Skip to main content

The Structure, Function, and Modification of Non-coding RNAs in Cardiovascular System

  • Chapter
  • First Online:
RNA Structure and Function

Part of the book series: RNA Technologies ((RNATECHN,volume 14))

  • 660 Accesses

Abstract

The occurrence, development and prognosis of cardiovascular disease is a multi-factor and multi-path pathological process. In addition to environmental factors, epigenetic regulation mechanisms also play an important role in the occurrence and development of cardiovascular disease. The most common and abundant internal modification of mRNA is m6A. Together with RNA editing, which is an alternative RNA modification, both play important roles in regulating gene expression and affect the fate of RNA molecules. In addition, with the advances in next-generation sequencing technology, non-coding RNAs such as microRNA, long non-coding RNA, and circular RNA which are usually not involved in protein synthesis, but can participate in cardiac homeostasis, cardiomyocyte growth, proliferation and apoptosis, endothelial cell function, cardiac remodeling and repair, and inflammatory response through various mechanisms. Grasping the cognition of RNA modifications and non-coding RNAs in cardiovascular disease may help us to better understand mechanisms and develop new biomarkers or therapeutic strategies in cardiovascular disease. This chapter summarizes the roles of long non-coding RNA, microRNA, circular RNA, and RNA modification in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bazan HA, Hatfield SA, Brug A et al (2017) Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels. Circ Cardiovasc Genet 10(4)

    Google Scholar 

  • Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol 220(2)

    Google Scholar 

  • Brown JA, Kinzig CG, DeGregorio SJ et al (2016) Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci USA 113:14013–14018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai B, Ma W, Ding F et al (2018) The long noncoding RNA CAREL controls cardiac regeneration. J Am Coll Cardiol 72:534–550

    Article  PubMed  Google Scholar 

  • Che H, Wang Y, Li H et al (2020) Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR-141-mediated NLRP3 inflammasome and TGF-β1/Smads signaling in diabetic cardiomyopathy. FASEB J 34:5282–5298

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Zhang J, Zhu JS (2019a) The role of m(6)A RNA methylation in human cancer. Mol Cancer 18:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YG, Chen R, Ahmad S et al (2019b) N6-methyladenosine modification controls circular RNA immunity. Mol Cell 76:96–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Wang C, Sun H et al (2021) The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 22:1706–1728

    Article  CAS  PubMed  Google Scholar 

  • Chien CS, Li JY, Chien Y et al (2021) METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium. Proc Natl Acad Sci USA 118:e2025070118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Timoteo G, Dattilo D, Centrón-Broco A et al (2020) Modulation of circRNA Metabolism by m(6)A Modification. Cell Rep 31:107641

    Article  PubMed  Google Scholar 

  • Dillmann WH (2019) Diabetic cardiomyopathy. Circ Res 124:1160–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Huang H, Xu Y et al (2017) MiR-222 in cardiovascular diseases: physiology and pathology. Biomed Res Int 2017:4962426

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Wang X, Liu S et al (2018) PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res 114:1738–1751

    Article  CAS  PubMed  Google Scholar 

  • Dorn LE, Lasman L, Chen J et al (2019) The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139:533–545

    Article  CAS  PubMed  Google Scholar 

  • Du WW, Xu J, Yang W et al (2021) A neuroligin isoform translated by circNlgn contributes to cardiac remodeling. Circ Res 129:568–582

    Article  CAS  PubMed  Google Scholar 

  • El Azzouzi H, Vilaça AP, Feyen DAM et al (2020) Cardiomyocyte specific deletion of ADAR1 causes severe cardiac dysfunction and increased lethality. Front Cardiovasc Med 7:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Erdos MR, Cabral WA, Tavarez UL et al (2021) A targeted antisense therapeutic approach for Hutchinson-Gilford progeria syndrome. Nat Med 27:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Xu W, Zhang W et al (2019) LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy. Theranostics 9:4558–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferragut Cardoso AP, Banerjee M, Nail AN et al (2021) miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol 76:120–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Zhuang X (2020) m(6)A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol 16:955–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabisonia K, Prosdocimo G, Aquaro GD et al (2019) MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569:418–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Kataoka M, Liu N et al (2019) Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun 10:1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao R, Wang L, Bei Y et al (2021) Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 144:303–317

    Article  CAS  PubMed  Google Scholar 

  • García-Padilla C, Aránega A, Franco D (2018) The role of long non-coding RNAs in cardiac development and disease. AIMS Genet 5:124–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Garikipati VNS, Verma SK, Cheng Z et al (2019) Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun 10:4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati R, Behfar A, Narula J et al (2020) Acute Myocardial Infarction in Young Individuals. Mayo Clin Proc 95:136–156

    Article  PubMed  Google Scholar 

  • Han Z, Wang X, Xu Z et al (2021) ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11:3000–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidenreich P, Bozkurt B, Aguilar D et al (2022) 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation 145:e895–e1032

    PubMed  Google Scholar 

  • Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu ZQ, Luo JF, Yu XJ et al (2017) Targeting myocyte-specific enhancer factor 2D contributes to the suppression of cardiac hypertrophic growth by miR-92b-3p in mice. Oncotarget 8:92079–92089

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Zhang H, Guo X et al (2018) Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J Hematol Oncol 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Li X, Zheng H et al (2019) Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139:2857–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Wang L, Li Q et al (2020) Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 116:353–367

    Article  CAS  PubMed  Google Scholar 

  • Huang XH, Li JL, Li XY et al (2021) miR-208a in cardiac hypertrophy and remodeling. Front Cardiovasc Med 8:773314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian D, Wang Y, Jian L et al (2020) METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics 10:8939–8956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Qiao Y, Wang Z et al (2020) Inhibition of microRNA-103 attenuates inflammation and endoplasmic reticulum stress in atherosclerosis through disrupting the PTEN-mediated MAPK signaling. J Cell Physiol 235:380–393

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Lin X, Yang L et al (2018) AK098656, a novel vascular smooth muscle cell-dominant long noncoding rna, promotes hypertension. Hypertension 71:262–272

    Article  CAS  PubMed  Google Scholar 

  • Jusic A, Devaux Y (2020) Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 115:23

    Article  CAS  PubMed  Google Scholar 

  • Landmesser U, Poller W, Tsimikas S et al (2020) From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur Heart J 41:3884–3899

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Yang TL, Huang YH et al (2018) Induction of microRNA-10a using retinoic acid receptor-α and retinoid x receptor-α agonists inhibits atherosclerotic lesion formation. Atherosclerosis 271:36–44

    Article  CAS  PubMed  Google Scholar 

  • Lerchenmüller C, Rabolli CP, Yeri A et al (2020) CITED4 protects against adverse remodeling in response to physiological and pathological stress. Circ Res 127:631–646

    PubMed  PubMed Central  Google Scholar 

  • Lesizza P, Prosdocimo G, Martinelli V et al (2017) Single-dose intracardiac injection of pro-regenerative MicroRNAs improves cardiac function after myocardial infarction. Circ Res 120:1298–1304

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Song Y, Liu L et al (2017) miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ 24:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wu K, Quan W et al (2019) The dynamics of FTO binding and demethylation from the m(6)A motifs. RNA Biol 16:1179–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Xu JD, Fang XH et al (2020a) Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res 116:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Li R, Jiang J, Shi H et al (2020b) CircRNA: a rising star in gastric cancer. Cell Mol Life Sci 77:1661–1680

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zheng H, Han Y et al (2021a) LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction. Theranostics 11:9397–9414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Zhuang Y, Yang W et al (2021b) Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts. FASEB J 35:e21162

    CAS  PubMed  Google Scholar 

  • Li X, Meng C, Han F et al (2021c) Vildagliptin attenuates myocardial dysfunction and restores autophagy via miR-21/SPRY1/ERK in diabetic mice heart. Front Pharmacol 12:634365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Shao Y, Guo HC et al (2022) MicroRNA-27b-3p down-regulates FGF1 and aggravates pathological cardiac remodelling. Cardiovasc Res 118:2139–2151

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Cao W, Zhang K et al (2021) Bioinformatic and integrated analysis identifies an lncRNA-miRNA-mRNA interaction mechanism in gastric adenocarcinoma. Genes Genomics 43:613–622

    Article  CAS  PubMed  Google Scholar 

  • Libby P (2021) The changing landscape of atherosclerosis. Nature 592:524–533

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Zhu Y, Zheng C et al (2021) Antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779. Circulation 143:2277–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CX, Chen LL (2022) Circular RNAs: characterization, cellular roles, and applications. Cell 185:2016–2034

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chen D, Chen H et al (2021) YB1 regulates miR-205/200b-ZEB1 axis by inhibiting microRNA maturation in hepatocellular carcinoma. Cancer Commun (Lond) 41:576–595

    Article  PubMed  Google Scholar 

  • Mathiyalagan P, Adamiak M, Mayourian J et al (2019) FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139:518–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JBT, Sadri G, Fischer AG et al (2020) The A-to-I RNA editing enzyme ADAR1 is essential for normal embryonic cardiac growth and development. Circ Res 127:550–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagalingam A, Siddharth S, Parida S et al (2021) Hyperleptinemia in obese state renders luminal breast cancers refractory to tamoxifen by coordinating a crosstalk between Med1, miR205 and ErbB. NPJ Breast Cancer 7:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan JX (2017) LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. Eur Rev Med Pharmacol Sci 21:322–328

