Skip to main content

A Novel Probabilistic Approach for Detecting Concept Drift in Streaming Data

  • Conference paper
  • First Online:
Deep Learning Theory and Applications (DeLTA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1875))

Included in the following conference series:

Abstract

Concept drift, which indicates data-distribution changes in streaming scenarios, can significantly reduce predictive performance. Existing concept drift detection methods often struggle with the trade-off between fast detection and low false alarm rates. This paper presents a novel concept drift detection algorithm, called SPNCD*, based on probabilistic methods, particularly Sum-Product Networks, that addresses this challenge by offering high detection accuracy and low mean lag time. Based on three benchmark datasets, the proposed method is evaluated against state-of-the-art algorithms, such as DDM, ADWIN, KSWIN, and HDDM_A. Our experiments demonstrate that SPNCD* outperforms the existing algorithms in terms of true positive rate, recall, precision, and mean lag time while improving the performance of the base classifier. The SPNCD* algorithm provides a reliable solution for detecting concept drift in real-time streaming data, enabling practitioners to maintain their machine learning models’ performance in dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams, vol. 6, pp. 77–86 (2006)

    Google Scholar 

  2. Barros, R.S., Cabral, D.R., Gonçalves, P.M., Jr., Santos, S.G.: RDDM: reactive drift detection method. Expert Syst. Appl. 90, 344–355 (2017)

    Article  Google Scholar 

  3. Barros, R.S.M., Santos, S.G.T.C.: A large-scale comparison of concept drift detectors. Inf. Sci. 451, 348–370 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bayram, F., Ahmed, B.S., Kassler, A.: From concept drift to model degradation: an overview on performance-aware drift detectors. Knowl.-Based Syst. 245, 108632 (2022). https://doi.org/10.1016/j.knosys.2022.108632

  5. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)

    Google Scholar 

  6. Demšar, J., Bosnić, Z.: Detecting concept drift in data streams using model explanation. Expert Syst. Appl. 92, 546–559 (2018)

    Article  Google Scholar 

  7. Fieguth, P.: An Introduction to Pattern Recognition and Machine Learning. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95995-1

  8. Frias-Blanco, I., del Campo-Ávila, J., Ramos-Jimenez, G., Morales-Bueno, R., Ortiz-Diaz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans. Knowl. Data Eng. 27(3), 810–823 (2014)

    Article  Google Scholar 

  9. Gama, J., Castillo, G.: Learning with local drift detection. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 42–55. Springer, Heidelberg (2006). https://doi.org/10.1007/11811305_4

    Chapter  Google Scholar 

  10. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  11. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)

    Article  MATH  Google Scholar 

  12. Garnett, R., Roberts, S.J.: Learning from data streams with concept drift. Technical report, Dept. of Engineering Science (2008)

    Google Scholar 

  13. Gemaque, R.N., Costa, A.F.J., Giusti, R., Dos Santos, E.M.: An overview of unsupervised drift detection methods. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10(6), e1381 (2020)

    Google Scholar 

  14. Gonçalves, P.M., Jr., de Carvalho Santos, S.G., Barros, R.S., Vieira, D.C.: A comparative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144–8156 (2014)

    Article  Google Scholar 

  15. Gözüaçık, Ö., Büyükçakır, A., Bonab, H., Can, F.: Unsupervised concept drift detection with a discriminative classifier. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2365–2368 (2019)

    Google Scholar 

  16. Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept drift and imbalance: an overview. Prog. Artif. Intell. 1, 89–101 (2012)

    Article  Google Scholar 

  17. Huang, D.T.J., Koh, Y.S., Dobbie, G., Pears, R.: Detecting volatility shift in data streams. In: 2014 IEEE International Conference on Data Mining, pp. 863–868. IEEE (2014)

    Google Scholar 

  18. Klinkenberg, R., Renz, I.: Adaptive information filtering: learning in the presence of concept drifts. Learn. Text Categ. 33–40 (1998)

    Google Scholar 

  19. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken (2014)

    Google Scholar 

  20. de Lima Cabral, D.R., de Barros, R.S.M.: Concept drift detection based on fisher’s exact test. Inf. Sci. 442, 220–234 (2018)

    Google Scholar 

  21. López Lobo, J.: Synthetic datasets for concept drift detection purposes. Harv. Dataverse (2020)

    Google Scholar 

  22. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)

    Google Scholar 

  23. Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 264–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75488-6_27

    Chapter  Google Scholar 

  24. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pears, R., Sakthithasan, S., Koh, Y.S.: Detecting concept change in dynamic data streams. Mach. Learn. 97(3), 259–293 (2014). https://doi.org/10.1007/s10994-013-5433-9

    Article  MathSciNet  MATH  Google Scholar 

  26. Pesaranghader, A., Viktor, H.L.: Fast hoeffding drift detection method for evolving data streams. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9852, pp. 96–111. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46227-1_7

    Chapter  Google Scholar 

  27. Pesaranghader, A., Viktor, H.L., Paquet, E.: Mcdiarmid drift detection methods for evolving data streams. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2018)

    Google Scholar 

  28. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690. IEEE (2011)

    Google Scholar 

  29. Raab, C., Heusinger, M., Schleif, F.M.: Reactive soft prototype computing for concept drift streams. Neurocomputing 416, 340–351 (2020)

    Article  Google Scholar 

  30. Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Exponentially weighted moving average charts for detecting concept drift. Pattern Recognit. Lett. 33(2), 191–198 (2012)

    Article  Google Scholar 

  31. Sánchez-Cauce, R., París, I., Díez, F.J.: Sum-product networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3821–3839 (2021). IEEE

    Google Scholar 

  32. Webb, G.I., Lee, L.K., Petitjean, F., Goethals, B.: Understanding concept drift. arXiv preprint arXiv:1704.00362 (2017)

  33. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirvan Parasteh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parasteh, S., Sadaoui, S. (2023). A Novel Probabilistic Approach for Detecting Concept Drift in Streaming Data. In: Conte, D., Fred, A., Gusikhin, O., Sansone, C. (eds) Deep Learning Theory and Applications. DeLTA 2023. Communications in Computer and Information Science, vol 1875. Springer, Cham. https://doi.org/10.1007/978-3-031-39059-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39059-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39058-6

  • Online ISBN: 978-3-031-39059-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics