Skip to main content

Methods for CPP Functionalization with Oligonucleotides

  • Chapter
  • First Online:
CPP, Cell-Penetrating Peptides
  • 340 Accesses

Abstract

This Chapter summarizes the methods for CPP-conjugated oligonucleotide-based agents with the potential to use as the therapeutic drugs. The methods for gene silencing (or inhibiting specific genes) using antisense ONs (ASO) and RNA interference (RNAi) are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abes, S., Moulton, H., Turner, J., Clair, P., Richard, J. P., Iversen, P., Gait, M. J., & Lebleu, B. (2007). Peptide-based delivery of nucleic acids: Design, mechanism of uptake and applications to splice-correcting oligonucleotides. Biochemical Society Transactions, 35, 53–55.

    Article  PubMed  Google Scholar 

  • Abes, S., Moulton, H. M., Clair, P., Prevot, P., Youngblood, D. S., Wu, R. P., Iversen, P. L., & Lebleu, B. (2006). Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. Journal of Controlled Release: Official Journal of the Controlled Release Society, 116, 304–313.

    Article  PubMed  Google Scholar 

  • Abushahba, M. F., Mohammad, H., & Seleem, M. N. (2016). Targeting multidrug-resistant staphylococci with an anti-rpoA peptide nucleic acid conjugated to the HIV-1 TAT cell penetrating peptide. Molecular Therraphy Nucleic Acids, 5, e339.

    Article  Google Scholar 

  • Aldrian, G., Vaissiere, A., Konate, K., Seisel, Q., Vives, E., Fernandez, F., Viguier, V., Genevois, C., Couillaud, F., Demene, H., Aggad, D., Covinhes, A., Barrere-Lemaire, S., Deshayes, S., & Boisguerin, P. (2017). PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. Journal of Controlled Release, 256, 79–91.

    Article  PubMed  Google Scholar 

  • Aldrian-Herrada, G., Desarmenien, M. G., Orcel, H., Boissin-Agasse, L., Mery, J., Brugidou, J., & Rabie, A. (1998). A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Research, 26, 4910–4916.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., & Prochiantz, A. (1995). Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. The Journal of Cell Biology, 128, 919–927.

    Article  PubMed  Google Scholar 

  • Altrichter, Y., & Seitz, O. (2020). Simultaneous targeting of two master regulators of apoptosis with dual-action PNA- and DNA-peptide conjugates. Bioconjugate Chemistry, 31, 1928–1937.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ammala, C., Drury, W. J. 3rd, Knerr, L., Ahlstedt, I., Stillemark-Billton, P., Wennberg-Huldt, C., Andersson, E. M., Valeur, E., Jansson-Lofmark, R., Janzen, D., Sundstrom, L., Meuller, J., Claesson, J., Andersson, P., Johansson, C., Lee, R. G., Prakash, T. P., Seth, P. P., Monia, B. P., & Andersson, S. (2018). Targeted delivery of antisense oligonucleotides to pancreatic beta-cells. Science Advances, 4, eaat3386.

    Google Scholar 

  • Antopolsky, M., Azhayeva, E., Tengvall, U., Auriola, S., Jääskeläinen, I., Rönkkö, S., Honkakoski, P., Urtti, A., Lönnberg, H., & Azhayev, A. (1999). Peptide-oligonucleotide phosphorothioate conjugates with membrane translocation and nuclear localization properties. Bioconjugate Chemistry, 10, 598–606.

    Article  PubMed  Google Scholar 

  • Anwar, S., Mir, F., & Yokota, T. (2023). Enhancing the effectiveness of oligonucleotide therapeutics using cell-penetrating peptide conjugation, chemical modification, and carrier-based delivery strategies. Pharmaceutics, 15, 1130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arukuusk, P., Pärnaste, L., Hällbrink, M., & Langel, Ü. (2015). PepFects and NickFects for the intracellular delivery of nucleic acids. Methods in Molecular Biology, 1324, 303–315.

    Article  PubMed  Google Scholar 

  • Arukuusk, P., Pärnaste, L., Oskolkov, N., Copolovici, D. M., Margus, H., Padari, K., Moll, K., Maslovskaja, J., Tegova, R., Kivi, G., Tover, A., Pooga, M., Ustav, M., & Langel, Ü. (2013). New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochimica Et Biophysica Acta, 1828, 1365–1373.

    Article  PubMed  Google Scholar 

  • Aslesh, T., Erkut, E., Ren, J., Lim, K. R. Q., Woo, S., Hatlevig, S., Moulton, H. M., Gosgnach, S., Greer, J., Maruyama, R., & Yokota, T. (2023). DG9-conjugated morpholino rescues phenotype in SMA mice by reaching the CNS via a subcutaneous administration. JCI Insight, 8, e160516.

    Article  PubMed  PubMed Central  Google Scholar 

  • Astriab-Fisher, A., Sergueev, D., Fisher, M., Shaw, B. R., & Juliano, R. L. (2002). Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: Effects on cellular uptake, binding to target sequences, and biologic actions. Pharmaceutical Research, 19, 744–754.

    Article  PubMed  Google Scholar 

  • Barkowsky, G., Abt, C., Pöhner, I., Bieda, A., Hammerschmidt, S., Jacob, A., Kreikemeyer, B., & Patenge, N. (2022). Antimicrobial activity of peptide-coupled antisense peptide nucleic acids in streptococcus pneumoniae. Microbiology Spectrum, e0049722.

    Google Scholar 

  • Barkowsky, G., Kreikemeyer, B., & Patenge, N. (2020). Validation of suitable carrier molecules and target genes for antisense therapy using peptide-coupled peptide nucleic acids (PNAs) in streptococci. Methods in Molecular Biology, 2136, 339–345.

    Article  PubMed  Google Scholar 

  • Basu, S., & Wickstrom, E. (1997). Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconjugate Chemistry, 8, 481–488.

    Article  PubMed  Google Scholar 

  • Bazaz, S., Lehto, T., Tops, R., Gissberg, O., Gupta, D., Bestas, B., Bost, J., Wiklander, O. P. B., Sork, H., Zaghloul, E. M., Mamand, D. R., Hällbrink, M., Sillard, R., Saher, O., Ezzat, K., Smith, C. I. E., Andaloussi, S. E., & Lehto, T. (2021). Novel orthogonally hydrocarbon-modified cell-penetrating peptide nanoparticles mediate efficient delivery of splice-switching antisense oligonucleotides in vitro and in vivo. Biomedicines, 9.

    Google Scholar 

  • Becker, B., Englert, S., Schneider, H., Yanakieva, D., Hofmann, S., Dombrowsky, C., Macarrón Palacios, A., Bitsch, S., Elter, A., Meckel, T., Kugler, B., Schirmacher, A., Avrutina, O., Diederichsen, U., & Kolmar, H. (2021). Multivalent dextran hybrids for efficient cytosolic delivery of biomolecular cargoes. Journal of Peptide Science, e3298.

    Google Scholar 

  • Bell, T. J., & Eberwine, J. (2015a). Live cell genomics: Cell-specific transcriptome capture in live tissues and cells. Methods in Molecular Biology, 1324, 447–456.

    Article  PubMed  Google Scholar 

  • Bell, T. J., & Eberwine, J. (2015b). Live cell genomics: RNA exon-specific RNA-binding protein isolation. Methods in Molecular Biology, 1324, 457–468.

    Article  PubMed  Google Scholar 

  • Bell, T. J., Eiriksdottir, E., Langel, Ü., & Eberwine, J. (2011). PAIR technology: Exon-specific RNA-binding protein isolation in live cells. Methods in Molecular Biology, 683, 473–486.

    Article  PubMed  Google Scholar 

  • Bendifallah, N., Rasmussen, F. W., Zachar, V., Ebbesen, P., Nielsen, P. E., & Koppelhus, U. (2006). Evaluation of cell-penetrating peptides (CPPs) as vehicles for intracellular delivery of antisense peptide nucleic acid (PNA). Bioconjugate Chemistry, 17, 750–758.

    Article  PubMed  Google Scholar 

  • Benizri, S., Gissot, A., Martin, A., Vialet, B., Grinstaff, M. W., & Barthelemy, P. (2019). Bioconjugated oligonucleotides: Recent developments and therapeutic applications. Bioconjugate Chemistry, 30, 366–383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett, C. F., Baker, B. F., Pham, N., Swayze, E., & Geary, R. S. (2016). Pharmacology of antisense drugs. Annual Review of Pharmacology and Toxicology, 10, 10.

    Google Scholar 

  • Berezikov, E. (2011). Evolution of microRNA diversity and regulation in animals. Nature Reviews Genetics, 12, 846–860.

    Article  PubMed  Google Scholar 

  • Biswas, A., Maloverjan, M., Padari, K., Abroi, A., Rätsep, M., Wärmländer, S. K. T. S., Jarvet, J., Gräslund, A., Kisand, V., Lõhmus, R., & Pooga, M. (2023). Choosing an optimal solvent is crucial for obtaining cell-penetrating peptide nanoparticles with desired properties and high activity in nucleic acid delivery. Pharmaceutics, 15, 396.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boisguérin, P., Konate, K., Josse, E., Vivès, E., & Deshayes, S. (2021a). Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines, 9.

    Google Scholar 

  • Borgatti, M., Finotti, A., Romanelli, A., Saviano, M., Bianchi, N., Lampronti, I., Lambertini, E., Penolazzi, L., Nastruzzi, C., Mischiati, C., Piva, R., Pedone, C., & Gambari, R. (2004). Peptide nucleic acids (PNA)-DNA chimeras targeting transcription factors as a tool to modify gene expression. Current Drug Targets, 5, 735–744.

    Article  PubMed  Google Scholar 

  • Brodyagin, N., Kataoka, Y., Kumpina, I., Mcgee, D. W., & Rozners, E. (2021). Cellular uptake of 2-aminopyridine-modified peptide nucleic acids conjugated with cell-penetrating peptides. Biopolymers, e23484.

    Google Scholar 

  • Brognara, E., Fabbri, E., Aimi, F., Manicardi, A., Bianchi, N., Finotti, A., Breveglieri, G., Borgatti, M., Corradini, R., Marchelli, R., & Gambari, R. (2012). Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. International Journal of Oncology, 41, 2119–2127.

    Article  PubMed  Google Scholar 

  • Brognara, E., Fabbri, E., Bazzoli, E., Montagner, G., Ghimenton, C., Eccher, A., Cantu, C., Manicardi, A., Bianchi, N., Finotti, A., Breveglieri, G., Borgatti, M., Corradini, R., Bezzerri, V., Cabrini, G., & Gambari, R. (2014). Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. Journal of Neuro-Oncology, 118, 19–28.

    Article  PubMed  Google Scholar 

  • Brognara, E., Fabbri, E., Montagner, G., Gasparello, J., Manicardi, A., Corradini, R., Bianchi, N., Finotti, A., Breveglieri, G., Borgatti, M., Lampronti, I., Milani, R., Dechecchi, M. C., Cabrini, G., & Gambari, R. (2016). High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. International Journal of Oncology, 48, 1029–1038.

    Article  PubMed  Google Scholar 

  • Brooks, H., Lebleu, B., & Vives, E. (2005). Tat peptide-mediated cellular delivery: Back to basics. Advanced Drug Delivery Reviews, 57, 559–577.

    Article  PubMed  Google Scholar 

  • Carreras-Badosa, G., Maslovskaja, J., Periyasamy, K., Urgard, E., Padari, K., Vaher, H., Tserel, L., Gestin, M., Kisand, K., Arukuusk, P., Lou, C., Langel, Ü., Wengel, J., Pooga, M., & Rebane, A. (2020). NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation. Biomaterials, 262, 120316.

    Article  PubMed  Google Scholar 

  • Chalertpet, K., Pin-On, P., Aporntewan, C., Patchsung, M., Ingrungruanglert, P., Israsena, N., & Mutirangura, A. (2019). Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells. Frontiers in Genetics, 10, 645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, L. H., & Seitz, O. (2022). RNA-templated chemical synthesis of proapoptotic L- and d-peptides. Bioorganic & Medicinal Chemistry, 66, 116786.

    Article  Google Scholar 

  • Chinak, O., Golubitskaya, E., Pyshnaya, I., Stepanov, G., Zhuravlev, E., Richter, V., & Koval, O. (2019). Nucleic acids delivery into the cells using pro-apoptotic protein lactaptin. Frontiers in Pharmacology, 10, 1043–1043.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho Lee, A. R., & Woo, I. (2018). Local silencing of connective tissue growth factor by siRNA/Peptide improves dermal collagen arrangements. Tissue Engineering and Regenerative Medicine, 15, 711–719.

    Google Scholar 

  • Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: Prospects and challenges. Nature Medicine, 21, 121–131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crinelli, R., Bianchi, M., Gentilini, L., Palma, L., & Magnani, M. (2004). Locked nucleic acids (LNA): Versatile tools for designing oligonucleotide decoys with high stability and affinity. Current Drug Targets, 5, 745–752.

    Article  PubMed  Google Scholar 

  • Crombez, L., Aldrian-Herrada, G., Konate, K., Nguyen, Q. N., McMaster, G. K., Brasseur, R., Heitz, F., & Divita, G. (2009a). A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Molecular Therapy, 17, 95–103.

    Article  PubMed  Google Scholar 

  • Crombez, L., Morris, M. C., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., Coll, J. L., Heitz, F., & Divita, G. (2009b). Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Research, 37, 4559–4569.

    Google Scholar 

  • D’Angelo, B., Benedetti, E., Cimini, A., & Giordano, A. (2016). MicroRNAs: A puzzling tool in cancer diagnostics and therapy. Anticancer Research, 36, 5571–5575.

    Article  PubMed  Google Scholar 

  • Dash-Wagh, S., Jacob, S., Lindberg, S., Fridberger, A., Langel, Ü., & Ulfendahl, M. (2012). Intracellular delivery of short interfering RNA in rat organ of corti using a cell-penetrating peptide PepFect6. Molecular Therapy. Nucleic Acids, 1, e61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dastpeyman, M., Karas, J. A., Amin, A., Turner, B. J., & Shabanpoor, F. (2021a). Modular synthesis of trifunctional peptide-oligonucleotide conjugates via native chemical ligation. Frontiers in Chemistry, 9, 627329.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dastpeyman, M., Sharifi, R., Amin, A., Karas, J. A., Cuic, B., Pan, Y., Nicolazzo, J. A., Turner, B. J., & Shabanpoor, F. (2021b). Endosomal escape cell-penetrating peptides significantly enhance pharmacological effectiveness and CNS activity of systemically administered antisense oligonucleotides. International Journal of Pharmaceutics, 120398.

    Google Scholar 

  • de Mello, L. R., Porosk, L., Lourenco, T. C., Garcia, B. B. M., Costa, C. A. R., Han, S. W., de Souza, J. S., Langel, U., & da Silva, E. R. (2021). Amyloid-like self-assembly of a hydrophobic cell-penetrating peptide and its use as a carrier for nucleic acids. Acs Applied Bio Materials, 4, 6404–6416.

    Article  PubMed  Google Scholar 

  • Démoulins, T., Ebensen, T., Schulze, K., Englezou, P. C., Pelliccia, M., Guzmán, C. A., Ruggli, N., & McCullough, K. C. (2017). Self-replicating RNA vaccine functionality modulated by fine-tuning of polyplex delivery vehicle structure. Journal of Controlled Release, 266, 256–271.

    Article  PubMed  Google Scholar 

  • Deshayes, S., Konate, K., Vivès, E., & Boisguérin, P. (2022). Tips and tools to understand direct membrane translocation of siRNA-loaded WRAP-based nanoparticles. Methods in Molecular Biology, 2383, 475–490.

    Article  PubMed  Google Scholar 

  • Diao, Y., Wang, G., Zhu, B., Li, Z., Wang, S., Yu, L., Li, R., Fan, W., Zhang, Y., Zhou, L., Yang, L., Hao, X., & Liu, J. (2022). Loading of “cocktail siRNAs” into extracellular vesicles via TAT-DRBD peptide for the treatment of castration-resistant prostate cancer. Cancer Biology & Therapy, 23, 163–172.

    Article  Google Scholar 

  • Dowdy, S. F., & Levy, M. (2018). RNA therapeutics (almost) comes of age: Targeting, delivery and endosomal escape. Nucleic Acid Therapeutics, 28, 107–108.

    Article  PubMed  Google Scholar 

  • Egorova, A. A., Shtykalova, S. V., Maretina, M. A., Sokolov, D. I., Selkov, S. A., Baranov, V. S. & Kiselev, A. V. (2019). Synergistic anti-angiogenic effects using peptide-based combinatorial delivery of siRNAs targeting VEGFA, VEGFR1, and endoglin genes. Pharmaceutics, 11.

    Google Scholar 

  • Eguchi, A., Meade, B. R., Chang, Y. C., Fredrickson, C. T., Willert, K., Puri, N., & Dowdy, S. F. (2009). Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nature Biotechnology, 27, 567–571.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Andaloussi, S., Guterstam, P., & Langel, Ü. (2007a). Assessing the delivery efficacy and internalization route of cell-penetrating peptides. Nature Protocols, 2, 2043–2047.

    Article  PubMed  Google Scholar 

  • El-Andaloussi, S., Johansson, H., Magnusdottir, A., Järver, P., Lundberg, P., & Langel, Ü. (2005). TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. Journal of Controlled Release: Official Journal of the Controlled Release Society, 110, 189–201.

    Article  PubMed  Google Scholar 

  • El-Andaloussi, S., Johansson, H. J., Holm, T., & Langel, Ü. (2007b). A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Molecular Therapy: THe Journal of the American Society of Gene Therapy, 15, 1820–1826.

    Article  PubMed  Google Scholar 

  • El-Andaloussi, S., Johansson, H. J., Lundberg, P., & Langel, Ü. (2006). Induction of splice correction by cell-penetrating peptide nucleic acids. The Journal of Gene Medicine, 8, 1262–1273.

    Article  PubMed  Google Scholar 

  • El-Andaloussi, S., Lehto, T., Mäger, I., Rosenthal-Aizman, K., Oprea, II, Simonson, O. E., Sork, H., Ezzat, K., Copolovici, D. M., Kurrikoff, K., Viola, J. R., Zaghloul, E. M., Sillard, R., Johansson, H. J., Said Hassane, F., Guterstam, P., Suhorutsenko, J., Moreno, P. M., Oskolkov, N., … Langel, Ü. (2011a). Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo.Nucleic Acids Research, 39, 3972–3987.

    Google Scholar 

  • El-Andaloussi, S., Said Hassane, F., Boisguerin, P., Sillard, R., LANGEL, Ü., & Lebleu, B. (2011b). Cell-penetrating peptides-based strategies for the delivery of splice redirecting antisense oligonucleotides.Methods in Molecular Biology, 764, 75–89.

    Google Scholar 

  • Endoh, T., Sisido, M., & Ohtsuki, T. (2008). Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference. Bioconjugate Chemistry, 19, 1017–1024.

    Article  PubMed  Google Scholar 

  • Ervin, E. H., Pook, M., Teino, I., Kasuk, V., Trei, A., Pooga, M., & Maimets, T. (2019). Targeted gene silencing in human embryonic stem cells using cell-penetrating peptide PepFect 14. Stem Cell Research & Therapy, 10, 43.

    Article  Google Scholar 

  • Esther da Silva, K., Ribeiro, S. M., Rossato, L., Paes dos Santos, C., Preza, S. E., Cardoso, M. H., Franco, O. L., Migliolo, L., & Simionatto, S. (2021). Antisense peptide nucleic acid inhibits the growth of KPC-producing Klebsiella pneumoniae strain. Research in Microbiology, 103837.

