183–93.

    Article  CAS  PubMed  Google Scholar 

  167. Basile KJ, Guy VC, Schwartz S, Grant SF. Overlap of genetic susceptibility to type 1 diabetes, type 2 diabetes, and latent autoimmune diabetes in adults. Curr Diab Rep. 2014;14(11):550. https://doi.org/10.1007/s11892-014-0550-9.

    Article  CAS  PubMed  Google Scholar 

  168. Andersen MK, Sterner M, Forsen T, Karajamaki A, Rolandsson O, Forsblom C, et al. Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia. 2014. Epub 2014/06/08; https://doi.org/10.1007/s00125-014-3287-8.

  169. Cousminer DL, Ahlqvist E, Mishra R, Andersen MK, Chesi A, Hawa MI, et al. First genome-wide association study of latent autoimmune diabetes in adults reveals novel insights linking immune and metabolic diabetes. Diabetes Care. 2018;41(11):2396–403. Epub 2018/09/27. https://doi.org/10.2337/dc18-1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Struan F. A. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grant, S.F.A. (2023). Genetics of Type 2 Diabetes. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-031-40116-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40116-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40115-2

  • Online ISBN: 978-3-031-40116-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics