Skip to main content

Endpoints for Clinical Effects of Renal Denervation: What Is the Best Surrogate?

  • Chapter
  • First Online:
Renal Denervation

Abstract

Renal denervation (RDN) is an effective treatment for resistant hypertension (HTN) but does not always result in lower blood pressures. New techniques to assess the success of RDN and measure sympathetic nerve activity may allow for improved patient selection for RDN, documentation of procedural technical success, and evaluation of patients in whom there is a late loss of clinical benefit. A number of potential surrogates, including blood and urinary biomarkers, recordings of nerve activity, and continuous monitoring to assess oscillations in heart rate and blood pressure, have been identified and evaluated. Assessing the effectiveness of RDN requires careful differentiation of technical success (i.e., effective ablation of nerve signaling in the renal arteries) and clinical outcomes (including surrogate endpoints such as left ventricular hypertrophy and “hard” outcomes such as mortality). In this chapter, we review the relevant renal artery anatomy and procedural characteristics of RDN; appraise the existing literature studying the value of surrogate markers for both technical success and clinical outcomes for RDN across multiple organ systems including cardiovascular, renal, and endocrine; and explore the relevance of these biomarkers as they relate to the potential applications of RDN for resistant HTN as well as alternative disease processes including atherosclerosis, heart failure, arrhythmia, chronic kidney disease, and the metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–197.

    Article  CAS  PubMed  Google Scholar 

  2. Campese VM. Neurogenic factors and hypertension in renal disease. Kidney Int Suppl. 2000;75:S2–6.

    Article  CAS  PubMed  Google Scholar 

  3. Chevendra V, Weaver LC. Distribution of splenic, mesenteric and renal neurons in sympathetic ganglia in rats. J Auton Nerv Syst. 1991;33:47–53.

    Article  CAS  PubMed  Google Scholar 

  4. Drukker J, Groen GJ, Boekelaar AB, Baljet B. The extrinsic innervation of the rat kidney. Clin Exp Hypertens Part A Theory Pract. 1987;9(Suppl 1):15–31.

    Article  Google Scholar 

  5. van Amsterdam WA, Blankestijn PJ, Goldschmeding R, Bleys RL. The morphological substrate for renal denervation: nerve distribution patterns and parasympathetic nerves. A post-mortem histological study. Ann Anat. 2016;204:71–9.

    Article  PubMed  Google Scholar 

  6. Mompeo B, Maranillo E, Garcia-Touchard A, Larkin T, Sanudo J. The gross anatomy of the renal sympathetic nerves revisited. Clin Anat. 2016;29:660–4.

    Article  PubMed  Google Scholar 

  7. Solano-Flores LP, Rosas-Arellano MP, Ciriello J. Fos induction in central structures after afferent renal nerve stimulation. Brain Res. 1997;753:102–19.

    Article  CAS  PubMed  Google Scholar 

  8. Ciriello J, de Oliveira CV. Renal afferents and hypertension. Curr Hypertens Rep. 2002;4:136–42.

    Article  PubMed  Google Scholar 

  9. Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71:659–82.

    Article  CAS  PubMed  Google Scholar 

  10. Kopp UC, Smith LA, DiBona GF. Renorenal reflex: neural components of ipsilateral and contralateral renal response. Am J Phys. 1985;249:F507–17.

    CAS  Google Scholar 

  11. Mitchell GAG. Anatomy of the autonomic nervous system. Edinburgh: E. & S. Living-stone; 1953.

    Google Scholar 

  12. Johns EJ, Kopp UC, Dibona GF. Neural control of renal function. Compr Physiol. 2011;1:731–67.

    Article  PubMed  Google Scholar 

  13. Atherton DS, Deep NL, Mendelsohn FO. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study. Clin Anat. 2012;25:628–33.

    Article  PubMed  Google Scholar 

  14. Kopp UC, Cicha MZ, Smith LA, Mulder J, Hokfelt T. Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of alpha1- and alpha2-adrenoceptors on renal sensory nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1561–72.

    Article  CAS  PubMed  Google Scholar 

  15. Sobotka PA, Mahfoud F, Schlaich MP, Hoppe UC, Bohm M, Krum H. Sympatho-renal axis in chronic disease. Clin Res Cardiol. 2011;100:1049–57.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Knuepfer MM, Schramm LP. The conduction velocities and spinal projections of single renal afferent fibers in the rat. Brain Res. 1987;435:167–73.

    Article  CAS  PubMed  Google Scholar 

  17. Barajas L, Wang P. Myelinated nerves of the rat kidney. A light and electron microscopic autoradiographic study. J Ultrastruct Res. 1978;65:148–62.

    Article  CAS  PubMed  Google Scholar 

  18. Kopp UC. Role of renal sensory nerves in physiological and pathophysiological conditions. Am J Physiol Regul Integr Comp Physiol. 2015;308:R79–95.

    Article  CAS  PubMed  Google Scholar 

  19. Ueda H, Uchida Y, Kamisaka K. Mechanism of the reflex depressor effect by the kidney in dog. Jpn Heart J. 1967;8:597–606.

    Article  CAS  PubMed  Google Scholar 

  20. Aars H, Akre S. Reflex changes in sympathetic activity and arterial blood pressure evoked by afferent stimulation of the renal nerve. Acta Physiol Scand. 1970;78:184–8.

    Article  CAS  PubMed  Google Scholar 

  21. Beacham WS, Kunze DL. Renal receptors evoking a spinal vasometer reflex. J Physiol. 1969;201:73–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu M, Wei SG, Chai XS. Effect of electrical stimulation of afferent renal nerve on arterial blood pressure, heart rate and vasopressin in rabbits. Sheng Li Xue Bao. 1995;47:471–7.

    CAS  PubMed  Google Scholar 

  23. Smits JF, Brody MJ. Activation of afferent renal nerves by intrarenal bradykinin in conscious rats. Am J Phys. 1984;247:R1003–8.

    CAS  Google Scholar 

  24. Katholi RE, Whitlow PL, Hageman GR, Woods WT. Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog. J Hypertens. 1984;2:349–59.

    Article  CAS  PubMed  Google Scholar 

  25. Handa RK, Johns EJ. Interaction of the renin-angiotensin system and renal nerves in the regulation of rat kidney function. J Physiol. 1985;369:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DiBona GF. Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol. 2005;289:R633–41.