    Google Scholar 

  • Ezzat, K., Andaloussi, S. E., Zaghloul, E. M., Lehto, T., Lindberg, S., Moreno, P. M., Viola, J. R., Magdy, T., Abdo, R., Guterstam, P., Sillard, R., Hammond, S. M., Wood, M. J., Arzumanov, A. A., Gait, M. J., Smith, C. I., Hällbrink, M., & Langel, Ü. (2011). PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Research, 39, 5284–5298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezzat, K., Aoki, Y., Koo, T., McClorey, G., Benner, L., Coenen-Stass, A., O’Donovan, L., Lehto, T., Garcia-Guerra, A., Nordin, J., Saleh, A. F., Behlke, M., Morris, J., Goyenvalle, A., Dugovic, B., Leumann, C., Gordon, S., Gait, M. J., El-Andaloussi, S., & Wood, M. J. (2015). Self-assembly into nanoparticles is essential for receptor mediated uptake of therapeutic antisense oligonucleotides. Nano Letters, 15, 4364–4373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabani, M. M., Abreu-Goodger, C., Williams, D., Lyons, P. A., Torres, A. G., Smith, K. G., Enright, A. J., Gait, M. J., & Vigorito, E. (2010). Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Research, 38, 4466–4475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabani, M. M., & Gait, M. J. (2008). miR-122 targeting with LNA/2ʹ-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA, 14, 336–346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabbri, E., Manicardi, A., Tedeschi, T., Sforza, S., Bianchi, N., Brognara, E., Finotti, A., Breveglieri, G., Borgatti, M., Corradini, R., Marchelli, R., & Gambari, R. (2011). Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem, 6, 2192–2202.

    Article  PubMed  Google Scholar 

  • Fadzen, C. M., Holden, R. L., Wolfe, J. M., Choo, Z. N., Schissel, C. K., Yao, M., Hanson, G. J., & Pentelute, B. L. (2019). Chimeras of cell-penetrating peptides demonstrate synergistic improvement in antisense efficacy. Biochemistry, 58, 3980–3989.

    Article  PubMed  Google Scholar 

  • Falato, L., Gestin, M., & Langel, Ü. (2021). Cell-penetrating peptides delivering siRNAs: An overview. Methods in Molecular Biology, 2282, 329–352.

    Article  PubMed  Google Scholar 

  • Favretto, M. E., & Brock, R. (2015). Stereoselective uptake of cell-penetrating peptides is conserved in antisense oligonucleotide polyplexes. Small (weinheim an Der Bergstrasse, Germany), 11, 1414–1417.

    Article  PubMed  Google Scholar 

  • Fazil, M. H. U. T., Chalasani, M. L. S., Choong, Y. K., Schmidtchen, A., Verma, N. K., & Saravanan, R. (2019). A C-terminal peptide of TFPI-1 facilitates cytosolic delivery of nucleic acid cargo into mammalian cells. Biochimica et Biophysica Acta. Biomembranes, 183093–183093.

    Google Scholar 

  • Ferino, A., Miglietta, G., Picco, R., Vogel, S., Wengel, J., & Xodo, L. E. (2018). MicroRNA therapeutics: Design of single-stranded miR-216b mimics to target KRAS in pancreatic cancer cells. RNA Biology, 15, 1273–1285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer, R., Kohler, K., Fotin-Mleczek, M., & Brock, R. (2004). A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. The Journal of Biological Chemistry, 279, 12625–12635.

    Article  PubMed  Google Scholar 

  • Fisher, L., Samuelsson, M., Jiang, Y., Ramberg, V., Figueroa, R., Hallberg, E., Langel, Ü., & Iverfeldt, K. (2007). Targeting cytokine expression in glial cells by cellular delivery of an NF-kappaB decoy. Journal of Molecular Neuroscience: MN, 31, 209–219.

    Article  PubMed  Google Scholar 

  • Flynn, L. L., Mitrpant, C., Adams, A., Pitout, I. L., Stirnweiss, A., Fletcher, S., & Wilton, S. D. (2021). Targeted SMN exon skipping: A useful control to assess in vitro and in vivo splice-switching studies. Biomedicines, 9.

    Google Scholar 

  • Fossat, P., Dobremez, E., Bouali-Benazzouz, R., Favereaux, A., Bertrand, S. S., Kilk, K., Leger, C., Cazalets, J. R., Langel, Ü., Landry, M., & Nagy, F. (2010). Knockdown of L calcium channel subtypes: Differential effects in neuropathic pain. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 30, 1073–1085.

    Article  PubMed  Google Scholar 

  • Fraser, G. L., Holmgren, J., Clarke, P. B., & Wahlestedt, C. (2000). Antisense inhibition of delta-opioid receptor gene function in vivo by peptide nucleic acids. Molecular Pharmacology, 57, 725–731.

    Article  PubMed  Google Scholar 

  • Freire, J. M., Rego de Figueiredo, I., Valle, J., Veiga, A. S., Andreu, D., Enguita, F. J., & Castanho, M. A. (2017). siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model. Journal of Control Release, 245, 127–136.

    Google Scholar 

  • Friedman, A. A., Letai, A., Fisher, D. E., & Flaherty, K. T. (2015). Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer, 15, 747–756.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frimodt-Møller, J., Koulouktsis, A., Charbon, G., Otterlei, M., Nielsen, P. E., & Løbner-Olesen, A. (2021). Activating the Cpx response induces tolerance to antisense PNA delivered by an arginine-rich peptide in Escherichia coli. Molecular Therapy Nucleic Acids, 25, 444–454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Furukawa, K., Tanaka, M., & Oba, M. (2020). siRNA delivery using amphipathic cell-penetrating peptides into human hepatoma cells. Bioorganic & Medicinal Chemistry, 115402.

    Google Scholar 

  • Futaki, S., Ohashi, W., Suzuki, T., Niwa, M., Tanaka, S., Ueda, K., Harashima, H., & Sugiura, Y. (2001). Stearylated arginine-rich peptides: A new class of transfection systems. Bioconjugate Chemistry, 12, 1005–1011.

    Article  PubMed  Google Scholar 

  • Gabas, I. M., & Nielsen, P. E. (2020). Effective cellular delivery of antisense peptide nucleic acid by conjugation to guanidinylated diaminobutanoic acid-based peptide dendrons. Biomacromolecules, 21, 472–483.

    Article  PubMed  Google Scholar 

  • Gamboa, A., Urfano, S. F., Hernandez, K., Fraser, D. A., Ayalew, L., & Slowinska, K. (2019). Higher order architecture of designer peptides forms bioinspired 10 nm siRNA delivery system. Scientific Reports, 9, 16875–16875.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganguly, S., Chaubey, B., Tripathi, S., Upadhyay, A., Neti, P. V., Howell, R. W., & Pandey, V. N. (2008). Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides, 18, 277–286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganju, A., Khan, S., Hafeez, B. B., Behrman, S. W., Yallapu, M. M., Chauhan, S. C., & Jaggi, M. (2016). miRNA nanotherapeutics for cancer. Drug Discovery Today, 1, 30408–30411.

    Google Scholar 

  • Gayraud, F., Klußmann, M., & Neundorf, I. (2021). Recent advances and trends in chemical CPP-drug conjugation techniques. Molecules, 26.

    Google Scholar 

  • Geng, J., Xia, X., Teng, L., Wang, L., Chen, L., Guo, X., Belingon, B., Li, J., Feng, X., Li, X., Shang, W., Wan, Y., & Wang, H. (2021). Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. Journal of Controlled Release, 341, 166–183.

    Article  PubMed  Google Scholar 

  • Ghavami, M., Shiraishi, T., & Nielsen, P. E. (2019). Cooperative cellular uptake and activity of octaarginine antisense peptide nucleic acid (PNA) conjugates. Biomolecules, 9.

    Google Scholar 

  • Goli, L., Stoodley, J., Hammond, S. M., & Raz, R. (2022). Evaluating efficacy of peptide-delivered oligonucleotides using the severe Taiwanese SMA mouse model. Methods in Molecular Biology, 2383, 491–513.

    Article  PubMed  Google Scholar 

  • Good, L., Awasthi, S. K., Dryselius, R., Larsson, O., & Nielsen, P. E. (2001). Bactericidal antisense effects of peptide-PNA conjugates. Nature Biotechnology, 19, 360–364.

    Article  PubMed  Google Scholar 

  • Guagliardo, R., Herman, L., Penders, J., Zamborlin, A., de Keersmaecker, H., van de Vyver, T., Verstraeten, S., Merckx, P., Mingeot-Leclercq, M. P., Echaide, M., Pérez-Gil, J., Stevens, M. M., de Smedt, S. C., & Raemdonck, K. (2021). Surfactant protein B promotes cytosolic SiRNA delivery by adopting a virus-like mechanism of action. ACS Nano, 15, 8095–8109.

    Article  PubMed  Google Scholar 

  • Guo, F., Ke, J., Fu, Z., Han, W., & Wang, L. (2021b). Cell penetrating peptide-based self-assembly for PD-L1 targeted tumor regression. International Journal of Molecular Science, 22.

    Google Scholar 

  • Gupta, A., Mishra, A., & Puri, N. (2017). Peptide nucleic acids: Advanced tools for biomedical applications. Journal of Biotechnology, 259, 148–159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hade, M. D., Suire, C. N., & Suo, Z. (2023). An effective peptide-based platform for efficient exosomal loading and cellular delivery of a microRNA. ACS Applied Materials & Interfaces, 15, 3851–3866.

    Article  Google Scholar 

  • Halloy, F., Hill, A. C., & Hall, J. (2021). Efficient synthesis of 2ʹ-O-methoxyethyl oligonucleotide-cationic peptide conjugates. ChemMedChem, 16, 3391–3395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond, S. M., Abendroth, F., Gait, M. J., & Wood, M. J. A. (2019). Evaluation of cell-penetrating peptide delivery of antisense oligonucleotides for therapeutic efficacy in spinal muscular atrophy. Methods in Molecular Biology, 2036, 221–236.

    Article  PubMed  Google Scholar 

  • Hammond, S. M., Hazell, G., Shabanpoor, F., Saleh, A. F., Bowerman, M., Sleigh, J. N., Meijboom, K. E., Zhou, H., Muntoni, F., Talbot, K., Gait, M. J., & Wood, M. J. (2016). Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proceedings of the National Academy of Sciences of the United States of America, 113, 10962–10967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, W., Yuan, Y., Li, H., Fu, Z., Wang, M., Guan, S., & Wang, L. (2019). Design and anti-tumor activity of self-loaded nanocarriers of siRNA. Colloids and Surfaces b, Biointerfaces, 183, 110385.

    Article  PubMed  Google Scholar 

  • Hattori, T., Okitsu, K., Yamazaki, N., Ohoka, N., Shibata, N., Misawa, T., Kurihara, M., Demizu, Y., & Naito, M. (2017). Simple and efficient knockdown of His-tagged proteins by ternary molecules consisting of a His-tag ligand, a ubiquitin ligase ligand, and a cell-penetrating peptide. Bioorganic & Medicinal Chemistry Letters, 27, 4478–4481.

    Article  Google Scholar 

  • Heitz, M., Zamolo, S., Javor, S., & Reymond, J. L. (2020). Fluorescent peptide dendrimers for siRNA transfection: Tracking pH responsive aggregation, siRNA binding and cell penetration. Bioconjugate Chemistry, 31, 1671–1684.

    Article  PubMed  Google Scholar 

  • Helmfors, H., Eriksson, J., & Langel, Ü. (2015). Optimized luciferase assay for cell-penetrating peptide-mediated delivery of short oligonucleotides. Analytical Biochemistry, 484, 136–142.

    Article  PubMed  Google Scholar 

  • Hibbitts, A., O’Connor, A. M., McCarthy, J., Forde, E. B., Hessman, G., O’Driscoll, C. M., Cryan, S. A., & Devocelle, M. (2019). Poly(ethylene glycol)-based peptidomimetic “PEGtide” of oligo-arginine allows for efficient siRNA transfection and gene inhibition. ACS Omega, 4, 10078–10088.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holjencin, C., & Jakymiw, A. (2022). MicroRNAs and their big therapeutic impacts: Delivery strategies for cancer intervention. Cells, 11.

    Google Scholar 

  • Honcharenko, D., Rocha, C. S. J., Lundin, K. E., Maity, J., Milton, S., Tedebark, U., Murtola, M., Honcharenko, M., Slaitas, A., Smith, C. I. E., Zain, R., & Strömberg, R. (2022). 2ʹ-O-(N-(Aminoethyl)carbamoyl)methyl modification allows for lower phosphorothioate content in splice-switching oligonucleotides with retained activity. Nucleic Acid Therapeutics, 221–233.

    Google Scholar 

  • Hoy, S. M. (2018). Patisiran: First global approval. Drugs, 78, 1625–1631.

    Google Scholar 

  • Hu, Q. L., Jiang, Q. Y., Jin, X., Shen, J., Wang, K., Li, Y. B., Xu, F. J., Tang, G. P., & Li, Z. H. (2013). Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials, 34, 2265–2276.

    Article  PubMed  Google Scholar 

  • Hyun, S., Choi, Y., Lee, H. N., Lee, C., Oh, D., Lee, D. K., Lee, C., Lee, Y., & Yu, J. (2018). Construction of histidine-containing hydrocarbon stapled cell penetrating peptides for in vitro and in vivo delivery of siRNAs. Chemical Science, 9, 3820–3827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue, G., Toyohara, D., Mori, T., & Muraoka, T. (2021). Critical side chain effects of cell-penetrating peptides for transporting oligo peptide nucleic acids in bacteria. ACS Applied Bio Materials, 4, 3462–3468.

    Article  PubMed  Google Scholar 

  • Javanmard, Z., Kalani, B. S., Razavi, S., Farahani, N. N., Mohammadzadeh, R., Javanmard, F., & Irajian, G. (2020). Evaluation of cell-penetrating peptide-peptide nucleic acid effect in the inhibition of cagA in Helicobacter pylori. Acta Microbiol Immunol Hung, 1–7.

    Google Scholar 

  • Jearawiriyapaisarn, N., Moulton, H. M., Buckley, B., Roberts, J., Sazani, P., Fucharoen, S., Iversen, P. L., & Kole, R. (2008). Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Molecular Therapy: THe Journal of the American Society of Gene Therapy, 16, 1624–1629.

    Article  PubMed  Google Scholar 

  • Johannes, L., & Lucchino, M. (2018). Current challenges in delivery and cytosolic translocation of therapeutic RNAs. Nucleic Acid Therapeutics, 28, 178–193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi, V. G., Chindera, K., Bais, M. V., Sajjanar, B., Tiwari, A. K., & Kumar, S. (2021). Novel peptide (RATH) mediated delivery of peptide nucleic acids for antiviral interventions. Applied Microbiology and Biotechnology, 105, 6669–6677.

    Article  PubMed  Google Scholar 

  • Judd, M., & Place, A. R. (2022). A strategy for gene knockdown in dinoflagellates. Microorganisms, 10.

    Google Scholar 

  • Kang, S. H., Cho, M. J., & Kole, R. (1998). Up-regulation of luciferase gene expression with antisense oligonucleotides: Implications and applications in functional assay development. Biochemistry, 37, 6235–6239.

    Article  PubMed  Google Scholar 

  • Karagiannis, E. D., Alabi, C. A., & Anderson, D. G. (2012). Rationally designed tumor-penetrating nanocomplexes. ACS Nano, 6, 8484–8487.

    Article  PubMed  Google Scholar 

  • Kauffman, W. B., Guha, S., & Wimley, W. C. (2018). Synthetic molecular evolution of hybrid cell penetrating peptides. Nature Communications, 9, 2568.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, D. H., & Choi, J. M. (2018). Chitinase 3-like-1, a novel regulator of Th1/CTL responses, as a therapeutic target for increasing anti-tumor immunity. BMB Reports, 51, 207–208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, H., Kitamatsu, M., & Ohtsuki, T. (2019). Combined apoptotic effects of peptide and miRNA in a peptide/miRNA nanocomplex. Journal of Bioscience and Bioengineering, 128, 110–116.

    Article  PubMed  Google Scholar 

  • Klabenkova, K., Fokina, A., & Stetsenko, D. (2021). Chemistry of peptide-oligonucleotide conjugates: A review. Molecules, 26.

    Google Scholar 

  • Klein, A. F., Varela, M. A., Arandel, L., Holland, A., Naouar, N., Arzumanov, A., Seoane, D., Revillod, L., Bassez, G., Ferry, A., Jauvin, D., Gourdon, G., Puymirat, J., Gait, M. J., Furling, D., & Wood, M. J. A. (2019). Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. The Journal of Clinical Investigation, 129, 4739–4744.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konate, K., Dussot, M., Aldrian, G., Vaissiere, A., Viguier, V., Neira, I. F., Couillaud, F., Vives, E., Boisguerin, P., & Deshayes, S. (2019). Peptide-based nanoparticles to rapidly and efficiently “Wrap ‘n Roll” siRNA into cells. Bioconjugate Chemistry, 30, 592–603.

    Article  PubMed  Google Scholar 

  • Konate, K., Josse, E., Tasic, M., Redjatti, K., Aldrian, G., Deshayes, S., Boisguérin, P., & Vivès, E. (2021). WRAP-based nanoparticles for siRNA delivery: A SAR study and a comparison with lipid-based transfection reagents. J Nanobiotechnology, 19, 236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurrikoff, K., Freimann, K., Veiman, K.-L., Peets, E. M., Piirsoo, A., & Langel, Ü. (2019). Effective lung-targeted RNAi in mice with peptide-based delivery of nucleic acid. Scientific Reports, 9, 19926–19926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurrikoff, K., Gestin, M., & Langel, Ü. (2016). Recent in vivo advances in cell-penetrating peptide-assisted drug delivery. Expert Opinion on Drug Delivery, 13, 373–387.

    Article  PubMed  Google Scholar 

  • Kurrikoff, K., Veiman, K.-L., & Langel, Ü. (2015). CPP-Based Delivery System for In Vivo Gene Delivery. Methods in Molecular Biology, 1324, 339–347.

    Article  PubMed  Google Scholar 

  • Kurrikoff, K., Vunk, B., & Langel, Ü. (2022). Tissue analysis of lung-targeted delivery of siRNA and plasmid DNA. Methods in Molecular Biology, 2383, 547–553.

    Article  PubMed  Google Scholar 

  • Laanesoo, A., Periyasamy, K., Pooga, M., & Rebane, A. (2022). Development of CPP-based methods for delivery of miRNAs into the skin and airways: Lessons from cell culture and mouse models. Methods in Molecular Biology, 2383, 515–528.

    Article  PubMed  Google Scholar 

  • Laanesoo, A., Urgard, E., Periyasamy, K., Laan, M., Bochkov, Y. A., Aab, A., Magilnick, N., Pooga, M., Gern, J. E., Johnston, S. L., Coquet, J. M., Boldin, M. P., Wengel, J., Altraja, A., Bochenek, G., Jakiela, B., & Rebane, A. (2021). Dual role of the miR-146 family in rhinovirus-induced airway inflammation and allergic asthma exacerbation. Clinical and Translational Medicine, 11, e427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam, P., & Steinmetz, N. F. (2019). Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomaterials Science, 7, 3138–3142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langel, Ü. (2021). Cell-penetrating peptides and transportan. Pharmaceutics, 13, 1–31.

    Article  Google Scholar 

  • Lehto, T., Abes, R., Oskolkov, N., Suhorutsenko, J., Copolovici, D. M., Mäger, I., Viola, J. R., Simonson, O. E., Ezzat, K., Guterstam, P., Eriste, E., Smith, C. I., Lebleu, B., el Andaloussi, S., & Langel, Ü. (2010). Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 141, 42–51.

    Article  PubMed  Google Scholar 

  • Lehto, T., Ezzat, K., Wood, M. J., & el Andaloussi, S. (2016). Peptides for nucleic acid delivery. Advanced Drug Delivery Reviews, 106, 172–182.