    PubMed  Google Scholar 

  • Peng S, Xiao W, Ju D et al (2019) Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med 11(488)

    Google Scholar 

  • Poller W, Dimmeler S, Heymans S et al (2018) Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 39:2704–2716

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Sharma N, Prasad M (2021) Noncoding but coding: Pri-miRNA into the action. Trends Plant Sci 26:204–206

    Article  CAS  PubMed  Google Scholar 

  • Puthanveetil P, Chen S, Feng B et al (2015) Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 19:1418–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransohoff JD, Wei Y, Khavari PA (2018) The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19:143–157

    Article  CAS  PubMed  Google Scholar 

  • Regouski M, Galenko O, Doleac J et al (2019) Spontaneous atrial fibrillation in transgenic goats with TGF (Transforming Growth Factor)-β1 induced atrial myopathy with endurance exercise. Circ Arrhythm Electrophysiol 12:e007499

    Article  CAS  PubMed  Google Scholar 

  • Reichel M, Köster T, Staiger D (2019) Marking RNA: m6A writers, readers, and functions in Arabidopsis. J Mol Cell Biol 11:899–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Z, Wang S, Yu W et al (2019) LncRNA MALAT1 aggravates inflammation response through regulating PTGS2 by targeting miR-26b in myocardial ischemia-reperfusion injury. Int J Cardiol 288:122

    Article  PubMed  Google Scholar 

  • Ryu J, Ahn Y, Kook H et al (2021) The roles of non-coding RNAs in vascular calcification and opportunities as therapeutic targets. Pharmacol Ther 218:107675

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Somoza A, Zhang L, Vausort M et al (2017) The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc 17:33–36

    PubMed  PubMed Central  Google Scholar 

  • Seok H, Lee H, Lee S et al (2020) Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature 584:279–285

    Article  CAS  PubMed  Google Scholar 

  • Song H, Feng X, Zhang H et al (2019) METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15:1419–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sørensen ST, Litman T, Gluud M et al (2022) miRNA Signature in Early-stage Mycosis Fungoides. Acta Derm Venereol 102:adv00785

    Google Scholar 

  • Su H, Wang G, Wu L et al (2020) Transcriptome-wide map of m(6)A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension. BMC Genomics 21:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su W, Huo Q, Wu H et al (2021) The function of LncRNA-H19 in cardiac hypertrophy. Cell Biosc 11:153

    Article  CAS  Google Scholar 

  • Sun L, Zhang J, Li Y (2019) Chronic central miR-29b antagonism alleviates angiotensin II-induced hypertension and vascular endothelial dysfunction. Life Sci 235:116862

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Liu S, Jiang Q et al (2019) LncRNA-MIAT increased in patients with coronary atherosclerotic heart disease. Cardiol Res Pract 2019:6280194

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang CM, Zhang M, Huang L et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342

    Article  PubMed  PubMed Central  Google Scholar 

  • Taniue K, Akimitsu N (2021) The functions and unique features of LncRNAs in cancer development and tumorigenesis. Int J Mol Sci 22(2)

    Google Scholar 

  • Tao Y, Liu Q, Wu R et al (2022) Long noncoding RNA LUCAT1 enhances the survival and therapeutic effects of mesenchymal stromal cells post-myocardial infarction. Mol Ther Nucleic Acids 27:412–426

    Article  CAS  PubMed  Google Scholar 

  • Viereck J, Bührke A, Foinquinos A et al (2020) Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 41:3462–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viereck J, Kumarswamy R, Foinquinos A et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra22

    Google Scholar 

  • Wang GK, Zhu JQ, Zhang JT et al (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666

    Article  PubMed  Google Scholar 

  • Wang R, Dong LD, Meng XB et al (2015) Unique MicroRNA signatures associated with early coronary atherosclerotic plaques. Biochem Biophys Res Commun 464:574–579

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yuan Y, Zheng M et al (2020a) Association of age of onset of hypertension with cardiovascular diseases and mortality. J Am Coll Cardiol 75:2921–2930

    Article  PubMed  Google Scholar 

  • Wang X, Wang L, Ma Z et al (2020b) Early expressed circulating long noncoding RNA CHAST is associated with cardiac contractile function in patients with acute myocardial infarction. Int J Cardiol 302:15–20

    Article  PubMed  Google Scholar 

  • Wang Y, Sun J, Lin Z et al (2020c) m(6)A mRNA methylation controls functional maturation in neonatal murine β-cells. Diabetes 69:1708–1722

    Article  PubMed  Google Scholar 

  • Wang F, Yu R, Wen S et al (2021a) Overexpressing microRNA-203 alleviates myocardial infarction via interacting with long non-coding RNA MIAT and mitochondrial coupling factor 6. Arch Pharm Res 44:525–535

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang S, Xu L et al (2021b) Involvement of circHIPK3 in the pathogenesis of diabetic cardiomyopathy in mice. Diabetologia 64:681–692

    Article  PubMed  Google Scholar 

  • Wang X, He Y, Mackowiak B et al (2021c) MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 70:784–795

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li C, Zhao R et al (2021d) CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction. Theranostics 11:6315–6333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang J, Yu P et al (2022a) METTL14 is required for exercise-induced cardiac hypertrophy and protects against myocardial ischemia-reperfusion injury. Nat Commun 13:6762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yu P, Wang J et al (2022b) Downregulation of circ-ZNF609 promotes heart repair by modulating RNA N(6)-methyladenosine-modified yap expression. Research (wash D C) 2022:9825916

    CAS  PubMed  Google Scholar 

  • Watson CJ, Gupta SK, O’Connell E et al (2015) MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 17:405–415

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Yan Y, Cai Y et al (2021) ALKBH1-8 and FTO: potential therapeutic targets and prognostic biomarkers in lung adenocarcinoma pathogenesis. Front Cell Dev Biol 9:633927

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Wang L, Wang K et al (2022) ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol Ther 30:400–414

    Article  CAS  PubMed  Google Scholar 

  • Xiao SH, Wang Y, Cao X et al (2021) Long non-coding RNA LUCAT1 inhibits myocardial oxidative stress and apoptosis after myocardial infarction via targeting microRNA-181a-5p. Bioengineered 12:4546–4555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong X, Liu J, He Q et al (2021) Long non-coding RNA NORAD aggravates acute myocardial infarction by promoting fibrosis and apoptosis via miR-577/COBLL1 axis. Environ Toxicol 36:2256–2265

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Wang Z, Chen M et al (2021) YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci 11:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Biswas J, Singer RH et al (2022) Targeted RNA editing: novel tools to study post-transcriptional regulation. Mol Cell 82:389–403

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Qin Y, Lv J et al (2018) Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis 9:1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang F, Li A, Qin Y et al (2019a) A novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA. Mol Ther Nucleic Acids 17:636–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Li X, Lin Q et al (2019b) Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene 715:143995

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Shen F, Huang W et al (2019c) Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. J Clin Endocrinol Metab 104:665–673

    Article  PubMed  Google Scholar 

  • Ye ZM, Yang S, Xia YP et al (2019) LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis 10:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Zhao Y, He M et al (2019) MiR-30c/PGC-1β protects against diabetic cardiomyopathy via PPARα. Cardiovasc Diabetol 18:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Huang XR, Wei LH et al (2014) miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol Ther 22:974–985

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yang T, Xiao J (2018) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34:267–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang BY, Han L, Tang YF et al (2020a) METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion. Eur Rev Med Pharmacol Sci 24:7015–7023

    PubMed  Google Scholar 

  • Zhang M, Wang N, Song P et al (2020b) LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif 53:e12855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen W, Wang Y (2020c) STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed Pharmacother 125:110022

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang W, Zhu W et al (2019) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci 20(22)

    Google Scholar 

  • Zheng C, Niu H, Li M et al (2015) Cyclic RNA hsa-circ-000595 regulates apoptosis of aortic smooth muscle cells. Mol Med Rep 12:6656–6662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou SS, Jin JP, Wang JQ et al (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39:1073–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Yang M, Ren H et al (2018) Long noncoding RNA MALAT1 downregulates cardiac transient outward potassium current by regulating miR-200c/HMGB1 pathway. J Cell Biochem 119:10239–10249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from National Natural Science Foundation of China (82020108002 and 82225005 to JJ Xiao, 82270291 to LJ Wang), the grant from Science and Technology Commission of Shanghai Municipality (23410750100, 21XD1421300 and 20DZ2255400 to JJ Xiao), the “Dawn” Program of Shanghai Education Commission (19SG34 to JJ Xiao), the Natural Science Foundation of Shanghai, China (23ZR1423000 to LJ Wang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Wang or Junjie Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cui, X., Gokulnath, P., Li, G., Wang, L., Xiao, J. (2023). The Structure, Function, and Modification of Non-coding RNAs in Cardiovascular System. In: Barciszewski, J. (eds) RNA Structure and Function. RNA Technologies, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-36390-0_19

Download citation

Publish with us

Policies and ethics