    Article  CAS  PubMed  Google Scholar 

  27. Zanchetti AS. Neural regulation of renin release: experimental evidence and clinical implications in arterial hypertension. Circulation. 1977;56:691–8.

    Article  CAS  PubMed  Google Scholar 

  28. Osborn JL, DiBona GF, Thames MD. Beta-1 receptor mediation of renin secretion elicited by low-frequency renal nerve stimulation. J Pharmacol Exp Ther. 1981;216:265–9.

    CAS  PubMed  Google Scholar 

  29. Yoshimoto T, Sakagami T, Nagura S, Miki K. Relationship between renal sympathetic nerve activity and renal blood flow during natural behavior in rats. Am J Physiol Regul Integr Comp Physiol. 2004;286:R881–R7.

    Article  CAS  PubMed  Google Scholar 

  30. Barajas L, Powers K, Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Phys. 1984;247:F50–60.

    CAS  Google Scholar 

  31. Barajas L, Powers K. Innervation of the renal proximal convoluted tubule of the rat. Am J Anat. 1989;186:378–88.

    Article  CAS  PubMed  Google Scholar 

  32. Barajas L, Powers K. Monoaminergic innervation of the rat kidney: a quantitative study. Am J Phys. 1990;259:F503–11.

    CAS  Google Scholar 

  33. Pernow J, Schwieler J, Kahan T, et al. Influence of sympathetic discharge pattern on norepinephrine and neuropeptide Y release. Am J Phys. 1989;257:H866–72.

    CAS  Google Scholar 

  34. Schwartz DD, Malik KU. Renal periarterial nerve stimulation-induced vasoconstriction at low frequencies is primarily due to release of a purinergic transmitter in the rat. J Pharmacol Exp Ther. 1989;250:764–71.

    CAS  PubMed  Google Scholar 

  35. Williams NG, Zhong H, Minneman KP. Differential coupling of alpha1-, alpha2-, and beta-adrenergic receptors to mitogen-activated protein kinase pathways and differentiation in transfected PC12 cells. J Biol Chem. 1998;273:24624–32.

    Article  CAS  PubMed  Google Scholar 

  36. Azroyan A, Morla L, Crambert G, et al. Regulation of pendrin by cAMP: possible involvement in beta-adrenergic-dependent NaCl retention. Am J Physiol Renal Physiol. 2012;302:F1180–7.

    Article  CAS  PubMed  Google Scholar 

  37. Pernow J, Lundberg JM. Modulation of noradrenaline and neuropeptide Y (NPY) release in the pig kidney in vivo: involvement of alpha 2, NPY and angiotensin II receptors. Naunyn Schmiedeberg’s Arch Pharmacol. 1989;340:379–85.

    Article  CAS  Google Scholar 

  38. Unwin RJ, Bailey MA, Burnstock G. Purinergic signaling along the renal tubule: the current state of play. News Physiol Sci. 2003;18:237–41.

    CAS  PubMed  Google Scholar 

  39. Barrett CJ, Navakatikyan MA, Malpas SC. Long-term control of renal blood flow: what is the role of the renal nerves? Am J Physiol Regul Integr Comp Physiol. 2001;280:R1534–45.

    Article  CAS  PubMed  Google Scholar 

  40. Abdala AP, McBryde FD, Marina N, et al. Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J Physiol. 2012.

    Google Scholar 

  41. Paton JF, Sobotka PA, Fudim M, et al. The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension. 2012.

    Google Scholar 

  42. Esler M, Jennings G, Korner P, et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11:3–20.

    Article  CAS  PubMed  Google Scholar 

  43. Lundin S, Ricksten SE, Thoren P. Interaction between “mental stress” and baroreceptor reflexes concerning effects on heart rate, mean arterial pressure and renal sympathetic activity in conscious spontaneously hypertensive rats. Acta Physiol Scand. 1984;120:273–81.

    Article  CAS  PubMed  Google Scholar 

  44. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.

    Article  CAS  PubMed  Google Scholar 

  45. Ramchandra R, Hood SG, Denton DA, et al. Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure. Proc Natl Acad Sci U S A. 2009;106:924–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barajas L, Sokolski KN, Lechago J. Vasoactive intestinal polypeptide-immunoreactive nerves in the kidney. Neurosci Lett. 1983;43:263–9.

    Article  CAS  PubMed  Google Scholar 

  47. Knight DS, Beal JA, Yuan ZP, Fournet TS. Vasoactive intestinal peptide-immunoreactive nerves in the rat kidney. Anat Rec. 1987;219:193–203.

    Article  CAS  PubMed  Google Scholar 

  48. Norvell JE, Anderson JM. Assessment of possible parasympathetic innervation of the kidney. J Auton Nerv Syst. 1983;8:291–4.

    Article  CAS  PubMed  Google Scholar 

  49. Page IH, Heuer GJ. The effect of renal denervation on patients suffering from nephritis. J Clin Invest. 1935;14:443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pokushalov E, Romanov A, Corbucci G, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.

    Article  PubMed  Google Scholar 

  51. Gal P, de Jong MR, Smit JJ, Adiyaman A, Staessen JA, Elvan A. Blood pressure response to renal nerve stimulation in patients undergoing renal denervation: a feasibility study. J Hum Hypertens. 2015;29:292–5.

    Article  CAS  PubMed  Google Scholar 

  52. Chinushi M, Izumi D, Iijima K, et al. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Hypertension. 2013;61:450–6.

    Article  CAS  PubMed  Google Scholar 

  53. Lu J, Wang Z, Zhou T, et al. Selective proximal renal denervation guided by autonomic responses evoked via high-frequency stimulation in a preclinical canine model. Circ Cardiovasc Interv. 2015;8.

    Google Scholar 

  54. Hilbert S, Kosiuk J, Hindricks G, Bollmann A. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Int J Cardiol. 2014;177:669–71.

    Article  PubMed  Google Scholar 

  55. de Jong MR, Hoogerwaard AF, Gal P, et al. Persistent increase in blood pressure after renal nerve stimulation in accessory renal arteries after sympathetic renal denervation. Hypertension. 2016;67:1211–7.

    Article  PubMed  Google Scholar 

  56. de Jong MR, Adiyaman A, Gal P, et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension. 2016;68:707–14.

    Article  PubMed  Google Scholar 

  57. Madhavan M, Desimone CV, Ebrille E, et al. Transvenous stimulation of the renal sympathetic nerves increases systemic blood pressure: a potential new treatment option for neurocardiogenic syncope. J Cardiovasc Electrophysiol. 2014;25:1115–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tsiachris D, Tsioufis C, Dimitriadis K, et al. Electrical stimulation of the renal arterial nerves does not unmask the blindness of renal denervation procedure in swine. Int J Cardiol. 2014;176:1061–3.

    Article  PubMed  Google Scholar 

  59. Sobotka PAE, Levin H, Yin YH, Wang J. Renal afferent nerve mapping and selective denervation. CRT. 2017.

    Google Scholar 

  60. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.

    Article  CAS  PubMed  Google Scholar 

  61. Hausberg M, Kosch M, Harmelink P, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974–9.

    Article  PubMed  Google Scholar 

  62. Siddiqi L, Joles JA, Grassi G, Blankestijn PJ. Is kidney ischemia the central mechanism in parallel activation of the renin and sympathetic system? J Hypertens. 2009;27:1341–9.

    Article  CAS  PubMed  Google Scholar 

  63. Kopp UC, Cicha MZ, Smith LA. Endogenous angiotensin modulates PGE(2)-mediated release of substance P from renal mechanosensory nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2002;282:R19–30.

    Article  CAS  PubMed  Google Scholar 

  64. Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011;4:669–75.

    Article  PubMed  Google Scholar 

  65. Bencsath P, Szenasi G, Takacs L. Water and electrolyte transport in Henle's loop and distal tubule after renal sympathectomy in the rat. Am J Phys. 1985;249:F308–14.

    CAS  Google Scholar 

  66. Bachmann S, Bosse HM, Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Phys. 1995;268:F885–98.

    CAS  Google Scholar 

  67. Kopp UC, Cicha MZ, Smith LA. Impaired responsiveness of renal mechanosensory nerves in heart failure: role of endogenous angiotensin. Am J Physiol Regul Integr Comp Physiol. 2003;284:R116–24.

    Article  CAS  PubMed  Google Scholar 

  68. Kline RL, Mercer PF. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am J Phys. 1980;238:R353–8.

    CAS  Google Scholar 

  69. Couch NP, Mc BR, Dammin GJ, Murray JE. Observations on the nature of the enlargement, the regeneration of the nerves, and the function of the canine renal autograft. Br J Exp Pathol. 1961;42:106–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gazdar AF, Dammin GJ. Neural degeneration and regeneration in human renal transplants. N Engl J Med. 1970;283:222–4.

    Article  CAS  PubMed  Google Scholar 

  71. Hansen JM, Abildgaard U, Fogh-Andersen N, et al. The transplanted human kidney does not achieve functional reinnervation. Clin Sci (Lond). 1994;87:13–20.

    Article  CAS  PubMed  Google Scholar 

  72. Mulder J, Hokfelt T, Knuepfer MM, Kopp UC. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2013;304:R675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Friberg P, Meredith I, Jennings G, Lambert G, Fazio V, Esler M. Evidence for increased renal norepinephrine overflow during sodium restriction in humans. Hypertension. 1990;16:121–30.

    Article  CAS  PubMed  Google Scholar 

  74. Dunlap ME, Sobotka PA. Fluid re-distribution rather than accumulation causes most cases of decompensated heart failure. J Am Coll Cardiol. 2013;62:165–6.

    Article  PubMed  Google Scholar 

  75. Ma MC, Huang HS, Chen CF. Impaired renal sensory responses after unilateral ureteral obstruction in the rat. J Am Soc Nephrol. 2002;13:1008–16.

    Article  PubMed  Google Scholar 

  76. Pan HL, Longhurst JC, Eisenach JC, Chen SR. Role of protons in activation of cardiac sympathetic C-fibre afferents during ischaemia in cats. J Physiol. 1999;518(Pt 3):857–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kostreva DR, Zuperku EJ, Hess GL, Coon RL, Kampine JP. Pulmonary afferent activity recorded from sympathetic nerves. J Appl Physiol. 1975;39:37–40.

    Article  CAS  PubMed  Google Scholar 

  78. Kostreva DR, Castaner A, Kampine JP. Reflex effects of hepatic baroreceptors on renal and cardiac sympathetic nerve activity. Am J Phys. 1980;238:R390–4.

    CAS  Google Scholar 

  79. Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96:3423–9.

    Article  CAS  PubMed  Google Scholar 

  80. Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90:513–57.

    Article  CAS  PubMed  Google Scholar 

  81. Iriki M, Simon E. Differential control of efferent sympathetic activity revisited. J Physiol Sci. 2012;62:275–98.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P. Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Phys. 1984;247:E21–8.

    CAS  Google Scholar 

  83. Esler M, Jennings G, Korner P, et al. Total, and organ-specific, noradrenaline plasma kinetics in essential hypertension. Clin Exp Hypertens Part A, Theory Pract. 1984;6:507–21.

    Article  CAS  Google Scholar 

  84. Esler M, Willett I, Leonard P, et al. Plasma noradrenaline kinetics in humans. J Auton Nerv Syst. 1984;11:125–44.

    Article  CAS  PubMed  Google Scholar 

  85. Bradley T, Hjemdahl P. Further studies on renal nerve stimulation induced release of noradrenaline and dopamine from the canine kidney in situ. Acta Physiol Scand. 1984;122:369–79.

    Article  CAS  PubMed  Google Scholar 

  86. Hagbarth KE, Vallbo AB. Pulse and respiratory grouping of sympathetic impulses in human muscle-nerves. Acta Physiol Scand. 1968;74:96–108.

    Article  CAS  PubMed  Google Scholar 

  87. Charkoudian N, Joyner MJ, Johnson CP, Eisenach JH, Dietz NM, Wallin BG. Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol. 2005;568:315–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wallin BG, Charkoudian N. Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve. 2007;36:595–614.

    Article  CAS  PubMed  Google Scholar 

  89. Fagius J, Wallin BG. Long-term variability and reproducibility of resting human muscle nerve sympathetic activity at rest, as reassessed after a decade. Clin Autonomic Res. 1993;3:201–5.

    Article  CAS  Google Scholar 

  90. Macefield VG, Wallin BG, Vallbo AB. The discharge behaviour of single vasoconstrictor motoneurones in human muscle nerves. J Physiol. 1994;481(Pt 3):799–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hering D, Lambert EA, Marusic P, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61:457–64.