    Article  PubMed  Google Scholar 

  • Lehto, T., & Wagner, E. (2014). Sequence-defined polymers for the delivery of oligonucleotides. Nanomedicine, 9, 2843–2859.

    Article  PubMed  Google Scholar 

  • Li, C., Callahan, A. J., Phadke, K. S., Bellaire, B., Farquhar, C. E., Zhang, G., Schissel, C. K., Mijalis, A. J., Hartrampf, N., Loas, A., Verhoeven, D. E., & Pentelute, B. L. (2022). Automated flow synthesis of peptide-PNA conjugates. ACS Central Science, 8, 205–213.

    Article  PubMed  Google Scholar 

  • Li, H., & Tsui, T. (2015). Six-cell penetrating peptide-based fusion proteins for siRNA delivery. Drug Delivery, 22, 436–443.

    Article  PubMed  Google Scholar 

  • Li, H., Zheng, X., Koren, V., Vashist, Y. K., & Tsui, T. Y. (2014). Highly efficient delivery of siRNA to a heart transplant model by a novel cell penetrating peptide-dsRNA binding domain. International Journal of Pharmaceutics, 469, 206–213.

    Article  PubMed  Google Scholar 

  • Lindberg, S., Munoz-Alarcon, A., Helmfors, H., Mosqueira, D., Gyllborg, D., Tudoran, O., & Langel, Ü. (2013). PepFect15, a novel endosomolytic cell-penetrating peptide for oligonucleotide delivery via scavenger receptors. International Journal of Pharmaceutics, 441, 242–247.

    Article  PubMed  Google Scholar 

  • Linden, G., Janga, H., Franz, M., Nist, A., Stiewe, T., Schmeck, B., Vázquez, O., & Schulte, L. N. (2021). Efficient antisense inhibition reveals microRNA-155 to restrain a late-myeloid inflammatory programme in primary human phagocytes. RNA Biology, 1–15.

    Google Scholar 

  • Liu, C., Xie, H., Yu, J., Chen, X., Tang, S., Sun, L., Chen, X., Peng, D., Zhang, X., & Zhou, J. (2018). A targeted therapy for melanoma by graphene oxide composite with microRNA carrier. Drug Des Devel Ther, 12, 3095–3106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Lin, Z., Liu, Y., Du, J., Lin, H., & Wang, J. (2019). Delivery of miRNA-29b using R9-LK15, a novel cell-penetrating peptide, promotes osteogenic differentiation of bone mesenchymal stem cells. BioMed Research International, 2019, 3032158.

    PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Li, L., Chen, A., Pan, H., Liu, B., & Yu, Y. (2022). Preparation and pharmacokinetics of glycyrrhetinic acid and cell transmembrane peptides modified with liposomes for liver targeted-delivery. Biomedical Materials.

    Google Scholar 

  • Liu, Y., Wu, X., Gao, Y., Zhang, J., Zhang, D., Gu, S., Zhu, G., Liu, G., & Li, X. (2016). Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma. International Journal of Nanomedicine, 11, 3891–3905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovatt, D., Ruble, B. K., Lee, J., Dueck, H., Kim, T. K., Fisher, S., Francis, C., Spaethling, J. M., Wolf, J. A., Grady, M. S., Ulyanova, A. V., Yeldell, S. B., Griepenburg, J. C., Buckley, P. T., Kim, J., Sul, J. Y., Dmochowski, I. J., & Eberwine, J. (2014). Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nature Methods, 11, 190–196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luna Velez, M. V., Paulino da Silva Filho, O., Verhaegh, G. W., Van Hooij, O., El Boujnouni, N., Brock, R., & Schalken, J. A. (2022). Delivery of antisense oligonucleotides for splice-correction of androgen receptor pre-mRNA in castration-resistant prostate cancer models using cell-penetrating peptides.Prostate, 82, 657–665.

    Google Scholar 

  • Lundberg, P., El Andaloussi, S., Sutlu, T., Johansson, H., & Langel, Ü. (2007). Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB Journal, 21, 2664–2671.

    Article  PubMed  Google Scholar 

  • Mäe, M., el Andaloussi, S., Lundin, P., Oskolkov, N., Johansson, H. J., Guterstam, P., & Langel, Ü. (2009). A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 134, 221–227.

    Article  PubMed  Google Scholar 

  • Mailhiot, S. E., Thompson, M. A., Eguchi, A. E., Dinkel, S. E., Lotz, M. K., Dowdy, S. F., & June, R. K. (2020). The TAT protein transduction domain as an intra-articular drug delivery technology. Cartilage, 1947603520959392.

    Google Scholar 

  • Maloverjan, M., Padari, K., Abroi, A., Rebane, A., & Pooga, M. (2022). Divalent metal ions boost effect of nucleic acids delivered by cell-penetrating peptides. Cells, 11.

    Google Scholar 

  • Manicardi, A., Fabbri, E., Tedeschi, T., Sforza, S., Bianchi, N., Brognara, E., Gambari, R., Marchelli, R., & Corradini, R. (2012). Cellular uptakes, biostabilities and anti-miR-210 activities of chiral arginine-PNAs in leukaemic K562 cells. ChemBioChem, 13, 1327–1337.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchalot, A., Horiot, C., Lambert, J. M., Carrion, C., Oblet, C., Pollet, J., Cogné, M., Moreau, J., Laffleur, B., & Delpy, L. (2021). Targeting IgE polyadenylation signal with antisense oligonucleotides decreases IgE secretion and plasma cell viability. The Journal of Allergy and Clinical Immunology, 149, 1795–1801.

    Article  PubMed  Google Scholar 

  • Mathupala, S. P. (2009). Delivery of small-interfering RNA (siRNA) to the brain. Expert Opinion on Therapeutic Patents, 19, 137–140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcclorey, G., & Banerjee, S. (2018). Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines, 6.

    Google Scholar 

  • Meade, B. R., & Dowdy, S. F. (2007). Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Advanced Drug Delivery Reviews, 59, 134–140.

    Article  PubMed  Google Scholar 

  • Michiue, H., Eguchi, A., Scadeng, M., & Dowdy, S. F. (2009). Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma. Cancer Biology and Therapy, 8, 2306–2313.

    Article  PubMed  Google Scholar 

  • Mirmiran, A., Schmitt, C., Lefebvre, T., Manceau, H., Daher, R., Oustric, V., Poli, A., Lacapere, J. J., Moulouel, B., Puy, H., Karim, Z., Peoc’H, K., Lenglet, H., Simonin, S., Deybach, J. C., Nicolas, G., & Gouya, L. (2019). Erythroid-progenitor-targeted gene therapy using bifunctional TFR1 ligand-peptides in human erythropoietic protoporphyria. American Journal of Human Genetics, 104, 341–347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitsueda, A., Shimatani, Y., Ito, M., Ohgita, T., Yamada, A., Hama, S., Graslund, A., Lindberg, S., Langel, Ü., Harashima, H., Nakase, I., Futaki, S., & Kogure, K. (2013). Development of a novel nanoparticle by dual modification with the pluripotential cell-penetrating peptide PepFect6 for cellular uptake, endosomal escape, and decondensation of an siRNA core complex. Biopolymers, 100, 698–704.

    Article  PubMed  Google Scholar 

  • Miyatake, S., Mizobe, Y., Tsoumpra, M. K., Lim, K. R. Q., Hara, Y., Shabanpoor, F., Yokota, T., Takeda, S., & Aoki, Y. (2019). Scavenger receptor class A1 mediates uptake of morpholino antisense oligonucleotide into dystrophic skeletal muscle. Molecular Therapy Nucleic Acids, 14, 520–535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondhe, M., Chessher, A., Goh, S., Good, L., & Stach, J. E. (2014). Species-selective killing of bacteria by antimicrobial peptide-PNAs. PLoS ONE, 9, e89082.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montazersaheb, S., Avci Ç, B., Bagca, B. G., Ay, N. P. O., Tarhriz, V., Nielsen, P. E., Charoudeh, H. N., & Hejazi, M. S. (2020). Targeting TdT gene expression in Molt-4 cells by PNA-octaarginine conjugates. International Journal of Biological Macromolecules, 164, 4583–4590

    Google Scholar 

  • Morais, C. M., Cardoso, A. M., Aguiar, L., Vale, N., Nóbrega, C., Zuzarte, M., Gomes, P., Pedroso de Lima, M. C., & Jurado, A. S. (2020). Lauroylated Histidine-Enriched S4(13)-PV peptide as an efficient gene silencing mediator in cancer cells. Pharmaceutical Research, 37, 188.

    Google Scholar 

  • Morais, C. M., Cardoso, A. M., Cunha, P. P., Aguiar, L., Vale, N., Lage, E., Pinheiro, M., Nunes, C., Gomes, P., Reis, S., Castro, M., Pedroso de Lima, M. C., & Jurado, A. S. (2018). Acylation of the S413-PV cell-penetrating peptide as a means of enhancing its capacity to mediate nucleic acid delivery: Relevance of peptide/lipid interactions. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1860, 2619–2634

    Google Scholar 

  • Morris, M. C., Depollier, J., Mery, J., Heitz, F., & Divita, G. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 19, 1173–1176.

    Article  PubMed  Google Scholar 

  • Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., & Divita, G. (1997). A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Research, 25, 2730–2736.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moschos, S. A., Jones, S. W., Perry, M. M., Williams, A. E., Erjefalt, J. S., Turner, J. J., Barnes, P. J., Sproat, B. S., Gait, M. J., & Lindsay, M. A. (2007). Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjugate Chemistry, 18, 1450–1459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moulay, G., Leborgne, C., Mason, A. J., Aisenbrey, C., Kichler, A., & Bechinger, B. (2017). Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. Journal of Peptide Science, 23, 320–328.

    Article  PubMed  Google Scholar 

  • Munoz-Alarcon, A., Eriksson, J., & Langel, U. (2015). Novel efficient cell-penetrating, peptide-mediated strategy for enhancing telomerase inhibitor oligonucleotides. Nucleic Acid Therapeutics, 25, 306–310.

    Article  PubMed  Google Scholar 

  • Muratovska, A., & Eccles, M. R. (2004). Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Letters, 558, 63–68.

    Article  PubMed  Google Scholar 

  • Nakamura, M., Fujiwara, K., & Doi, N. (2022). Cytoplasmic delivery of siRNA using human-derived membrane penetration-enhancing peptide. J Nanobiotechnology, 20, 458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nam, S. H., Lee, Y., Kim, C. H., Kim, D. E., Yang, H. J., & Park, S. B. (2022). The complex of miRNA2861 and cell-penetrating, dimeric α-helical peptide accelerates the osteogenesis of mesenchymal stem cells. Biomaterials Research, 26, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndeboko, B., Omouessi, S. T., Ongali, B., & Mouinga-Ondémé, A. (2020). Cell penetrating peptides used in delivery of therapeutic oligonucleotides targeting Hepatitis B virus. Pharmaceuticals (Basel), 13.

    Google Scholar 

  • Ndeboko, B., Ramamurthy, N., Lemamy, G. J., Jamard, C., Nielsen, P. E., & Cova, L. (2017). Role of cell-penetrating peptides in intracellular delivery of peptide nucleic acids targeting hepadnaviral replication. Molecular Therapy Nucleic Acids, 9, 162–169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nejad, A. J., Shahrokhi, N., & Nielsen, P. E. (2021). Targeting of the essential acpP, ftsZ, and rne genes in carbapenem-resistant acinetobacter baumannii by antisense PNA precision antibacterials. Biomedicines, 9.

    Google Scholar 

  • O’Connor, R. M., Gururajan, A., Dinan, T. G., Kenny, P. J., & Cryan, J. F. (2016). All roads lead to the miRNome: MiRNAs have a central role in the molecular pathophysiology of psychiatric disorders. Trends in Pharmacological Sciences, 37, 1029–1044.

    Article  PubMed  Google Scholar 

  • Oh, S. Y., Ju, Y., Kim, S., & Park, H. (2010). PNA-based antisense oligonucleotides for micrornas inhibition in the absence of a transfection reagent. Oligonucleotides, 20, 225–230.

    Article  PubMed  Google Scholar 

  • Oh, S. Y., Ju, Y., & Park, H. (2009). A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Molecules and Cells, 28, 341–345.

    Article  PubMed  Google Scholar 

  • Oskolkov, N., Arukuusk, P., Copolovici, D.-M., Lindberg, S., Margus, H., Padari, K., Pooga, M., & Langel, Ü. (2011). NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. International Journal of Peptide Research and Therapeutics, 17, 147–157.

    Article  Google Scholar 

  • Overby, S. J., Cerro-Herreros, E., González-Martínez, I., Varela, M. A., Seoane-Miraz, D., Jad, Y., Raz, R., Møller, T., Pérez-Alonso, M., Wood, M. J., Llamusí, B., & Artero, R. (2022). Proof of concept of peptide-linked blockmiR-induced MBNL functional rescue in myotonic dystrophy type 1 mouse model. Molecular Therapy Nucleic Acids, 27, 1146–1155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palanikumar, L., Al-Hosani, S., Kalmouni, M., Saleh, H. O., & Magzoub, M. (2020). Hexokinase II-derived cell-penetrating peptide mediates delivery of MicroRNA mimic for cancer-selective cytotoxicity. Biochemistry, 59, 2259–2273.

    Article  PubMed  Google Scholar 

  • Panigrahi, B., Mishra, S., Singh, R. K., Siddiqui, N., Bal, R., & Mandal, D. (2019). Peptide generated anisotropic gold nanoparticles as efficient siRNA vectors. International Journal of Pharmaceutics, 563, 198–207.

    Article  PubMed  Google Scholar 

  • Panigrahi, B., Singh, R. K., Mishra, S., & Mandal, D. (2018). Cyclic peptide-based nanostructures as efficient siRNA carriers. Artificial Cells, Nanomedicine, and Biotechnology, 46, S763-s773.

    Article  PubMed  Google Scholar 

  • Pärnaste, L., Arukuusk, P., Langel, K., Tenson, T., & Langel, Ü. (2017). The formation of nanoparticles between small interfering RNA and amphipathic cell-penetrating peptides. Molecular Therapy Nucleic Acids, 7, 1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil, N. A., Karas, J. A., Turner, B. J., & Shabanpoor, F. (2019). Thiol-Cyanobenzothiazole ligation for the efficient preparation of peptide-PNA conjugates. Bioconjugate Chemistry, 30, 793–799.

    Article  PubMed  Google Scholar 

  • Peng, J., Rao, Y., Yang, X., Jia, J., Wu, Y., Lu, J., Tao, Y., & Tu, W. (2017). Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate. Neuroscience Letters, 650, 153–160.

    Article  PubMed  Google Scholar 

  • Peritz, T., Zeng, F., Kannanayakal, T. J., Kilk, K., Eiriksdottir, E., Langel, Ü., & Eberwine, J. (2006). Immunoprecipitation of mRNA-protein complexes. Nature Protocols, 1, 577–580.

    Article  PubMed  Google Scholar 

  • Pooga, M., Hällbrink, M., Zorko, M., & Langel, Ü. (1998a). Cell penetration by transportan. FASEB Journal, 12, 67–77.

    Article  PubMed  Google Scholar 

  • Pooga, M., Soomets, U., Hällbrink, M., Valkna, A., Saar, K., Rezaei, K., Kahl, U., Hao, J. X., Xu, X. J., Wiesenfeld-Hallin, Z., Hökfelt, T., Bartfai, T., & Langel, Ü. (1998b). Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nature Biotechnology, 16, 857–861.

    Article  PubMed  Google Scholar 

  • Porosk, L., Arukuusk, P., Pohako, K., Kurrikoff, K., Kiisholts, K., Padari, K., Pooga, M., & Langel, U. (2019). Enhancement of siRNA transfection by the optimization of fatty acid length and histidine content in the CPP. Biomaterial Science, 7, 4363–4374.

    Article  Google Scholar 

  • Purijjala, P., Rathnayake, P., Kumara, B. T., Gunathunge, B. C. M., Ranasinghe, R., Karunaratne, D. N., & Ranatunga, R. (2022). Multiscale modeling of the cellular uptake of C6 peptide-siRNA complexes. Computational Biology and Chemistry, 98, 107679.

    Article  PubMed  Google Scholar 

  • Qiu, Y., Lo, J. C. K., Kwok, K. C. W., Mason, A. J., & Lam, J. K. W. (2020). Modification of KL4 peptide revealed the importance of alpha-helical structure for efficient small interfering RNA delivery. Nucleic Acid Therapeutics, 31, 220–228.

    Article  PubMed  Google Scholar 

  • Radwani, H., Lopez-Gonzalez, M. J., Cattaert, D., Roca-Lapirot, O., Dobremez, E., Bouali-Benazzouz, R., Eiriksdottir, E., Langel, U., Favereaux, A., Errami, M., Landry, M., & Fossat, P. (2016). Cav1.2 and Cav1.3 L-type calcium channels independently control short- and long-term sensitization to pain. Journal of Physiology, 594, 6607–6626.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathnayake, P. V., Gunathunge, B. G., Wimalasiri, P. N., Karunaratne, D. N., & Ranatunga, R. J. (2017). Trends in the binding of cell penetrating peptides to siRNA: A molecular docking study. Journal of Biophysics, 2017, 1059216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Regberg, J., Vasconcelos, L., Madani, F., Langel, Ü., & Hällbrink, M. (2016). pH-responsive PepFect cell-penetrating peptides. International Journal of Pharmaceutics, 501, 32–38.

    Article  PubMed  Google Scholar 

  • Roberts, T. C., Ezzat, K., el Andaloussi, S., & Weinberg, M. S. (2016). Synthetic SiRNA delivery: Progress and prospects. Methods in Molecular Biology, 1364, 291–310.

    Article  PubMed  Google Scholar 

  • Rose, M., Lapuebla, A., Landman, D., & Quale, J. (2019). In vitro and in vivo activity of a novel antisense peptide nucleic acid compound against multidrug-resistant acinetobacter baumannii. Microbial Drug Resistance, 25, 961–965.

    Article  PubMed  Google Scholar 

  • Rosenke, K., Leventhal, S., Moulton, H. M., Hatlevig, S., Hawman, D., Feldmann, H., & Stein, D. A. (2021). Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino oligomers. Journal of Antimicrobial Chemotherapy, 76, 413–417.

    Article  PubMed  Google Scholar 

  • Ross, K. (2018). Towards topical microRNA-directed therapy for epidermal disorders. Journal of Controlled Release, 269, 136–147.

    Article  PubMed  Google Scholar 

  • Ryan, C. A., & Rozners, E. (2020). Impact of chirality and position of lysine conjugation in triplex-forming peptide nucleic acids. ACS Omega, 5, 28722–28729.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saher, O., Lehto, T., Gissberg, O., Gupta, D., Gustafsson, O., Andaloussi, S. E., Darbre, T., Lundin, K. E., Smith, C. I. E., & Zain, R. (2019). Sugar and polymer excipients enhance uptake and splice-switching activity of peptide-dendrimer/lipid/oligonucleotide formulations. Pharmaceutics, 11, 666.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sajid, M. I., Mandal, D., El-sayed, N. S., Lohan, S., Moreno, J., & Tiwari, R. K. (2022). Oleyl conjugated histidine-arginine cell-penetrating peptides as promising agents for siRNA delivery. Pharmaceutics, 14.

    Google Scholar 

  • Salehi, D., Mozaffari, S., Zoghebi, K., Lohan, S., Mandal, D., Tiwari, R. K., & Parang, K. (2022). Amphiphilic cell-penetrating peptides containing natural and unnatural amino acids as drug delivery agents. Cells, 11.

    Google Scholar 

  • Salzano, G., Costa, D. F., Sarisozen, C., Luther, E., Mattheolabakis, G., Dhargalkar, P. P., & Torchilin, V. P. (2016). Mixed nanosized polymeric micelles as promoter of doxorubicin and miRNA-34a Co-delivery triggered by dual stimuli in tumor tissue. Small (weinheim an Der Bergstrasse, Germany), 12, 4837–4848.

    Article  PubMed  Google Scholar 

  • Samaridou, E., Walgrave, H., Salta, E., Álvarez, D. M., Castro-López, V., Loza, M., & Alonso, M. J. (2020). Nose-to-brain delivery of enveloped RNA—cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials, 230, 119657–119657.

    Article  PubMed  Google Scholar 

  • Sazani, P., Gemignani, F., Kang, S. H., Maier, M. A., Manoharan, M., Persmark, M., Bortner, D., & Kole, R. (2002). Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nature Biotechnology, 20, 1228–1233.

    Article  PubMed  Google Scholar 

  • Sazani, P., Kang, S. H., Maier, M. A., Wei, C., Dillman, J., Summerton, J., Manoharan, M., & Kole, R. (2001). Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Research, 29, 3965–3974.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarfi, S., Giovine, M., Gasparini, A., Damonte, G., Millo, E., Pozzolini, M., & Benatti, U. (1999). Modified peptide nucleic acids are internalized in mouse macrophages RAW 264.7 and inhibit inducible nitric oxide synthase. FEBS Letters, 451, 264–268.

    Article  PubMed  Google Scholar 

  • Schiroli, D., Gomara, M. J., Maurizi, E., Atkinson, S. D., Mairs, L., Christie, K. A., Cobice, D. F., McCrudden, C. M., Nesbit, M. A., Haro, I., & Moore, T. (2019). Effective in vivo topical delivery of siRNA and gene silencing in intact corneal epithelium using a modified cell-penetrating peptide. Molecular Therapy Nucleic Acids, 17, 891–906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnittert, J., Kuninty, P. R., Bystry, T. F., Brock, R., Storm, G., & Prakash, J. (2017). Anti-microRNA targeting using peptide-based nanocomplexes to inhibit differentiation of human pancreatic stellate cells. Nanomedicine (london, England), 12, 1369–1384.

    Article  PubMed  Google Scholar 

  • Shadid, M., Badawi, M., & Abulrob, A. (2021). Antisense oligonucleotides: absorption, distribution, metabolism, and excretion. Expert Opinion on Drug Metabolism & Toxicology, 1–12.

    Google Scholar 

  • Shiraishi, T., Ghavami, M., & Nielsen, P. E. (2020). In vitro cellular delivery of peptide nucleic acid (PNA). Methods in Molecular Biology, 2105, 173–185.

    Article  PubMed  Google Scholar 

  • Shukla, R. S., Qin, B., & Cheng, K. (2014). Peptides used in the delivery of small noncoding RNA. Molecular Pharmaceutics, 11, 3395–3408.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simeoni, F., Morris, M. C., Heitz, F., & Divita, G. (2003). Insight into the mechanism of the peptide-based gene delivery system MPG: Implications for delivery of siRNA into mammalian cells. Nucleic Acids Research, 31, 2717–2724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmons, C. G., Pitts, A. E., Mayfield, L. D., Shay, J. W., & Corey, D. R. (1997). Synthesis and membrane permeability of PNA-peptide conjugates. Bioorganic & Medicinal Chemistry Letters, 7, 3001–3006.

    Article  Google Scholar 

  • Singh, T., Murthy, A. S. N., Yang, H. J., & Im, J. (2018). Versatility of cell-penetrating peptides for intracellular delivery of siRNA. Drug Delivery, 25, 1996–2006.

    Article  PubMed  Google Scholar 

  • Soudah, T., Khawaled, S., Aqeilan, R. I., & Yavin, E. (2019). AntimiR-155 cyclic peptide-PNA conjugate: Synthesis, cellular uptake, and biological activity. ACS Omega, 4, 13954–13961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soudah, T., Mogilevsky, M., Karni, R., & Yavin, E. (2017). CLIP6-PNA-peptide conjugates: Non-endosomal delivery of splice switching oligonucleotides. Bioconjugate Chemistry, 28, 3036–3042.

    Article  PubMed  Google Scholar 

  • Stein, C. A., & Castanotto, D. (2017). FDA-approved oligonucleotide therapies in 2017. Molecular Therapy, 25, 1069–1075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suh, J. S., Lee, J. Y., Choi, Y. S., Chung, C. P., & Park, Y. J. (2013). Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation. Biomaterials, 34, 4347–4359.

    Article  PubMed  Google Scholar 

  • Sumi, N., Nagahiro, S., Nakata, E., Watanabe, K., & Ohtsuki, T. (2022). Ultrasound-dependent RNAi using TatU1A-rose bengal conjugate. Bioorganic & Medicinal Chemistry Letters, 68, 128767.

    Article  Google Scholar 

  • Suryawanshi, H., Sarangdhar, M. A., Vij, M., Roshan, R., Singh, V. P., Ganguli, M., & Pillai, B. (2015). A simple alternative to stereotactic injection for brain specific knockdown of miRNA. Journal of Visualized Experiments: Jove, 26, 53307.

    Google Scholar 

  • SYED, Y. Y. (2021). Givosiran: A review in acute hepatic porphyria. Drugs, 81, 841–848

    Google Scholar 

  • Tai, W. (2019). Current aspects of siRNA bioconjugate for in vitro and in vivo delivery. Molecules, 24.

    Google Scholar 

  • Tai, W., & Gao, X. (2016). Functional peptides for siRNA delivery. Advanced Drug Delivery Reviews, 13, 30236–30238.

    Google Scholar 

  • Tajik-Ahmadabad, B., Polyzos, A., Separovic, F., & Shabanpoor, F. (2017). Amphiphilic lipopeptide significantly enhances uptake of charge-neutral splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts. International Journal of Pharmaceutics, 532, 21–28.

    Article  PubMed  Google Scholar 

  • Takada, H., Tsuchiya, K., & Demizu, Y. (2022). Helix-stabilized cell-penetrating peptides for delivery of antisense morpholino oligomers: Relationships among helicity, cellular uptake, and antisense activity. Bioconjugate Chemistry, 33, 1311–1318.

    Article  PubMed  Google Scholar 

  • Taniguchi, K., Wada, S.-I., Ito, Y., Hayashi, J., Inomata, Y., Lee, S.-W., Tanaka, T., Komura, K., Akao, Y., Urata, H., & Uchiyama, K. (2019). α-Aminoisobutyric acid-containing amphipathic helical peptide-cyclic RGD conjugation as a potential drug delivery system for MicroRNA Replacement therapy in vitro. Molecular Pharmaceutics, 16, 4542–4550.

    Article  PubMed  Google Scholar 

  • Tarvirdipour, S., Huang, X., Mihali, V., Schoenenberger, C. A., & Palivan, C. G. (2020). Peptide-based nanoassemblies in gene therapy and diagnosis: Paving the way for clinical application. Molecules, 25.

    Google Scholar 

  • Thennakoon, S., Postema, R., & Tan, X. (2021). Constraining TAT peptide by γPNA hairpin for enhanced cellular delivery of biomolecules. Methods in Molecular Biology, 2355, 265–273.

    Article  PubMed  Google Scholar 

  • Thierry, A. R., Abes, S., Resina, S., Travo, A., Richard, J. P., Prevot, P., & Lebleu, B. (2006). Comparison of basic peptides- and lipid-based strategies for the delivery of splice correcting oligonucleotides. Biochimica Et Biophysica Acta, 1758, 364–374.

    Article  PubMed  Google Scholar 

  • Torres, A. G., Fabani, M. M., Vigorito, E., Williams, D., Al-Obaidi, N., Wojciechowski, F., Hudson, R. H., Seitz, O., & Gait, M. J. (2012). Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs. Nucleic Acids Research, 40, 2152–2167.

    Article  PubMed  Google Scholar 

  • Traykovska, M., & Penchovsky, R. (2022a). Engineering antisense oligonucleotides as antibacterial agents that target FMN riboswitches and inhibit the growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. ACS Synthetic Biology, 11, 1845–1855.

    Article  PubMed  Google Scholar 

  • Traykovska, M., & Penchovsky, R. (2022b). Targeting SAM-I riboswitch using antisense oligonucleotide technology for inhibiting the growth of Staphylococcus aureus and Listeria monocytogenes. Antibiotics (Basel), 11.

    Google Scholar 

  • Traykovska, M., Popova, K. B., & Penchovsky, R. (2021). Targeting glmS ribozyme with chimeric antisense oligonucleotides for antibacterial drug development. ACS Synthetic Biology, 10, 3167–3176.

    Article  PubMed  Google Scholar 

  • Tuttolomondo, M., Casella, C., Hansen, P. L., Polo, E., Herda, L. M., Dawson, K. A., Ditzel, H. J., & Mollenhauer, J. (2017). Human DMBT1-derived cell-penetrating peptides for intracellular siRNA delivery. Molecular Therapy Nucleic Acids, 8, 264–276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuttolomondo, M., & Ditzel, H. J. (2021). Non-covalent encapsulation of siRNA with cell-penetrating peptides. Methods in Molecular Biology, 2282, 353–376.

    Article  PubMed  Google Scholar 

  • Udhayakumar, V. K., De Beuckelaer, A., Mccaffrey, J., Mccrudden, C. M., Kirschman, J. L., Vanover, D., Van Hoecke, L., Roose, K., Deswarte, K., De Geest, B. G., Lienenklaus, S., Santangelo, P. J., Grooten, J., Mccarthy, H. O., & De Koker, S. (2017). Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Advanced Healthcare Materials, 6.

    Google Scholar 

  • Urandur, S., & Sullivan, M. O. (2023). Peptide-based vectors: A biomolecular engineering strategy for gene delivery. Annual Review of Chemical and Biomolecular Engineering, 14.

    Google Scholar 

  • Urgard, E., Brjalin, A., Langel, U., Pooga, M., Rebane, A., & Annilo, T. (2017). Comparison of peptide- and lipid-based delivery of miR-34a-5p mimic into PPC-1 cells. Nucleic Acid Therapeutics, 27, 295–302.

    Article  PubMed  Google Scholar 

  • Urgard, E., Lorents, A., Klaas, M., Padari, K., Viil, J., Runnel, T., Langel, K., Kingo, K., Tkaczyk, E., Langel, Ü., Maimets, T., Jaks, V., Pooga, M., & Rebane, A. (2016). Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. Journal of Controlled Release, 235, 195–204.

    Article  PubMed  Google Scholar 

  • Vaissiere, A., Aldrian, G., Konate, K., Lindberg, M. F., Jourdan, C., Telmar, A., Seisel, Q., Fernandez, F., Viguier, V., Genevois, C., Couillaud, F., Boisguerin, P., & Deshayes, S. (2017). A retro-inverso cell-penetrating peptide for siRNA delivery. Journal of Nanobiotechnology, 15, 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Asbeck, A. H., Beyerle, A., McNeill, H., Bovee-Geurts, P. H., Lindberg, S., Verdurmen, W. P., Hällbrink, M., Langel, Ü., Heidenreich, O., & Brock, R. (2013). Molecular parameters of siRNA–cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano, 7, 3797–3807.

    Article  PubMed  Google Scholar 

  • Van der Bent, M. L., Paulino da Silva Filho, O., Willemse, M., Hallbrink, M., Wansink, D. G., & Brock, R. (2019). The nuclear concentration required for antisense oligonucleotide activity in myotonic dystrophy cells.FASEB Journal, 33, 11314–11325.

    Google Scholar 

  • Vasconcelos, A., Vega, E., Perez, Y., Gomara, M. J., Garcia, M. L., & Haro, I. (2015). Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. International Journal of Nanomedicine, 10, 609–631.

    PubMed  PubMed Central  Google Scholar 

  • Victorio, C. B. L., Novera, W., Tham, J. Y., Watanabe, S., Vasudevan, S. G., & Chacko, A. M. (2020). Peptide-conjugated phosphorodiamidate morpholino oligomers for in situ live-cell molecular imaging of dengue virus replication. International Journal of Molecular Science, 21.

    Google Scholar 

  • Wada, S. I., Takesada, A., Nagamura, Y., Sogabe, E., Ohki, R., Hayashi, J., & Urata, H. (2017). Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery. Bioorganic & Medicinal Chemistry Letters, 27, 5378–5381.

    Article  Google Scholar 

  • Wan, Y., Moyle, P. M., Gn, P. Z., & Toth, I. (2017). Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery. Nanomedicine (london, England), 12, 281–293.

    Article  PubMed  Google Scholar 

  • Wang, H., Wang, Z., Chen, W., Wang, W., Shi, W., Chen, J., Hang, Y., Song, J., Xiao, X., & Dai, Z. (2021). Self-assembly of photosensitive and radiotherapeutic peptide for combined photodynamic-radio cancer therapy with intracellular delivery of miRNA-139-5p. Bioorganic & Medicinal Chemistry, 44, 116305.

    Article  Google Scholar 

  • Wang, J., Chen, G., Liu, N., Han, X., Zhao, F., Zhang, L., & Chen, P. (2022). Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Advances in Colloid and Interface Science, 302, 102638.

    Article  PubMed  Google Scholar 

  • Wang, L., Tang, W., Yan, S., Zhou, L., Shen, T., Huang, X., Dou, L., Wang, M., Yu, S., & Li, J. (2013). Efficient delivery of miR-122 to regulate cholesterol metabolism using a non-covalent peptide-based strategy. Molecular Medicine Reports, 8, 1472–1478.

    Article  PubMed  Google Scholar 

  • Wang, X., Wu, F., Li, G., Zhang, N., Song, X., Zheng, Y., Gong, C., Han, B., & He, G. (2018). Lipid-modified cell-penetrating peptide-based self-assembly micelles for co-delivery of narciclasine and siULK1 in hepatocellular carcinoma therapy. Acta Biomaterialia, 74, 414–429.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M., Fadzen, C. M., Holden, R. L., Yao, M., Hanson, G. J., & Pentelute, B. L. (2018). Perfluoroaryl bicyclic cell-penetrating peptides for delivery of antisense oligonucleotides. Angewandte Chemie (international Ed. in English), 57, 4756–4759.

    Article  PubMed  Google Scholar 

  • Wyman, T. B., Nicol, F., Zelphati, O., Scaria, P. V., Plank, C., & Szoka Jr, F. C. (1997). Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 36, 3008–3017.

    Article  PubMed  Google Scholar 

  • Xiao, X., Wang, X., Gao, H., Chen, X., Li, J., & Zhang, Y. (2018). Cell-selective delivery of MicroRNA with a MicroRNA-peptide conjugate nanocomplex. Chemistry—an Asian Journal, 13, 3845–3849.

    Article  PubMed  Google Scholar 

  • Xie, D., Du, J., Bao, M., Zhou, A., Tian, C., Xue, L., Ju, C., Shen, J., & Zhang, C. (2019). A one-pot modular assembly strategy for triple-play enhanced cytosolic siRNA delivery. Biomater Sci, 7, 901–913.

    Article  PubMed  Google Scholar 

  • Xu, H., Liao, C., Liang, S., & Ye, B. C. (2021). A novel peptide-equipped exosomes platform for delivery of antisense oligonucleotides. ACS Applied Materials & Interfaces, 13, 10760–10767.

    Article  Google Scholar 

  • Xue, X. Y., Mao, X. G., Zhou, Y., Chen, Z., Hu, Y., Hou, Z., Li, M. K., Meng, J. R., & Luo, X. X. (2018). Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomedicine, 14, 745–758.

    Article  PubMed  Google Scholar 

  • Yan, H., Duan, X., Pan, H., Akk, A., Sandell, L. J., Wickline, S. A., Rai, M. F., & Pham, C. T. N. (2019). Development of a peptide-siRNA nanocomplex targeting NF- kappaB for efficient cartilage delivery. Science and Reports, 9, 442.

    Article  Google Scholar 

  • Yan, L. P., Castaño, I. M., Sridharan, R., Kelly, D., Lemoine, M., Cavanagh, B. L., Dunne, N. J., McCarthy, H. O., & O’Brien, F. J. (2020). Collagen/GAG scaffolds activated by RALA-siMMP-9 complexes with potential for improved diabetic foot ulcer healing. Materials Science & Engineering, c: Materials for Biological Applications, 114, 111022.

    Article  Google Scholar 

  • Ye, J., Liu, E., Gong, J., Wang, J., Huang, Y., He, H., & Yang, V. C. (2017). High-yield synthesis of monomeric LMWP(CPP)-siRNA covalent conjugate for effective cytosolic delivery of siRNA. Theranostics, 7, 2495–2508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi, A., Sim, D., Lee, Y. J., Sarangthem, V., & Park, R. W. (2020). Development of elastin-like polypeptide for targeted specific gene delivery in vivo. J Nanobiotechnology, 18, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokoi, Y., Kawabuchi, Y., Zulmajdi, A. A., Tanaka, R., Shibata, T., Muraoka, T., & Mori, T. (2022). Cell-penetrating peptide-peptide nucleic acid conjugates as a tool for protein functional elucidation in the native bacterium. Molecules, 27.

    Google Scholar 

  • Youn, P., Chen, Y., & Furgeson, D. Y. (2014). A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Molecular Pharmaceutics, 11, 486–495.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Z., Ye, J., Pei, X., Sun, L., Liu, E., Wang, J., Huang, Y., Lee, S. J., & He, H. (2018). Improved method for synthesis of low molecular weight protamine-siRNA conjugate. Acta Pharmceutica Sinica B, 8, 116–126.

    Article  Google Scholar 

  • Yu, Z., Zhang, X., Pei, X., Cao, W., Ye, J., Wang, J., Sun, L., Yu, F., Wang, J., Li, N., Lee, K., Barth, S., Yang, V. C., & He, H. (2021). Antibody-siRNA conjugates (ARCs) using multifunctional peptide as a tumor enzyme cleavable linker mediated effective intracellular delivery of siRNA. International Journal of Pharmaceutics, 606, 120940.

    Article  PubMed  Google Scholar 

  • Zeng, F., Peritz, T., Kannanayakal, T. J., Kilk, K., Eiriksdottir, E., Langel, Ü., & Eberwine, J. (2006). A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nature Protocols, 1, 920–927.

    Article  PubMed  Google Scholar 

  • Zhang, C., Ren, W., Liu, Q., Tan, Z., Li, J., & Tong, C. (2019). Transportan-derived cell-penetrating peptide delivers siRNA to inhibit replication of influenza virus in vivo. Drug Design, Development and Therapy, 13, 1059–1068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Yuan, W., Wu, Y., Wan, X., & Gong, Y. (2020). Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sciences, 266, 118886.

    Article  PubMed  Google Scholar 

  • Zhao, Y., He, Z., Gao, H., Tang, H., He, J., Guo, Q., Zhang, W., & Liu, J. (2018). Fine tuning of core-shell structure of hyaluronic acid/cell-penetrating peptides/siRNA nanoparticles for enhanced gene delivery to macrophages in antiatherosclerotic therapy. Biomacromolecules, 19, 2944–2956.

    Article  PubMed  Google Scholar 

  • Zielinski, J., Kilk, K., Peritz, T., Kannanayakal, T., Miyashiro, K. Y., Eiriksdottir, E., Jochems, J., Langel, Ü., & Eberwine, J. (2006). In vivo identification of ribonucleoprotein-RNA interactions. Proceedings of the National Academy of Sciences of the United States of America, 103, 1557–1562.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Langel .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langel, Ü. (2023). Methods for CPP Functionalization with Oligonucleotides. In: CPP, Cell-Penetrating Peptides. Springer, Cham. https://doi.org/10.1007/978-3-031-38731-9_5

Download citation

Publish with us

Policies and ethics