    Article  CAS  PubMed  Google Scholar 

  92. Lambert E, Dawood T, Schlaich M, Straznicky N, Esler M, Lambert G. Single-unit sympathetic discharge pattern in pathological conditions associated with elevated cardiovascular risk. Clin Exp Pharmacol Physiol. 2008;35:503–7.

    Article  CAS  PubMed  Google Scholar 

  93. Macefield VG, Wallin BG. Respiratory and cardiac modulation of single sympathetic vasoconstrictor and sudomotor neurones to human skin. J Physiol. 1999;516(Pt 1):303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Murai H, Takata S, Maruyama M, et al. The activity of a single muscle sympathetic vasoconstrictor nerve unit is affected by physiological stress in humans. Am J Phys Heart Circ Phys. 2006;290:H853–60.

    CAS  Google Scholar 

  95. Macefield VG, Rundqvist B, Sverrisdottir YB, Wallin BG, Elam M. Firing properties of single muscle vasoconstrictor neurons in the sympathoexcitation associated with congestive heart failure. Circulation. 1999;100:1708–13.

    Article  CAS  PubMed  Google Scholar 

  96. Barretto AC, Santos AC, Munhoz R, et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol. 2009;135:302–7.

    Article  PubMed  Google Scholar 

  97. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25:1276–86.

    Article  CAS  PubMed  Google Scholar 

  98. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the north American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17:354–81.

    Google Scholar 

  99. Gilder M, Ramsbottom R. Measures of cardiac autonomic control in women with differing volumes of physical activity. J Sports Sci. 2008;26:781–6.

    Article  PubMed  Google Scholar 

  100. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (autonomic tone and reflexes after myocardial infarction) investigators. Lancet. 1998;351:478–84.

    Article  PubMed  Google Scholar 

  101. Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Phys Heart Circ Phys. 2002;282:H6–20.

    CAS  Google Scholar 

  102. Fox K, Borer JS, Camm AJ, et al. Resting heart rate in cardiovascular disease. J Am Coll Cardiol. 2007;50:823–30.

    Article  PubMed  Google Scholar 

  103. Julien C, Chapuis B, Cheng Y, Barres C. Dynamic interactions between arterial pressure and sympathetic nerve activity: role of arterial baroreceptors. Am J Physiol Regul Integr Comp Physiol. 2003;285:R834–41.

    Article  CAS  PubMed  Google Scholar 

  104. Narkiewicz K, Winnicki M, Schroeder K, et al. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension. 2002;39:168–72.

    Article  PubMed  Google Scholar 

  105. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33:1058–66.

    Article  CAS  PubMed  Google Scholar 

  106. Bristow JD, Honour AJ, Pickering GW, Sleight P, Smyth HS. Diminished baroreflex sensitivity in high blood pressure. Circulation. 1969;39:48–54.

    Article  CAS  PubMed  Google Scholar 

  107. Ellenbogen KA, Mohanty PK, Szentpetery S, Thames MD. Arterial baroreflex abnormalities in heart failure. Reversal after orthotopic cardiac transplantation. Circulation. 1989;79:51–8.

    Article  CAS  PubMed  Google Scholar 

  108. Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens. 2000;18:7–19.

    Article  CAS  PubMed  Google Scholar 

  109. Despas F, Lambert E, Vaccaro A, et al. Peripheral chemoreflex activation contributes to sympathetic baroreflex impairment in chronic heart failure. J Hypertens. 2012;30:753–60.

    Article  CAS  PubMed  Google Scholar 

  110. Ponikowski P, Chua TP, Anker SD, et al. Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation. 2001;104:544–9.

    Article  CAS  PubMed  Google Scholar 

  111. McBryde FD, Abdala AP, Hendy EB, et al. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun. 2013;4:2395.

    Article  PubMed  Google Scholar 

  112. Niewinski P, Engelman ZJ, Fudim M, et al. Clinical predictors and hemodynamic consequences of elevated peripheral chemosensitivity in optimally treated men with chronic systolic heart failure. J Card Fail. 2013;19:408–15.

    Article  CAS  PubMed  Google Scholar 

  113. Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular and respiratory effects of adenosine in conscious man. Evidence for chemoreceptor activation. Circulation research. 1987;61:779–86.

    Article  CAS  PubMed  Google Scholar 

  114. Stickland MK, Fuhr DP, Haykowsky MJ, et al. Carotid chemoreceptor modulation of blood flow during exercise in healthy humans. J Physiol. 2011;589:6219–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ott C, Mahfoud F, Schmid A, et al. Renal denervation in moderate treatment-resistant hypertension. J Am Coll Cardiol. 2013;62:1880–6.

    Article  PubMed  Google Scholar 

  116. Mahfoud F, Bakris G, Bhatt DL, et al. Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the global SYMPLICITY registry. Eur Heart J. 2016;38:93–100.

    PubMed Central  Google Scholar 

  117. Ewen S, Ukena C, Linz D, et al. Reduced effect of percutaneous renal denervation on blood pressure in patients with isolated systolic hypertension. Hypertension. 2015;65:193–9.

    Article  CAS  PubMed  Google Scholar 

  118. Mahfoud F, Ukena C, Schmieder RE, et al. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation. 2013;128:132–40.

    Article  CAS  PubMed  Google Scholar 

  119. Zuern CS, Eick C, Rizas KD, et al. Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2013.

    Google Scholar 

  120. Rocha-Singh KJ, Katholi RE. Renal sympathetic denervation for treatment-resistant hypertension...In moderation. J Am Coll Cardiol. 2013;62:1887–9.

    Article  PubMed  Google Scholar 

  121. Grimson KS. Total thoracic and partial to total lumbar sympathectomy and celiac ganglionectomy in the treatment of hypertension. Ann Surg. 1941;114:753–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Peet M, Woods W, Braden S. The surgical treatment of hypertension: results in 350 consecutive cases treated by bilateral supradiaphragmatic splanchnicectomy and lower dorsal sympathetic gangliectomy. Clinical lecture at New York session. JAMA. 1940;115:1875–85.

    Article  Google Scholar 

  123. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152:1501–4.

    Article  CAS  PubMed  Google Scholar 

  124. Grimson KS, Orgain ES, Anderson B, Broome RA, Longino FH. Results of treatment of patients with hypertension by total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy. Ann Surg. 1949;129:850–71.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Smithwick RH. Surgery in hypertension. Lancet. 1948;2:65.

    CAS  PubMed  Google Scholar 

  126. Linz D, Hohl M, Schutze J, et al. Progression of kidney injury and cardiac remodeling in obese spontaneously hypertensive rats: the role of renal sympathetic innervation. Am J Hypertens. 2015;28:256–65.

    Article  CAS  PubMed  Google Scholar 

  127. Hohl M, Linz D, Fries P, et al. Modulation of the sympathetic nervous system by renal denervation prevents reduction of aortic distensibility in atherosclerosis prone ApoE-deficient rats. J Transl Med. 2016;14:167.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fischell TA, Vega F, Raju N, et al. Ethanol-mediated perivascular renal sympathetic denervation: preclinical validation of safety and efficacy in a porcine model. EuroIntervention. 2013;9:140–7.

    Article  PubMed  Google Scholar 

  129. Fischell TA, Fischell DR, Ghazarossian VE, Vega F, Ebner A. Next generation renal denervation: chemical “perivascular” renal denervation with alcohol using a novel drug infusion catheter. Cardiovasc Revasc Med. 2015;16:221–7.

    Article  PubMed  Google Scholar 

  130. Bertog S, Fischel TA, Vega F, et al. Randomised, blinded and controlled comparative study of chemical and radiofrequency-based renal denervation in a porcine model. EuroIntervention. 2017;12:e1898–e906.

    Article  PubMed  Google Scholar 

  131. Bonan R. PARADISE: first in man results of a nove circumferential catheter-based ultrasound technology for renal denervation. Annual Scientific Sessions of the European Association for Percutaneous Cardiovascular Interventions. Paris; 2012.

    Google Scholar 

  132. Mauri L, Kario K, Basile J, et al. A multinational clinical approach to assessing the effectiveness of catheter-based ultrasound renal denervation: the RADIANCE-HTN and REQUIRE clinical study designs. Am Heart J. 2018;195:115–29.

    Article  PubMed  Google Scholar 

  133. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  134. Symplicity HTNI, Esler MD, Krum H, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376:1903–9.

    Article  Google Scholar 

  135. Kandzari DE, Bhatt DL, Sobotka P, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 trial. Clin Cardiol. 2012;35:528–35.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kandzari DE, Bhatt DL, Brar S, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2014;36:219–27.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pekarskiy SE, Baev AE, Mordovin VF, et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. J Hypertens. 2017;35:369–75.

    Article  CAS  PubMed  Google Scholar 

  138. Chen W, Ling Z, Du H, et al. The effect of two different renal denervation strategies on blood pressure in resistant hypertension: comparison of full-length versus proximal renal artery ablation. Catheter Cardiovasc Interv. 2016;88:786–95.

    Article  PubMed  Google Scholar 

  139. Kandzari DE, Böhm M, Mahfoud F, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391:2346–55.

    Article  PubMed  Google Scholar 

  140. Böhm M, Kario K, Kandzari DE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020;395:1444–51.

    Article  PubMed  Google Scholar 

  141. Hart EC, McBryde FD, Burchell AE, et al. Translational examination of changes in baroreflex function after renal denervation in hypertensive rats and humans. Hypertension. 2013;

    Google Scholar 

  142. Morlin C, Wallin BG, Eriksson BM. Muscle sympathetic activity and plasma noradrenaline in normotensive and hypertensive man. Acta Physiol Scand. 1983;119:117–21.

    Article  CAS  PubMed  Google Scholar 

  143. Salman IM, Ameer OZ, Sattar MA, et al. Role of the renal sympathetic nervous system in mediating renal ischaemic injury-induced reductions in renal haemodynamic and excretory functions. Pathology. 2010;42:259–66.

    Article  PubMed  Google Scholar 

  144. Rafiq K, Noma T, Fujisawa Y, et al. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation. Circulation. 2012;125:1402–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Luippold G, Beilharz M, Muhlbauer B. Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. Nephrol Dialys Transplant. 2004;19:342–7.

    Article  Google Scholar 

  146. Clayton SC, Haack KK, Zucker IH. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure. Am J Physiol Renal Physiol. 2011;300:F31–9.

    Article  CAS  PubMed  Google Scholar 

  147. Veelken R, Vogel EM, Hilgers K, et al. Autonomic renal denervation ameliorates experimental glomerulonephritis. JASN. 2008;19:1371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang W, Falk SA, Jittikanont S, Gengaro PE, Edelstein CL, Schrier RW. Protective effect of renal denervation on normotensive endotoxemia-induced acute renal failure in mice. Am J Physiol Renal Physiol. 2002;283:F583–7.

    Article  CAS  PubMed  Google Scholar 

  149. van de Borne P. The kidney and the sympathetic system: a short review. Curr Clin Pharmacol. 2012.

    Google Scholar 

  150. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4.

    Article  CAS  PubMed  Google Scholar 

  151. Ezzahti M, Moelker A, Friesema EC, van der Linde NA, Krestin GP, van den Meiracker AH. Blood pressure and neurohormonal responses to renal nerve ablation in treatment-resistant hypertension. J Hypertens. 2013.

    Google Scholar 

  152. Ahmed H, Neuzil P, Skoda J, et al. Renal sympathetic denervation using an irrigated radiofrequency ablation catheter for the management of drug-resistant hypertension. JACC Cardiovasc Interv. 2012;5:758–65.

    Article  PubMed  Google Scholar 

  153. Schlaich MP, Bart B, Hering D, et al. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013.

    Google Scholar 

  154. Seva Pessoa B, van der Lubbe N, Verdonk K, Roks AJ, Hoorn EJ, Danser AH. Key developments in renin-angiotensin-aldosterone system inhibition. Nat Rev Nephrol. 2013;9:26–36.

    Article  CAS  PubMed  Google Scholar 

  155. Wagman G, Fudim M, Kosmas CE, Panni RE, Vittorio TJ. The neurohormonal network in the RAAS can bend before breaking. Curr Heart Fail Rep. 2012;9:81–91.

    Article  CAS  PubMed  Google Scholar 

  156. Kowalski R, Kreft E, Kasztan M, Jankowski M, Szczepanska-Konkel M. Chronic renal denervation increases renal tubular response to P2X receptor agonists in rats: implication for renal sympathetic nerve ablation. Nephrol Dialys Transplant. 2012;27:3443–8.

    Article  CAS  Google Scholar 

  157. Christy IJ, Denton KM, Anderson WP. Renal denervation potentiates the natriuretic and diuretic effects of atrial natriuretic peptide in anaesthetized rabbits. Clin Exp Pharmacol Physiol. 1994;21:41–8.

    Article  CAS  PubMed  Google Scholar 

  158. Kompanowska-Jezierska E, Walkowska A, Johns EJ, Sadowski J. Early effects of renal denervation in the anaesthetised rat: natriuresis and increased cortical blood flow. J Physiol. 2001;531:527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pettersson A, Hedner J, Hedner T. Renal interaction between sympathetic activity and ANP in rats with chronic ischaemic heart failure. Acta Physiol Scand. 1989;135:487–92.

    Article  CAS  PubMed  Google Scholar 

  160. Wenting GJ, Blankestijn PJ, Poldermans D, et al. Blood pressure response of nephrectomized subjects and patients with essential hypertension to ramipril: indirect evidence that inhibition of tissue angiotensin converting enzyme is important. Am J Cardiol. 1987;59:92D–7D.

    Article  CAS  PubMed  Google Scholar 

  161. Wang L, Lu CZ, Zhang X, et al. The effect of catheter based renal synthetic denervation on renin-angiotensin-aldosterone system in patients with resistant hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41:3–7.

    PubMed  Google Scholar 

  162. Di Daniele N, De Francesco M, Violo L, Spinelli A, Simonetti G. Renal sympathetic nerve ablation for the treatment of difficult-to-control or refractory hypertension in a haemodialysis patient. Nephrol Dialys Transplant. 2012;27:1689–90.

    Article  Google Scholar 

  163. Masuo K, Lambert GW, Esler MD, Rakugi H, Ogihara T, Schlaich MP. The role of sympathetic nervous activity in renal injury and end-stage renal disease. Hypertens Res. 2010;33:521–8.

    Article  CAS  PubMed  Google Scholar 

  164. Converse RL Jr, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8.

    Article  PubMed  Google Scholar 

  165. Hering D, Lambert EA, Marusic P, et al. Renal nerve ablation reduces augmentation index in patients with resistant hypertension. J Hypertens. 2013.

    Google Scholar 

  166. Greenwood JP, Stoker JB, Mary DA. Single-unit sympathetic discharge: quantitative assessment in human hypertensive disease. Circulation. 1999;100:1305–10.

    Article  CAS  PubMed  Google Scholar 

  167. Oliveira VL, Irigoyen MC, Moreira ED, Strunz C, Krieger EM. Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats. Hypertension. 1992;19:II17-21.

    Article  PubMed  Google Scholar 

  168. Janssen BJ, van Essen H, Vervoort-Peters LH, Struyker-Boudier HA, Smits JF. Role of afferent renal nerves in spontaneous hypertension in rats. Hypertension. 1989;13:327–33.

    Article  CAS  PubMed  Google Scholar 

  169. Schiller ACP, Haack K, Zucker I. Unilateral renal denervation enhances baroreflex function in concious rabbits with chronic heart failure. Physiologist. 2012;55:A13.9.43.

    Google Scholar 

  170. Brinkmann J, Heusser K, Schmidt BM, et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60:1485–90.

    Article  CAS  PubMed  Google Scholar 

  171. Fujisawa Y, Nagai Y, Lei B, et al. Roles of central renin-angiotensin system and afferent renal nerve in the control of systemic hemodynamics in rats. Hypertens Res. 2011;34:1228–32.

    Article  CAS  PubMed  Google Scholar 

  172. Ito S, Komatsu K, Tsukamoto K, Kanmatsuse K, Sved AF. Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension. 2002;40:552–9.

    Article  CAS  PubMed  Google Scholar 

  173. Weyhenmeyer JA, Phillips MI. Angiotensin-like immunoreactivity in the brain of the spontaneously hypertensive rat. Hypertension. 1982;4:514–23.

    Article  CAS  PubMed  Google Scholar 

  174. Catheter-based renal sympathetic denervation for resistant hypertension. Durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–7.

    Article  Google Scholar 

  175. Ukena C, Mahfoud F, Spies A, et al. Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension. Int J Cardiol. 2012.

    Google Scholar 

  176. Brandt MC, Reda S, Mahfoud F, Lenski M, Bohm M, Hoppe UC. Effects of renal sympathetic denervation on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Am Coll Cardiol. 2012;60:1956–65.

    Article  PubMed  Google Scholar 

  177. Huang WC, Fang TC, Cheng JT. Renal denervation prevents and reverses hyperinsulinemia-induced hypertension in rats. Hypertension. 1998;32:249–54.

    Article  CAS  PubMed  Google Scholar 

  178. Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:1940–6.

    Article  CAS  PubMed  Google Scholar 

  179. Ukena C, Mahfoud F, Kindermann I, et al. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2011;58:1176–82.

    Article  PubMed  Google Scholar 

  180. Mahfoud F, Cremers B, Janker J, et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60:419–24.

    Article  CAS  PubMed  Google Scholar 

  181. Schmieder RE, Mann JF, Schumacher H, et al. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. JASN. 2011;22:1353–64.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Villarreal D, Freeman RH, Johnson RA, Simmons JC. Effects of renal denervation on postprandial sodium excretion in experimental heart failure. Am J Phys. 1994;266:R1599–604.

    CAS  Google Scholar 

  183. Brandt MC, Mahfoud F, Reda S, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.

    Article  PubMed  Google Scholar 

  184. Davies JE, Manisty CH, Petraco R, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-pilot study. Int J Cardiol. 2013;162:189–92.

    Article  PubMed  Google Scholar 

  185. Linz D, Schotten U, Neuberger HR, Bohm M, Wirth K. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm. 2011;8:1436–43.

    Article  PubMed  Google Scholar 

  186. Linz D, Mahfoud F, Schotten U, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60:172–8.

    Article  CAS  PubMed  Google Scholar 

  187. Linz D, Mahfoud F, Schotten U, et al. Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension. 2013;61:225–31.

    Article  CAS  PubMed  Google Scholar 

  188. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376:1903–9.

    Article  PubMed  Google Scholar 

  189. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ohkubo T, Imai Y, Tsuji I, et al. Prediction of mortality by ambulatory blood pressure monitoring versus screening blood pressure measurements: a pilot study in Ohasama. J Hypertens. 1997;15:357–64.

    Article  CAS  PubMed  Google Scholar 

  191. Pickering TG, Shimbo D, Haas D. Ambulatory blood-pressure monitoring. N Engl J Med. 2006;354:2368–74.

    Article  CAS  PubMed  Google Scholar 

  192. Mancia G, Zanchetti A, Agabiti-Rosei E, et al. Ambulatory blood pressure is superior to clinic blood pressure in predicting treatment-induced regression of left ventricular hypertrophy. SAMPLE study group. Study on ambulatory monitoring of blood pressure and lisinopril evaluation. Circulation. 1997;95:1464–70.

    Article  CAS  PubMed  Google Scholar 

  193. Mancia G, Parati G. Ambulatory blood pressure monitoring and organ damage. Hypertension. 2000;36:894–900.

    Article  CAS  PubMed  Google Scholar 

  194. Fagard RH, Celis H, Thijs L, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51:55–61.

    Article  CAS  PubMed  Google Scholar 

  195. Metoki H, Ohkubo T, Kikuya M, et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension. 2006;47:149–54.

    Article  CAS  PubMed  Google Scholar 

  196. Dolan E, Stanton A, Thijs L, et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46:156–61.

    Article  CAS  PubMed  Google Scholar 

  197. Mancia G, De Backer G, Dominiczak A, et al. 2007 guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2007;28:1462–536.

    PubMed  Google Scholar 

  198. Williams B, Lacy PS, Thom SM, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the conduit artery function evaluation (CAFE) study. Circulation. 2006;113:1213–25.

    Article  CAS  PubMed  Google Scholar 

  199. Lindholm LH, Carlberg B, Samuelsson O. Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet. 2005;366:1545–53.

    Article  CAS  PubMed  Google Scholar 

  200. Mancia G, Parati G. Office compared with ambulatory blood pressure in assessing response to antihypertensive treatment: a meta-analysis. J Hypertens. 2004;22:435–45.

    Article  CAS  PubMed  Google Scholar 

  201. Zuern CS, Rizas KD, Eick C, et al. Effects of renal sympathetic denervation on 24-hour blood pressure variability. Front Physiol. 2012;3:134.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5:93–8.

    Article  CAS  PubMed  Google Scholar 

  203. Kikuya M, Hozawa A, Ohokubo T, et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension. 2000;36:901–6.

    Article  CAS  PubMed  Google Scholar 

  204. Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension. 2011;57:160–6.

    Article  CAS  PubMed  Google Scholar 

  205. Hsieh YT, Tu ST, Cho TJ, Chang SJ, Chen JF, Hsieh MC. Visit-to-visit variability in blood pressure strongly predicts all-cause mortality in patients with type 2 diabetes: a 5.5-year prospective analysis. Eur J Clin Investig. 2012;42:245–53.

    Article  Google Scholar 

  206. Perticone F, Ceravolo R, Pujia A, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2001;104:191–6.

    Article  CAS  PubMed  Google Scholar 

  207. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.

    Article  PubMed  Google Scholar 

  208. Bombelli M, Facchetti R, Carugo S, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27:2458–64.

    Article  CAS  PubMed  Google Scholar 

  209. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  210. Bikkina M, Levy D, Evans JC, et al. Left ventricular mass and risk of stroke in an elderly cohort. The Framingham heart study. JAMA. 1994;272:33–6.

    Article  CAS  PubMed  Google Scholar 

  211. Liao Y, Cooper RS, McGee DL, Mensah GA, Ghali JK. The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. JAMA. 1995;273:1592–7.

    Article  CAS  PubMed  Google Scholar 

  212. Ghali JK, Liao Y, Simmons B, Castaner A, Cao G, Cooper RS. The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann Intern Med. 1992;117:831–6.

    Article  CAS  PubMed  Google Scholar 

  213. Bolognese L, Dellavesa P, Rossi L, Sarasso G, Bongo AS, Scianaro MC. Prognostic value of left ventricular mass in uncomplicated acute myocardial infarction and one-vessel coronary artery disease. Am J Cardiol. 1994;73:1–5.

    Article  CAS  PubMed  Google Scholar 

  214. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  PubMed  Google Scholar 

  215. Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292:2343–9.

    Article  CAS  PubMed  Google Scholar 

  216. Pierdomenico SD, Cuccurullo F. Risk reduction after regression of echocardiographic left ventricular hypertrophy in hypertension: a meta-analysis. Am J Hypertens. 2010;23:876–81.

    Article  PubMed  Google Scholar 

  217. Mancini GB, Dahlof B, Diez J. Surrogate markers for cardiovascular disease: structural markers. Circulation. 2004;109:IV22-30.

    Article  PubMed  Google Scholar 

  218. Devereux RB, Agabiti-Rosei E, Dahlof B, et al. Regression of left ventricular hypertrophy as a surrogate end-point for morbid events in hypertension treatment trials. J Hypertens Suppl. 1996;14:S95–101. discussion S-2

    Article  CAS  PubMed  Google Scholar 

  219. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–41.

    Article  CAS  PubMed  Google Scholar 

  220. Mathew J, Sleight P, Lonn E, et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.

    Article  CAS  PubMed  Google Scholar 

  221. Dahlof B, Devereux R, de Faire U, et al. The losartan intervention for endpoint reduction (LIFE) in hypertension study: rationale, design, and methods. The LIFE Study Group American. J Hypertens. 1997;10:705–13.

    CAS  Google Scholar 

  222. Fagard RH, Pardaens K, Staessen JA, Thijs L. Prognostic value of invasive hemodynamic measurements at rest and during exercise in hypertensive men. Hypertension. 1996;28:31–6.

    Article  CAS  PubMed  Google Scholar 

  223. Kokkinos P, Myers J, Faselis C, et al. Exercise capacity and mortality in older men: a 20-year follow-up study. Circulation. 2010;122:790–7.

    Article  PubMed  Google Scholar 

  224. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434–9.

    Article  CAS  PubMed  Google Scholar 

  225. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  CAS  PubMed  Google Scholar 

  226. Willum-Hansen T, Staessen JA, Torp-Pedersen C, et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006;113:664–70.

    Article  PubMed  Google Scholar 

  227. Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  228. London GM, Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME. Arterial wave reflections and survival in end-stage renal failure. Hypertension. 2001;38:434–8.

    Article  CAS  PubMed  Google Scholar 

  229. Weber T, Auer J, O'Rourke MF, et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–9.

    Article  PubMed  Google Scholar 

  230. Tropeano AI, Boutouyrie P, Pannier B, et al. Brachial pressure-independent reduction in carotid stiffness after long-term angiotensin-converting enzyme inhibition in diabetic hypertensives. Hypertension. 2006;48:80–6.

    Article  CAS  PubMed  Google Scholar 

  231. Karalliedde J, Smith A, DeAngelis L, et al. Valsartan improves arterial stiffness in type 2 diabetes independently of blood pressure lowering. Hypertension. 2008;51:1617–23.

    Article  CAS  PubMed  Google Scholar 

  232. Stewart AD, Jiang B, Millasseau SC, Ritter JM, Chowienczyk PJ. Acute reduction of blood pressure by nitroglycerin does not normalize large artery stiffness in essential hypertension. Hypertension. 2006;48:404–10.

    Article  CAS  PubMed  Google Scholar 

  233. Gillman MW, Kannel WB, Belanger A, D'Agostino RB. Influence of heart rate on mortality among persons with hypertension: the Framingham study. Am Heart J. 1993;125:1148–54.

    Article  CAS  PubMed  Google Scholar 

  234. Wannamethee G, Shaper AG, Macfarlane PW. Heart rate, physical activity, and mortality from cancer and other noncardiovascular diseases. Am J Epidemiol. 1993;137:735–48.

    Article  CAS  PubMed  Google Scholar 

  235. Bohm M, Swedberg K, Komajda M, et al. Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet. 2010;376:886–94.

    Article  PubMed  Google Scholar 

  236. Reil JC, Custodis F, Swedberg K, et al. Heart rate reduction in cardiovascular disease and therapy. Clin Res Cardiol. 2011;100:11–9.

    Article  PubMed  Google Scholar 

  237. Kannel WB, Kannel C, Paffenbarger RS Jr, Cupples LA. Heart rate and cardiovascular mortality: the Framingham study. Am Heart J. 1987;113:1489–94.

    Article  CAS  PubMed  Google Scholar 

  238. Swedberg K, Komajda M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376:875–85.

    Article  CAS  PubMed  Google Scholar 

  239. Bohm M, Borer J, Ford I, et al. Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the SHIFT study. Clin Res Cardiol. 2013;102:11–22.

    Article  PubMed  Google Scholar 

  240. Ott C, Mahfoud F, Schmid A, et al. Renal denervation in moderate treatment resistant hypertension. J Am Coll Cardiol. 2013;

    Google Scholar 

  241. He B, Scherlag BJ, Nakagawa H, Lazzara R, Po SS. The intrinsic autonomic nervous system in atrial fibrillation: a review. ISRN Cardiol. 2012;2012:490674.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Podrid PJ, Fuchs T, Candinas R. Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation. 1990;82:I103–13.

    CAS  PubMed  Google Scholar 

  243. Knecht S, O’Neill MD, Verbeet T. Rhythm control versus rate control for atrial fibrillation. N Engl J Med. 2008;359:1522; author reply

    Article  PubMed  Google Scholar 

  244. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham heart study. Circulation. 1998;98:946–52.

    Article  CAS  PubMed  Google Scholar 

  245. Kirchhof P, Auricchio A, Bax J, et al. Outcome parameters for trials in atrial fibrillation: executive summary. Eur Heart J. 2007;28:2803–17.

    Article  PubMed  Google Scholar 

  246. Linz D, Wirth K, Ukena C, et al. Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart Rhythm. 2013.

    Google Scholar 

  247. Ukena C, Bauer A, Mahfoud F, et al. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res. 2012;101:63–7.

    Google Scholar 

  248. Daviglus ML, Liao Y, Greenland P, et al. Association of nonspecific minor ST-T abnormalities with cardiovascular mortality: the Chicago Western electric study. JAMA. 1999;281:530–6.

    Article  CAS  PubMed  Google Scholar 

  249. de Groot E, Hovingh GK, Wiegman A, et al. Measurement of arterial wall thickness as a surrogate marker for atherosclerosis. Circulation. 2004;109:III33–8.

    Article  PubMed  Google Scholar 

  250. Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387–97.

    Article  CAS  PubMed  Google Scholar 

  251. Wen CP, Cheng TY, Tsai MK, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet. 2008;371:2173–82.

    Article  PubMed  Google Scholar 

  252. Weiner DE, Tabatabai S, Tighiouart H, et al. Cardiovascular outcomes and all-cause mortality: exploring the interaction between CKD and cardiovascular disease. Am J Kidney Dis. 2006;48:392–401.

    Article  PubMed  Google Scholar 

  253. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  254. Klein IH, Ligtenberg G, Neumann J, Oey PL, Koomans HA, Blankestijn PJ. Sympathetic nerve activity is inappropriately increased in chronic renal disease. JASN. 2003;14:3239–44.

    Article  PubMed  Google Scholar 

  255. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–81.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Wang Y, Seto SW, Golledge J. Therapeutic effects of renal denervation on renal failure. Curr Neurovasc Res. 2013;10:172–84.

    Article  PubMed  Google Scholar 

  257. Ott C, Janka R, Schmid A, et al. Vascular and renal hemodynamic changes after renal denervation. CJASN. 2013;8:1195–201.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Hering D, Mahfoud F, Walton AS, et al. Renal denervation in moderate to severe CKD. JASN. 2012;23:1250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ott C, Schmid A, Ditting T, et al. Renal denervation in a hypertensive patient with end-stage renal disease and small arteries: a direction for future research. J Clin Hypertens (Greenwich). 2012;14:799–801.

    Article  PubMed  Google Scholar 

  260. Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25:909–20.

    Article  CAS  PubMed  Google Scholar 

  261. Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DA. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108:3097–101.

    Article  CAS  PubMed  Google Scholar 

  262. Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G. Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens. 2001;14:304S–9S.

    Article  CAS  PubMed  Google Scholar 

  263. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friede, K.A., Fudim, M., Sobotka, P.A. (2023). Endpoints for Clinical Effects of Renal Denervation: What Is the Best Surrogate?. In: Heuser, R.R., Schlaich, M.P., Hering, D., Bertog, S.C. (eds) Renal Denervation. Springer, Cham. https://doi.org/10.1007/978-3-031-38934-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38934-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38933-7

  • Online ISBN: 978-3-031-38934-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics