Skip to main content

Pesticides and Cancer

  • Chapter
  • First Online:
Environmental Oncology

Abstract

Pesticides are widely used in agriculture to control weeds, insects, fungi, rodents, and other pests, but their use can have negative effects on both the environment and human health. This article discusses the various ways in which individuals can be exposed to pesticides and the potential health effects of such exposure. Growing evidence suggests that exposure to pesticides can increase the risk of developing cancer, with any class of pesticides being a risk factor. Specific chemicals in many classes of pesticides have been linked to various types of cancer. This article discusses the link between pesticide exposure and various types of cancer, including lung, breast, genitourinary, leukemia, brain, and myeloma. Efforts should be made to limit exposure to reduce cancer incidence, particularly with regard to certain pesticides such as organochlorines, triazines, organophosphates, chlorophenoxy, pyrethroids, and carbamates. While some pesticides are not considered carcinogenic due to a lack of evidence, in vitro and in vivo studies have shown characteristics of carcinogens for some pesticides. Further studies are required to evaluate the carcinogenicity of pesticides and reduce disparities in cancer risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atwood D, Paisley-Jones C. Pesticides industry sales and usage: 2008–2012 market estimates. US Environmental Protection Agency; 2017.

    Google Scholar 

  2. Tudi M, Li H, Li H, et al. Exposure routes and health risks associated with pesticide application. Toxics. 2022;10(6):335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gangemi S, Miozzi E, Teodoro M, et al. Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans. Mol Med Rep. 2016;14(5):4475–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Abd El-Aty AM, Wang S, et al. Competitive fluorescent immunosensor based on catalytic hairpin self-assembly for multiresidue detection of organophosphate pesticides in agricultural products. Food Chem. 2023;413:5607.

    Article  Google Scholar 

  5. De Troeyer K, Casas L, Bijnens EM, et al. Higher proportion of agricultural land use around the residence is associated with higher urinary concentrations of AMPA, a glyphosate metabolite. Int J Hyg Environ Health. 2022;246:114039.

    Article  PubMed  Google Scholar 

  6. Gunier RB, Ward MH, Airola M, et al. Determinants of agricultural pesticide concentrations in carpet dust. Environ Health Perspect. 2011;119(7):970–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harnly ME, Bradman A, Nishioka M, et al. Pesticides in dust from homes in an agricultural area. Environ Sci Technol. 2009;43(23):8767–74.

    Article  CAS  PubMed  Google Scholar 

  8. Bradman A, Castorina R, Boyd Barr D, et al. Determinants of organophosphorus pesticide urinary metabolite levels in young children living in an agricultural community. Int J Environ Res Public Health. 2011;8(4):1061–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cecchi A, Alvarez G, Quidel N, et al. Residential proximity to pesticide applications in Argentine Patagonia: impact on pregnancy and newborn parameters. Environ Sci Pollut Res. 2021;28(40):56565–79.

    Article  CAS  Google Scholar 

  10. US Department of Agriculture. 2022. Pesticide Data Program Annual Summary Calendar Year 2021.

    Google Scholar 

  11. Bexfield LM, Belitz K, Lindsey BD, et al. Pesticides and pesticide degradates in groundwater used for public supply across the United States: occurrence and human-health context. Environ Sci Technol. 2020;55(1):362–72.

    Article  PubMed  Google Scholar 

  12. Desimone L, Hamilton PA, Gilliom RJ. 2009. Quality of water from domestic wells in principal aquifers of the United States, 1991–2004. National Water Quality Assessment Program, Circular 1332. US Geological Survey. https://pubs.usgs.gov/circ/circ1332/includes/circ1332.pdf. Accessed 13 Dec 2022.

  13. Levy ZF, Balkan M, Shelton JL. 2023. Quality of groundwater used for domestic supply in the Modesto, Turlock, and Merced Subbasins of the San Joaquin Valley, California. US Geological Survey. https://pubs.usgs.gov/of/2022/1116/ofr20221116.pdf. Accessed 11 Feb 2023.

  14. California Environmental Health Protection Agency. 2023. About Proposition 65. https://oehha.ca.gov/proposition-65/about-proposition-65. Accessed 07 Feb 2023.

  15. International Agency for Research on Cancer. 2019. IARC Monographs on the identification of carcinogenic hazards to humans – preamble. https://monographs.iarc.who.int/wp-content/uploads/2019/07/Preamble-2019.pdf. Accessed 07 Feb 2023.

  16. US Environmental Protection Agency. 2022. Evaluating pesticides for carcinogenic potential. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/evaluating-pesticides-carcinogenic-potential. Accessed 08 Feb 2023.

  17. International Agency for Research on Cancer. 2023. Agents classified by the IARC monographs, vols 1–129. http://monographs.iarc.fr/ENG/Classification/index.php. Accessed 07 Feb 2023.

  18. US Environmental Protection Agency. 2022. Chemicals evaluated for carcinogenic potential.

    Google Scholar 

  19. Sharma R. Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. Int J Clin Oncol. 2022;27(4):665–75.

    Article  PubMed  PubMed Central  Google Scholar 

  20. National Cancer Institute. 2023. Cancer stat facts: lung and bronchus cancer, surveillance, epidemiology, and end results program. https://seer.cancer.gov/statfacts/html/lungb.html. Accessed 08 Feb 2023.

  21. Szalontai K, Gémes N, Furák J, et al. Chronic obstructive pulmonary disease: epidemiology, biomarkers, and paving the way to lung cancer. J Clin Med. 2021;10(13):2889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boffetta P. Human cancer from environmental pollutants: the epidemiological evidence. Mutat Res Genet Toxicol Environ Mutagen. 2006;608(2):157–62.

    Article  CAS  Google Scholar 

  23. Alavanja MC, Bonner MR. Occupational pesticide exposures and cancer risk: a review. J Toxicol Environ Health B Crit Rev. 2012;15(4):238–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zendehdel R, Tayefeh-Rahimian R, Kabir A. Chronic exposure to chlorophenol related compounds in the pesticide production workplace and lung cancer: a meta-analysis. Asian Pac J Cancer Prev. 2014;15(13):5149–53.

    Article  PubMed  Google Scholar 

  25. Boulanger M, Tual S, Lemarchand C, et al. Lung cancer risk and occupational exposures in crop farming: results from the AGRIculture and CANcer (AGRICAN) cohort. Occup Environ Med. 2018;75(11):776–85.

    Article  PubMed  Google Scholar 

  26. Jones RR, Barone-Adesi F, Koutros S, et al. Incidence of solid tumours among pesticide applicators exposed to the organophosphate insecticide diazinon in the Agricultural Health Study: an updated analysis. Occup Environ Med. 2015;72(7):496–503.

    Article  PubMed  Google Scholar 

  27. Lerro CC, Koutros S, Andreotti G, et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup Environ Med. 2015a;72(10):736–44.

    Article  PubMed  Google Scholar 

  28. Lerro CC, Koutros S, Andreotti G, et al. Use of acetochlor and cancer incidence in the Agricultural Health Study. Int J Cancer. 2015b;137(5):1167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bonner MR, Freeman LE, Hoppin JA, et al. Occupational exposure to pesticides and the incidence of lung cancer in the agricultural health study. Environ Health Perspect. 2017;125(4):544–51.

    Article  PubMed  Google Scholar 

  30. Kim B, Park EY, Kim J, et al. Occupational exposure to pesticides and lung cancer risk: a propensity score analyses. Cancer Res Treat. 2022;54(1):130–9.

    Article  PubMed  Google Scholar 

  31. Parron T, Requena M, Hernandez AF, et al. Environmental exposure to pesticides and cancer risk in multiple human organ systems. Toxicol Lett. 2014;230(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  32. Liu CT, Yang CC, Chien WC, et al. Association between long-term usage of acetylcholinesterase inhibitors and lung cancer in the elderly: a nationwide cohort study. Sci Rep. 2022;12(1):3531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Majidi M, Delirrad M, Banagozar Mohammadi A, et al. Cholinesterase level in erythrocyte or serum: which is more predictive of the clinical outcome in patients with acute organophosphate poisoning? Iran J Toxicol. 2018;12(5):23–6.

    Article  Google Scholar 

  34. Xi HJ, Wu RP, Liu JJ, et al. Role of acetylcholinesterase in lung cancer. Thorac Cancer. 2015;6(4):390–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ziech D, Franco R, Georgakilas AG, et al. The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem Biol Interact. 2010;188(2):334–9.

    Article  CAS  PubMed  Google Scholar 

  36. Thakur S, Dhiman M, Mantha AK. APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol Cell Biochem. 2018;441:201–16.

    Article  CAS  PubMed  Google Scholar 

  37. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  38. Høyer AP, Jørgensen T, Rank F, et al. Organochlorine exposures influence on breast cancer risk and survival according to estrogen receptor status: a Danish cohort-nested case-control study. BMC Cancer. 2001;1(1):1–8.

    Article  Google Scholar 

  39. Ferro R, Parvathaneni A, Patel S, et al. Pesticides and breast cancer. Adv Breast Cancer Res. 2012;1(3):30–5.

    Article  Google Scholar 

  40. Cabello G, Valenzuela-Estrada M, Siques P, et al. Relation of breast cancer and malathion aerial spraying in Arica, Chile. Int J Morphol. 2013;31(2):640–5.

    Article  Google Scholar 

  41. Arrebola JP, Belhassen H, Artacho-Cordón F, et al. Risk of female breast cancer and serum concentrations of organochlorine pesticides and polychlorinated biphenyls: a case–control study in Tunisia. Sci Total Environ. 2015;520:106–13.

    Article  CAS  PubMed  Google Scholar 

  42. Cohn BA, Cirillo PM, Terry MB. DDT and breast cancer: prospective study of induction time and susceptibility windows. J Natl Cancer Inst. 2019;111(8):803–10.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tayour C, Ritz B, Langholz B, et al. A case–control study of breast cancer risk and ambient exposure to pesticides. Environ Epidemiol. 2019;3(5)

    Google Scholar 

  44. Mekonen S, Ibrahim M, Astatkie H, et al. Exposure to organochlorine pesticides as a predictor to breast cancer: A case-control study among Ethiopian women. PLoS One. 2021;16(9):e0257704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Franke AA, Li X, Shvetsov YB, et al. Pilot study on the urinary excretion of the glyphosate metabolite aminomethylphosphonic acid and breast cancer risk: the Multiethnic Cohort study. Environ Pollut. 2021;277:116848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eldakroory SA, Morsi DE, Abdel-Rahman RH, et al. Correlation between toxic organochlorine pesticides and breast cancer. Hum Exp Toxicol. 2017;36(12):1326–34.

    Article  CAS  PubMed  Google Scholar 

  47. Kaur N, Swain SK, Banerjee BD, et al. Organochlorine pesticide exposure as a risk factor for breast cancer in young Indian women: a case–control study. South Asian J Cancer. 2019;8(4):212–4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wallace DR. Environmental pesticides and heavy metals - role in breast cancer. In: Larramendy ML, Solonesk S, editors. Toxicity and hazard of agrochemicals. London: IntechOpen; 2015. p. p39–70.

    Google Scholar 

  49. Yang KJ, Lee J, Park HL. Organophosphate pesticide exposure and breast cancer risk: a rapid review of human, animal, and cell-based studies. Int J Environ Res Public Health. 2020;17(14):5030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pizzatti L, Kawassaki ACB, Fadel B, et al. Toxicoproteomics disclose pesticides as downregulators of TNF-α, IL-1β and estrogen receptor pathways in breast cancer women chronically exposed. Front Oncol. 2020;10:1698.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cardona B, Rudel RA. US EPA’s regulatory pesticide evaluations need clearer guidelines for considering mammary gland tumors and other mammary gland effects. Mol Cell Endocrinol. 2020;518:110927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Green BL, Davis JL, Rivers D, et al. Cancer health disparities. In: Alberts DS, Hess LM, editors. Fundamentals of cancer prevention. 4th ed. Cham: Springer; 2019. p. p199–246.

    Chapter  Google Scholar 

  53. Landau-Ossondo M, Rabia N, Jos-Pelage J, et al. Why pesticides could be a common cause of prostate and breast cancers in the French Caribbean Island, Martinique. An overview on key mechanisms of pesticide-induced cancer. Biomed Pharmacother. 2009;63(6):383–95.

    Article  CAS  PubMed  Google Scholar 

  54. Settimi L, Masina A, Andrion A, et al. Prostate cancer and exposure to pesticides in agricultural settings. Int J Cancer. 2003;104(4):458–61.

    Article  CAS  PubMed  Google Scholar 

  55. Multigner L, Ndong JR, Giusti A, et al. Chlordecone exposure and risk of prostate cancer. J Clin Oncol. 2010;28(21):3457–62.

    Article  CAS  PubMed  Google Scholar 

  56. Band PR, Abanto Z, Bert J, et al. Prostate cancer risk and exposure to pesticides in British Columbia farmers. Prostate. 2011;71(2):168–83.

    Article  PubMed  Google Scholar 

  57. Abhishek A, Ansari NG, Singh V, et al. Genetic susceptibility of CYP1A1 gene and risk of pesticide exposure in prostate cancer. Cancer Biomark. 2020;29(4):429–40.

    Article  CAS  PubMed  Google Scholar 

  58. Koutros S, Beane Freeman LE, Lubin JH, et al. Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study. Am J Epidemiol. 2013;177(1):59–74.

    Article  PubMed  Google Scholar 

  59. Pardo LA, Beane Freeman LE, Lerro CC, et al. Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators. Environ Health. 2020;19(1):1–12.

    Article  Google Scholar 

  60. Cockburn M, Mills P, Zhang X, et al. Prostate cancer and ambient pesticide exposure in agriculturally intensive areas in California. Am J Epidemiol. 2011;173(11):1280–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lewis-Mikhael AM, Bueno-Cavanillas A, Guiron TO, et al. Occupational exposure to pesticides and prostate cancer: a systematic review and meta-analysis. Occup Environ Med. 2016;73(2):134–44.

    Article  PubMed  Google Scholar 

  62. Silva JF, Mattos IE, Luz LL, et al. Exposure to pesticides and prostate cancer: systematic review of the literature. Rev Environ Health. 2016;31(3):311–27.

    Article  CAS  PubMed  Google Scholar 

  63. Djalali-Behzad G, Hussain S, Osterman-Golkar S, et al. Estimation of genetic risks of alkylating agents: VI. Exposure of mice and bacteria to methyl bromide. Mutat Res. 1981;84(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  64. Pletsa V, Steenwinkel MJ, van Delft JH, et al. Methyl bromide causes DNA methylation in rats and mice but fails to induce somatic mutations in λlacZ transgenic mice. Cancer Lett. 1998;135(1):21–7.

    Article  Google Scholar 

  65. Budnik LT, Kloth S, Velasco-Garrido M, et al. Prostate cancer and toxicity from critical use exemptions of methyl bromide: environmental protection helps protect against human health risks. Environ Health. 2012;11(5):1–13.

    Google Scholar 

  66. Tessier DM, Matsumura F. Increased ErbB-2 tyrosine kinase activity, MAPK phosphorylation, and cell proliferation in the prostate cancer cell line LNCaP following treatment by select pesticides. Toxicol Sci. 2001;60(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  67. Roberto M, Panebianco M, Aschelter AM, et al. The value of the multidisciplinary team in metastatic renal cell carcinoma: paving the way for precision medicine in toxicities management. Front Oncol. 2023;12:1026978.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 2010;7(5):245–57.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Padala SA, Barsouk A, Thandra KC, et al. Epidemiology of renal cell carcinoma. World J Oncol. 2020;11(3):79–87.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Andreotti G, Beane Freeman LE, Shearer JJ, et al. Occupational pesticide use and risk of renal cell carcinoma in the agricultural health study. Environ Health Perspect. 2020;128(6):067011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu J, Mao Y, White K, et al. Renal cell carcinoma and occupational exposure to chemicals in Canada. Occup Med (Lond). 2002;52(3):157–64.

    Article  CAS  PubMed  Google Scholar 

  72. Rios P, Bauer H, Schleiermacher G, et al. Environmental exposures related to parental habits in the perinatal period and the risk of Wilms' tumor in children. Cancer Epidemiol. 2020;66:101706.

    Article  PubMed  Google Scholar 

  73. Liu W, Du Y, Liu J, et al. Effects of atrazine on the oxidative damage of kidney in Wister rats. Int J Clin Exp Med. 2014;7(10):3235.

    PubMed  PubMed Central  Google Scholar 

  74. Sánchez OF, Lin L, Bryan CJ, et al. Profiling epigenetic changes in human cell line induced by atrazine exposure. Environ Pollut. 2020;258:113712.

    Article  PubMed  Google Scholar 

  75. Abid A, Ajaz S, Khan AR, Zehra F, et al. Analysis of the glutathione S-transferase genes polymorphisms in the risk and prognosis of renal cell carcinomas. Case-control and meta-analysis. Urol Oncol. 2016;34(9):419.e1–2.

    Article  CAS  PubMed  Google Scholar 

  76. Saginala K, Barsouk A, Aluru JS, et al. Epidemiology of bladder cancer. Med Sci. 2020;8(1):15.

    CAS  Google Scholar 

  77. Lin W, Pan X, Zhang C, et al. Impact of age at diagnosis of bladder cancer on survival: a surveillance, epidemiology, and end results-based study 2004–2015. Cancer Control. 2023;30:10732748231152322.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kiriluk KJ, Prasad SM, Patel AR, et al. Bladder cancer risk from occupational and environmental exposures. Urol Oncol. 2012;30(2):199–211.

    Article  CAS  PubMed  Google Scholar 

  79. Letašiová S, Medveďová A, Šovčíková A, et al. Bladder cancer, a review of the environmental risk factors. Environ Health. 2012;11(1):1–5.

    Google Scholar 

  80. Sharma T, Jain S, Verma A, et al. Gene environment interaction in urinary bladder cancer with special reference to organochlorine pesticide: a case control study. Cancer Biomark. 2013;13(4):243–51.

    Article  CAS  PubMed  Google Scholar 

  81. Boada LD, Henríquez-Hernández LA, Zumbado M, et al. Organochlorine pesticides exposure and bladder cancer: evaluation from a gene-environment perspective in a hospital-based case-control study in the Canary Islands (Spain). J Agromedicine. 2016;21(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  82. Koutros S, Silverman DT, Alavanja MC, et al. Occupational exposure to pesticides and bladder cancer risk. Int J Epidemiol. 2016;45(3):792–805.

    Article  PubMed  Google Scholar 

  83. Liang YJ, Long DX, Xu MY, et al. Body fluids from the rat exposed to chlorpyrifos induce cytotoxicity against the corresponding tissue− derived cells in vitro. BMC Pharmacol Toxicol. 2021;22:1–8.

    Article  Google Scholar 

  84. Matic MG, Coric VM, Savic-Radojevic AR, et al. Does occupational exposure to solvents and pesticides in association with glutathione S-transferase A1, M1, P1, and T1 polymorphisms increase the risk of bladder cancer? The Belgrade case-control study. PLoS One. 2014;9(6):e99448.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  86. Pourshams A, Sepanlou SG, Ikuta KS, et al. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2019;4(12):934–47.

    Article  Google Scholar 

  87. Brugel M, Carlier C, Reyes-Castellanos G, et al. Pesticides and pancreatic adenocarcinoma: a transversal epidemiological, environmental and mechanistic narrative review. Dig Liver Dis. 2022;54(12):1605–13.

    Article  CAS  PubMed  Google Scholar 

  88. Weinstein B, da Silva A, Carpenter DO. Exocrine pancreatic cancer and living near to waste sites containing hazardous organic chemicals, New York State, USA–an 18-year population-based study. Int J Occup Med Environ Health. 2022;35(4):459–71.

    Article  PubMed  Google Scholar 

  89. Porta M, Gasull M, Pumarega J, et al. Plasma concentrations of persistent organic pollutants and pancreatic cancer risk. Int J Epidemiol. 2022;51(2):479–90.

    Article  PubMed  Google Scholar 

  90. Clary T, Ritz B. Pancreatic cancer mortality and organochlorine pesticide exposure in California, 1989–1996. Am J Ind Med. 2003;43(3):306–13.

    Article  PubMed  Google Scholar 

  91. McGwin G Jr, Griffin RL. An ecologic study of the association between 1, 3-dichloropropene and pancreatic cancer. Cancers. 2022;15(1):150.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fritschi L, Benke G, Risch HA, et al. Occupational exposure to N-nitrosamines and pesticides and risk of pancreatic cancer. Occup Environ Med. 2015;72(9):678–83.

    Article  PubMed  Google Scholar 

  93. He B, Ni Y, Jin Y, et al. Pesticides-induced energy metabolic disorders. Sci Total Environ. 2020;729:139033.

    Article  CAS  PubMed  Google Scholar 

  94. Liou GY, Döppler H, DelGiorno KE, et al. Mutant KRas-induced mitochondrial oxidative stress in acinar cells upregulates EGFR signaling to drive formation of pancreatic precancerous lesions. Cell Rep. 2016;14(10):2325–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thandra KC, Barsouk A, Saginala K, et al. Epidemiology of non-Hodgkin’s lymphoma. Med Sci. 2021;9(1):5.

    Google Scholar 

  96. Singh R, Shaik S, Negi BS, et al. Non-Hodgkin's lymphoma: a review. J Family Med Prim Care. 2020;9(4):1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim CJ, Freedman DM, Curtis RE, et al. Risk of non-Hodgkin lymphoma after radiotherapy for solid cancers. Leuk Lymphoma. 2013;54(8):1691–7.

    Article  PubMed  Google Scholar 

  98. Sapkota S, Shaikh H. Non-Hodgkin lymphoma. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2022. https://www.ncbi.nlm.nih.gov/books/NBK559328/.

    Google Scholar 

  99. Cantor KP, Blair A, Everett G, et al. Pesticides and other agricultural risk factors for non-Hodgkin’s lymphoma among men in Iowa and Minnesota. Cancer Res. 1992;52(9):2447–55.

    CAS  PubMed  Google Scholar 

  100. Meinert R, Schüz J, Kaletsch U, et al. Leukemia and non-Hodgkin's lymphoma in childhood and exposure to pesticides: results of a register-based case-control study in Germany. Am J Epidemiol. 2000;151(7):639–46.

    Article  CAS  PubMed  Google Scholar 

  101. Fritschi L, Benke G, Hughes AM, et al. Occupational exposure to pesticides and risk of non-Hodgkin's lymphoma. Am J Epidemiol. 2005;162(9):849–57.

    Article  CAS  PubMed  Google Scholar 

  102. McDuffie HH, Pahwa P, McLaughlin JR, et al. Non-Hodgkin’s lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol Biomark Prev. 2001;10(11):1155–63.

    CAS  Google Scholar 

  103. Yildirim M, Karakilinc H, Yildiz M, et al. Non-Hodgkin lymphoma and pesticide exposure in Turkey. Asian Pac J Cancer Prev. 2013;14(6):3461–3.

    Article  PubMed  Google Scholar 

  104. Schinasi L, Leon ME. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health. 2014;11(4):4449–527.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Poh C, McPherson JD, Tuscano J, et al. Environmental pesticide exposure and non-Hodgkin lymphoma survival: a population-based study. BMC Med. 2022;20(1):165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Faivdullah L, Azahar F, Htike ZZ, et al. Leukemia detection from blood smears. J Med Biol Eng. 2015;4(6):488–91.

    CAS  Google Scholar 

  107. Sielken RL, Valdez-Flores C. A comprehensive review of occupational and general population cancer risk: 1, 3-Butadiene exposure–response modeling for all leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, myeloid neoplasm and lymphoid neoplasm. Chem Biol Interact. 2015;241:50–8.

    Article  CAS  PubMed  Google Scholar 

  108. Sakamoto KM, Grant S, Saleiro D, et al. Targeting novel signaling pathways for resistant acute myeloid leukemia. Mol Genet Metab. 2015;114(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  109. Miranda-Filho AL, Piñeros M, Ferlay J, et al. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol. 2018;5(1):e14–24.

    Article  PubMed  Google Scholar 

  110. Shallis RM, Weiss JJ, Deziel NC, et al. Challenging the concept of de novo acute myeloid leukemia: Environmental and occupational leukemogens hiding in our midst. Blood Rev. 2021;47:100760.

    Article  CAS  PubMed  Google Scholar 

  111. Foucault A, Vallet N, Ravalet N, et al. Occupational pesticide exposure increases risk of acute myeloid leukemia: a meta-analysis of case–control studies including 3,955 cases and 9,948 controls. Sci Rep. 2021;11(1):1–13.

    Article  Google Scholar 

  112. Brown LM, Blair A, Gibson R, et al. Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res. 1990;50(20):6585–91.

    CAS  PubMed  Google Scholar 

  113. Nguyen A, Crespi CM, Vergara X, et al. Residential proximity to plant nurseries and risk of childhood leukemia. Environ Res. 2021;200:111388.

    Article  CAS  PubMed  Google Scholar 

  114. Patel DM, Gyldenkærne S, Jones RR, et al. Residential proximity to agriculture and risk of childhood leukemia and central nervous system tumors in the Danish national birth cohort. Environ Int. 2020;143:105955.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Park AS, Ritz B, Yu F, et al. Prenatal pesticide exposure and childhood leukemia–a California statewide case-control study. Int J Hyg Environ Health. 2020;226:113486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Karalexi MA, Tagkas CF, Markozannes G, et al. Exposure to pesticides and childhood leukemia risk: a systematic review and meta-analysis. Environ Pollut. 2021;285:117376.

    Article  CAS  PubMed  Google Scholar 

  117. Bray F, Ren JS, Masuyer E, et al. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer. 2013;132(5):1133–45.

    Article  CAS  PubMed  Google Scholar 

  118. Farmanfarma KK, Mohammadian M, Shahabinia Z, et al. Brain cancer in the world: an epidemiological review. World Cancer Res J. 2019;6(5)

    Google Scholar 

  119. Johnson KJ, Cullen J, Barnholtz-Sloan JS, et al. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomark Prev. 2014;23(12):2716–36.

    Article  Google Scholar 

  120. Bondy ML, Scheurer ME, Malmer B, et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer. 2008;113(S7):1953–68.

    Article  PubMed  Google Scholar 

  121. Miranda-Filho AL, Koifman RJ, Koifman S, et al. Brain cancer mortality in an agricultural and a metropolitan region of Rio de Janeiro, Brazil: a population-based, age-period-cohort study, 1996–2010. BMC Cancer. 2014;14(1):1–9.

    Article  Google Scholar 

  122. Carreón T, Butler MA, Ruder AM, et al. Gliomas and farm pesticide exposure in women: the Upper Midwest Health Study. Environ Health Perspect. 2005;113(5):546–51.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lee WJ, Colt JS, Heineman EF, et al. Agricultural pesticide use and risk of glioma in Nebraska, United States. Occup Environ Med. 2005;62(11):786–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Provost D, Cantagrel A, Lebailly P, et al. Brain tumours and exposure to pesticides: a case–control study in southwestern France. Occup Environ Med. 2007;64(8):509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bhat AR, Wani MA, Kirmani AR, et al. Pesticides and brain cancer linked in orchard farmers of Kashmir. Indian J Med Paediatr Oncol. 2010;31(4):110–20.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Shim YK, Mlynarek SP, van Wijngaarden E. Parental exposure to pesticides and childhood brain cancer: US Atlantic coast childhood brain cancer study. Environ Health Perspect. 2009;117(6):1002–6.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang L, Tai YT, Ho M, et al. Regulatory B cell-myeloma cell interaction confers immunosuppression and promotes their survival in the bone marrow milieu. Blood Cancer J. 2017;7(3):e547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huang J, Chan SC, Lok V, et al. The epidemiological landscape of multiple myeloma: a global cancer registry estimate of disease burden, risk factors, and temporal trends. Lancet Haematol. 2022;9(9):670–7.

    Article  Google Scholar 

  129. Viel JF, Richardson ST. Lymphoma, multiple myeloma and leukaemia among French farmers in relation to pesticide exposure. Soc Sci Med. 1993;37(6):771–7.

    Article  CAS  PubMed  Google Scholar 

  130. Brown LM, Burmeister LF, Everett GD, et al. Pesticide exposures and multiple myeloma in Iowa men. Cancer Causes Control. 1993;4:153–6.

    Article  CAS  PubMed  Google Scholar 

  131. Orsi L, Delabre L, Monnereau A, et al. Occupational exposure to pesticides and lymphoid neoplasms among men: results of a French case-control study. Occup Environ Med. 2009;66(5):291–8.

    Article  CAS  PubMed  Google Scholar 

  132. Kachuri L, Demers PA, Blair A, et al. Multiple pesticide exposures and the risk of multiple myeloma in Canadian men. Int J Cancer. 2013;133(8):1846–58.

    Article  CAS  PubMed  Google Scholar 

  133. Pahwa P, Karunanayake CP, Dosman JA, et al. Multiple myeloma and exposure to pesticides: a Canadian case-control study. J Agromedicine. 2012;17(1):40–50.

    Article  PubMed  Google Scholar 

  134. Presutti R, Harris SA, Kachuri L, et al. Pesticide exposures and the risk of multiple myeloma in men: an analysis of the North American Pooled Project. Int J Cancer. 2016;139(8):1703–14.

    Article  CAS  PubMed  Google Scholar 

  135. Figgs LW, Holland NT, Rothman N, et al. Increased lymphocyte replicative index following 2,4-dichlorophenoxyacetic acid herbicide exposure. Cancer Causes Control. 2000;11:373–80.

    Article  CAS  PubMed  Google Scholar 

  136. Lavrik IN, Golks A, Krammer PH, et al. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005;115(10):2665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Raab MS, Podar K, Breitkreutz I, et al. Multiple myeloma. Lancet. 2009;374(9686):324–39.

    Article  PubMed  Google Scholar 

  138. Turusov V, Rakitsky V, Tomatis L. Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect. 2002;110(2):125–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Randhawa N, Gulland F, Ylitalo GM, et al. Sentinel California sea lions provide insight into legacy organochlorine exposure trends and their association with cancer and infectious disease. One Health. 2015;1:37–43.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Li L, Zhang Y, Wang J, et al. History traces of HCHs and DDTs by groundwater dating and their behaviours and ecological risk in northeast China. Chemosphere. 2020;257:127212.

    Article  CAS  PubMed  Google Scholar 

  141. Mansouri A, Cregut M, Abbes C, et al. The environmental issues of DDT pollution and bioremediation: a multidisciplinary review. Appl Biochem Biotechnol. 2017;181:309–39.

    Article  CAS  PubMed  Google Scholar 

  142. Thakur M, Pathania D. Environmental fate of organic pollutants and effect on human health. In: Singh P, Kumar A, Borthakur A, editors. Abatement of environmental pollutants. Elsevier; 2020. p. 245–62.

    Chapter  Google Scholar 

  143. Jaga K, Dharmani C. Global surveillance of DDT and DDE levels in human tissues. Int J Occup Med Environ Health. 2003;16(1):7–20.

    PubMed  Google Scholar 

  144. John TJ, Dandona L, Sharma VP, et al. Continuing challenge of infectious diseases in India. Lancet. 2011;377(9761):252–69.

    Article  PubMed  Google Scholar 

  145. Van den Berg H. Global status of DDT and its alternatives for use in vector control to prevent disease. Environ Health Perspect. 2009;117(11):1656–63.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Garabrant DH, Held J, Langholz B, et al. DDT and related compounds and risk of pancreatic cancer. J Natl Cancer Inst. 1992;84(10):764–71.

    Article  CAS  PubMed  Google Scholar 

  147. Fryzek JP, Garabrant DH, Harlow SD, et al. A case-control study of self-reported exposures to pesticides and pancreas cancer in southeastern Michigan. Int J Cancer. 1997;72(1):62–7.

    Article  CAS  PubMed  Google Scholar 

  148. Cohn BA, Wolff MS, Cirillo PM, et al. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115(10):1406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. McGlynn KA, Quraishi SM, Graubard BI, et al. Persistent organochlorine pesticides and risk of testicular germ cell tumors. J Natl Cancer Inst. 2008;100(9):663–71.

    Article  CAS  PubMed  Google Scholar 

  150. Persson EC, Graubard BI, Evans AA, et al. Dichlorodiphenyltrichloroethane and risk of hepatocellular carcinoma. Int J Cancer. 2012;131(9):2078–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Alavanja MC, Hofmann JN, Lynch CF, et al. Non-Hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study. PLoS One. 2014;9(10):e109332.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Harada T, Takeda M, Kojima S, et al. Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT). Toxicol Res. 2016;32(1):21–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Loomis D, Guyton K, Grosse Y, et al. Carcinogenicity of lindane, DDT, and 2, 4-dichlorophenoxyacetic acid. Lancet Oncol. 2015;16(8):891–2.

    Article  CAS  PubMed  Google Scholar 

  154. Kelce WR, Stone CR, Laws SC, et al. Persistent DDT metabolite p,p’-DDE is a potent androgen receptor antagonist. Nature. 1995;375:581–5.

    Article  CAS  PubMed  Google Scholar 

  155. Stejskal V, Vendl T, Aulicky R, et al. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects. 2021;12(7):590.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Saadati N, Abdullah MP, Zakaria Z, et al. Distribution and fate of HCH isomers and DDT metabolites in a tropical environment–case study Cameron Highlands–Malaysia. Chem Cent J. 2012;6(130):1–15.

    Google Scholar 

  157. Humphreys EH, Janssen S, Heil A, et al. Outcomes of the California ban on pharmaceutical lindane: clinical and ecologic impacts. Environ Health Perspect. 2008;116(3):297–302.

    Article  PubMed  Google Scholar 

  158. Ward MH, Colt JS, Metayer C, et al. Residential exposure to polychlorinated biphenyls and organochlorine pesticides and risk of childhood leukemia. Environ Health Perspect. 2009;117(6):1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pattnaik M, Pany BK, Dena J, et al. Effect of organochlorine pesticides on living organisms and environment. Chem Sci Rev Lett. 2020;9:682–6.

    Google Scholar 

  160. Kasozi GN, Kiremire BT, Bugenyi FWB, et al. Organochlorine residues in fish and water samples from Lake Victoria, Uganda. J Environ Qual. 2006;35(2):584–9.

    Article  CAS  PubMed  Google Scholar 

  161. Parada H, Wolff MS, Engel LS, et al. Organochlorine insecticides DDT and chlordane in relation to survival following breast cancer. Int J Cancer. 2016;138(3):565–75.

    Article  CAS  PubMed  Google Scholar 

  162. Kachuri L, Beane Freeman LE, Spinelli JJ, et al. Insecticide use and risk of non-Hodgkin lymphoma subtypes: a subset meta-analysis of the North American Pooled Project. Int J Cancer. 2020;147(12):3370–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lerro CC, Freeman LEB, DellaValle CT, et al. Pesticide exposure and incident thyroid cancer among male pesticide applicators in Agricultural Health Study. Environ Int. 2021;146:106187.

    Article  CAS  PubMed  Google Scholar 

  164. Mortazavi N, Asadikaram G, Ebadzadeh MR, et al. Organochlorine and organophosphorus pesticides and bladder cancer: a case-control study. J Cell Biochem. 2019;120(9):14847–59.

    Article  CAS  PubMed  Google Scholar 

  165. Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Patents Inflamm Allergy Drug Discov. 2009;3(1):73–80.

    Article  CAS  Google Scholar 

  166. Breckenridge CB, Campbell JL, Clewell HJ, et al. PBPK-based probabilistic risk assessment for total chlorotriazines in drinking water. Toxicol Sci. 2016;150(2):269–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. He H, Liu Y, You S, et al. A review on recent treatment technology for herbicide atrazine in contaminated environment. Int J Environ Res Public Health. 2019;16(24):5129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jones RM, Stayner LT, Demirtas H. Multiple imputation for assessment of exposures to drinking water contaminants: Evaluation with the Atrazine Monitoring Program. Environ Res. 2014;134:466–73.

    Article  CAS  PubMed  Google Scholar 

  169. Hopenhayn-Rich C, Stump ML, Browning SR. Regional assessment of atrazine exposure and incidence of breast and ovarian cancers in Kentucky. Arch Environ Contam Toxicol. 2002;42:127–36.

    Article  CAS  PubMed  Google Scholar 

  170. Inoue-Choi M, Weyer PJ, Jones RR, et al. Atrazine in public water supplies and risk of ovarian cancer among postmenopausal women in the Iowa Women’s Health Study. Occup Environ Med. 2016;73(9):582–7.

    Article  PubMed  Google Scholar 

  171. Rull RP, Gunier R, Von Behren J, et al. Residential proximity to agricultural pesticide applications and childhood acute lymphoblastic leukemia. Environ Res. 2009;109(7):891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Malagoli C, Costanzini S, Heck JE, et al. Passive exposure to agricultural pesticides and risk of childhood leukemia in an Italian community. Int J Hyg Environ Health. 2016;219(8):742–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. McElroy JA, Gangnon RE, Newcomb PA, et al. Risk of breast cancer for women living in rural areas from adult exposure to atrazine from well water in Wisconsin. J Expo Sci Environ Epidemiol. 2007;17(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  174. Tinfo NS, Hotchkiss MG, Buckalew AR, et al. Understanding the effects of atrazine on steroidogenesis in rat granulosa and H295R adrenal cortical carcinoma cells. Reprod Toxicol. 2011;31(2):184–93.

    Article  CAS  PubMed  Google Scholar 

  175. Urseler N, Bachetti R, Biolé F, et al. Atrazine pollution in groundwater and raw bovine milk: water quality, bioaccumulation and human risk assessment. Sci Total Environ. 2022;852:158498.

    Article  CAS  PubMed  Google Scholar 

  176. Sidhu GK, Singh S, Kumar V, et al. Toxicity, monitoring and biodegradation of organophosphate pesticides: a review. Crit Rev Environ Sci Technol. 2019;49(13):1135–87.

    Article  CAS  Google Scholar 

  177. Mink PJ, Mandel JS, Sceurman BK, et al. Epidemiologic studies of glyphosate and cancer: a review. Regul Toxicol Pharmacol. 2012;63(3):440–52.

    Article  CAS  PubMed  Google Scholar 

  178. Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;28(1):1–15.

    Article  CAS  Google Scholar 

  179. Davoren MJ, Schiestl RH. Glyphosate-based herbicides and cancer risk: a post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis. 2018;39(10):1207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Samsel A, Seneff S. Glyphosate, pathways to modern diseases IV: cancer and related pathologies. J Biol Phys Chem. 2015;15(3):121–59.

    Article  CAS  Google Scholar 

  181. Swanson NL, Leu A, Abrahamson J, et al. Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. J Org Chem. 2014;9(2):6–37.

    Google Scholar 

  182. Alavanja MC, Sandler DP, McMaster SB, et al. The agricultural health study. Environ Health Perspect. 1996;104(4):362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Engel LS, Hill DA, Hoppin JA, et al. Pesticide use and breast cancer risk among farmers’ wives in the Agricultural Health Study. Am J Epidemiol. 2005;161(2):121–35.

    Article  PubMed  Google Scholar 

  184. Lee WJ, Sandler DP, Blair A, et al. Pesticide use and colorectal cancer risk in the Agricultural Health Study. Int J Cancer. 2007;121(2):339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Andreotti G, Beane Freeman LE, Hou L, et al. Agricultural pesticide use and pancreatic cancer risk in the Agricultural Health Study Cohort. Int J Cancer. 2009;124(10):2495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dennis LK, Lynch CF, Sandler DP, et al. Pesticide use and cutaneous melanoma in pesticide applicators in the agricultural heath study. Environ Health Perspect. 2010;118(6):812–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Andreotti G, Koutros S, Hofmann JN, et al. Glyphosate use and cancer incidence in the agricultural health study. J Natl Cancer Inst. 2018;110(5):509–16.

    Article  PubMed  Google Scholar 

  188. De Roos A, Zahm SH, Cantor KP, et al. Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men. Occup Environ Med. 2003;60(9):e11.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Pahwa M, Beane Freeman LE, Spinelli JJ, et al. Glyphosate use and associations with non-Hodgkin lymphoma major histological sub-types. Scand J Work Environ Health. 2019;45(6):600–9.

    Article  CAS  PubMed  Google Scholar 

  190. Eriksson M, Hardell L, Carlberg M, et al. Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int J Cancer. 2008;123(7):1657–63.

    Article  CAS  PubMed  Google Scholar 

  191. Miller K. Estrogen and DNA damage: the silent source of breast cancer? J Natl Cancer Inst. 2003;95(2):100–2.

    Article  CAS  PubMed  Google Scholar 

  192. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7(3):211–7.

    Article  CAS  PubMed  Google Scholar 

  193. Solomon KR. Glyphosate in the general population and in applicators: a critical review of studies on exposures. Crit Rev Toxicol. 2016;46(sup1):21–7.

    Article  CAS  PubMed  Google Scholar 

  194. Bonner MR, Coble J, Blair A, et al. Malathion exposure and the incidence of cancer in the agricultural health study. Am J Epidemiol. 2007;166(9):1023–34.

    Article  PubMed  Google Scholar 

  195. Eddleston M, Karalliedde L, Buckley N, et al. Pesticide poisoning in the developing world—a minimum pesticides list. The Lancet. 2002;360(9340):1163–7.

    Google Scholar 

  196. Gilliom RJ, Barbash JE, Crawford CG et al. 2007. Pesticides in the nation’s streams and ground water 1992–2001. National Water Quality Assessment Program, Circular 1291. US Geological Survey. https://pubs.usgs.gov/circ/2005/1291/pdf/circ1291.pdf. Accessed 11 Feb 2023.

  197. Koutros S, Harris SA, Spinelli JJ, et al. Non-Hodgkin lymphoma risk and organophosphate and carbamate insecticide use in the North American Pooled Project. Environ Int. 2019;127:199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Latifovic L, Beane Freeman LE, Spinelli JJ, et al. Pesticide Use and Risk of Hodgkin Lymphoma: Results from the North American Pooled Project (NAPP). Cancer Causes Control. 2020;31:583–99.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Engel LS, Werder E, Satagopan J, et al. Insecticide use and breast cancer risk among farmers’ wives in the Agricultural Health Study. Environ Health Perspect. 2017;125(9):097002.

    Google Scholar 

  200. Echiburu-Chau C, Calaf GM. Rat lung cancer induced by malathion and estrogen. Int J Oncol. 2008;33(3):603–11.

    CAS  PubMed  Google Scholar 

  201. Calaf GM, Bleak TC, Roy D. Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells. Oncol Rep. 2021;45(4):24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bradberry SM, Proudfoot AT, Vale JA. Poisoning due to chlorophenoxy herbicides. Toxicol Rev. 2004;23:65–73.

    Article  CAS  PubMed  Google Scholar 

  203. Peterson MA, McMaster SA, Riechers DE, et al. 2, 4-D past, present, and future: a review. Weed Technol. 2016;30(2):303–45.

    Article  Google Scholar 

  204. Ozkul M, Ozel CA, Yuzbasioglu D, et al. Does 2, 4-dichlorophenoxyacetic acid (2, 4-D) induce genotoxic effects in tissue cultured Allium roots? Cytotechnology. 2016;68:2395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Miligi L, Costantini AS, Veraldi A, et al. Cancer and pesticides: an overview and some results of the Italian multicenter case–control study on hematolymphopoietic malignancies. Ann N Y Acad Sci. 2006;1076(1):366–77.

    Article  CAS  PubMed  Google Scholar 

  206. Burns C, Bodner K, Swaen G, et al. Cancer incidence of 2, 4-D production workers. Int J Environ Res Public Health. 2011;8(9):3579–90.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Smith AM, Smith MT, La Merrill MA, et al. 2,4-Dichlorophenoxyacetic acid (2,4-D) and risk of non-Hodgkin lymphoma: a meta-analysis accounting for exposure levels. Ann Epidemiol. 2017;27(4):281–9.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Bukowska B. Effects of 2, 4-D and its metabolite 2, 4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp Biochem Physiol C Toxicol Pharmacol. 2003;135(4):435–41.

    Article  PubMed  Google Scholar 

  209. Troudi A, Ben Amara I, Samet AM, et al. Oxidative stress induced by 2, 4-phenoxyacetic acid in liver of female rats and their progeny: Biochemical and histopathological studies. Environ Toxicol. 2012;27(3):137–45.

    Article  CAS  PubMed  Google Scholar 

  210. Palmeira CM, Moreno AJ, Madeira VM. Thiols metabolism is altered by the herbicides paraquat, dinoseb and 2, 4-D: a study in isolated hepatocytes. Toxicol Lett. 1995;81(2–3):115–23.

    Article  CAS  PubMed  Google Scholar 

  211. Bukowska B. Toxicity of 2, 4-dichlorophenoxyacetic acid--molecular mechanisms. Pol J Environ Stud. 2006;15(3):365–74.

    CAS  Google Scholar 

  212. Lerro CC, Hofmann JN, Andreotti G, et al. Dicamba use and cancer incidence in the Agricultural Health Study: an updated analysis. Int J Epidemiol. 2020;49(4):1326–37.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Alavanja MC, Dosemeci M, Samanic C, et al. Pesticides and lung cancer risk in the agricultural health study cohort. Am J Epidemiol. 2004;160(9):876–85.

    Article  PubMed  Google Scholar 

  214. Samanic C, Rusiecki J, Dosemeci M, et al. Cancer incidence among pesticide applicators exposed to dicamba in the agricultural health study. Environ Health Perspect. 2006;114(10):1521–6.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Leon ME, Schinasi LH, Lebailly P, et al. Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: a pooled analysis from the AGRICOH consortium. Int J Epidemiol. 2019;48(5):1519–35.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Mesnage R, Brandsma I, Moelijker N, et al. Genotoxicity evaluation of 2, 4-D, dicamba and glyphosate alone or in combination with cell reporter assays for DNA damage, oxidative stress and unfolded protein response. Food Chem Toxicol. 2021;157:112601.

    Article  CAS  PubMed  Google Scholar 

  217. Espandiari P, Glauert HP, Lee EY, et al. Promoting activity of the herbicide dicamba (2-methoxy-3, 6-dichlorobenzoic acid) in two stage hepatocarcinogenesis. Int J Oncol. 1999;14(1):79–163.

    CAS  PubMed  Google Scholar 

  218. Lanasa MC, Weinberg JB. Immunologic aspects of monoclonal B-cell lymphocytosis. Immunol Res. 2011;49:269–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Thatheyus AJ, Selvam AG. Synthetic pyrethroids: toxicity and biodegradation. Appl Ecol Environ Sci. 2013;1(3):33–6.

    CAS  Google Scholar 

  220. Boulware DR, Beisang AA. Passive prophylaxis with permethrin-treated tents reduces mosquito bites among North American summer campers. Wilderness Environ Med. 2005;16(1):9–15.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Gupta R, Gahlot P, Purohit P. Pyrethroids: exposure, toxicity, and their influence on human health. J Environ Sci Health C Toxicol Carcinog. 2013;31(4):363–88.

    Google Scholar 

  222. Rusiecki JA, Patel R, Koutros S, et al. Cancer incidence among pesticide applicators exposed to permethrin in the Agricultural Health Study. Environ Health Perspect. 2009;117(4):581–6.

    Article  CAS  PubMed  Google Scholar 

  223. Ferreira JD, Couto AC, Pombo-de-Oliveira MS, et al. In utero pesticide exposure and leukemia in Brazilian children< 2 years of age. Environ Health Perspect. 2013;121(2):269–75.

    Article  PubMed  Google Scholar 

  224. Boffetta P, Desai V. Exposure to permethrin and cancer risk: a systematic review. Crit Rev Toxicol. 2018;48(6):433–42.

    Article  CAS  PubMed  Google Scholar 

  225. Shrestha S, Parks CG, Umbach DM, et al. Use of permethrin and other pyrethroids and mortality in the Agricultural Health Study. Occup Environ Med. 2022;79(10):664–72.

    Article  PubMed  Google Scholar 

  226. Borkhardt A, Wilda M, Fuchs U, et al. Congenital leukemia after heavy abuse of permethrin during pregnancy. Arch Dis Child Fetal Neonatal Ed. 2003;88(5):F436–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. LaFiura KM, Bielawski DM, Posecion NC Jr, et al. Association between prenatal pesticide exposures and the generation of leukemia-associated T (8; 21). Pediatr Blood Cancer. 2007;49(5):624–8.

    Article  PubMed  Google Scholar 

  228. Ye M, Beach J, Martin JW, et al. Occupational pesticide exposures and respiratory health. Int J Environ Res Public Health. 2013;10(12):6442–71.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Paiga P, Morais S, Correia M, et al. Determination of carbamate and urea pesticide residues in fresh vegetables using microwave-assisted extraction and liquid chromatography. Int J Environ Anal Chem. 2009;89(3):199–210.

    Article  CAS  Google Scholar 

  230. Wei G, Li Y, Wang X. Comparison of efficiencies between single-drop microextraction and continuous-flow microextraction for the determination of methomyl in natural waters. Int J Environ Anal Chem. 2008;88(6):397–408.

    Article  CAS  Google Scholar 

  231. Çelebi MS, Oturan N, Zazou H, et al. Electrochemical oxidation of carbaryl on platinum and boron-doped diamond anodes using electro-Fenton technology. Sep Purif Technol. 2015;3:996–1002.

    Article  Google Scholar 

  232. World Health Organization. 2006. Pesticides and their application: for the control of vectors and pests of public health importance. https://apps.who.int/iris/handle/10665/69223.

  233. Pesatori AC, Sontag JM, Lubin JH, et al. Cohort mortality and nested case-control study of lung cancer among structural pest control workers in Florida (United States). Cancer Causes Control. 1994;5(4):310–8.

    Article  CAS  PubMed  Google Scholar 

  234. Mahajan R, Blair A, Coble J, et al. Carbaryl exposure and incident cancer in the Agricultural Health Study. Int J Cancer. 2007;121(8):1799–805.

    Article  CAS  PubMed  Google Scholar 

  235. Landgren O, Kyle RA, Hoppin JA, et al. Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the Agricultural Health Study. Blood. 2009;113(25):6386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Boccolini PD, Boccolini CS, Chrisman JD, et al. Non-Hodgkin lymphoma among Brazilian agricultural workers: a death certificate case-control study. Arch Environ Occup Health. 2017;72(3):139–44.

    Article  PubMed  Google Scholar 

  237. Acquavella JF, Alexander BH, Mandel JS, et al. Glyphosate biomonitoring for farmers and their families: results from the Farm Family Exposure Study. Environ Health Perspect. 2004;112(3):321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Xia Y, Cheng S, Bian Q, et al. Genotoxic effects on spermatozoa of carbaryl-exposed workers. Toxicol Sci. 2005;85(1):615–23.

    Article  CAS  PubMed  Google Scholar 

  239. Peyre L, Zucchini-Pascal N, De Sousa G, et al. Potential involvement of chemicals in liver cancer progression: an alternative toxicological approach combining biomarkers and innovative technologies. Toxicol In Vitro. 2014;28(8):1507–20.

    Article  CAS  PubMed  Google Scholar 

  240. Alavanja MC. Pesticides use and exposure extensive worldwide. Environ Health Rev. 2009;24(4):303–9.

    Article  CAS  Google Scholar 

  241. Damalas CA, Koutroubas SD. Farmers’ exposure to pesticides: toxicity types and ways of prevention. Toxics. 2016;4(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Arcury TA, Grzywacz JG, Chen H, et al. Variation across the agricultural season in organophosphorus pesticide urinary metabolite levels for Latino farmworkers in eastern North Carolina: project design and descriptive results. Am J Ind Med. 2009;52(7):539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Temkin AM, Uche UI, Evans S, et al. Racial and social disparities in Ventura County, California related to agricultural pesticide applications and toxicity. Sci Total Environ. 2022;853:158399.

    Article  CAS  PubMed  Google Scholar 

  244. Gee GC, Payne-Sturges DC, Martinez M. Environmental health disparities: a framework integrating psychosocial and environmental concepts. Environ Health Perspect. 2007;115(5):1645–55.

    Google Scholar 

  245. Zavala VA, Bracci PM, Carethers JM, et al. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer. 2021;124(2):315–32.

    Article  PubMed  Google Scholar 

  246. Quandt SA, Hernández-Valero MA, Grzywacz JG, et al. Workplace, household, and personal predictors of pesticide exposure for farmworkers. Environ Health Perspect. 2006;114(6):943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Zhang L, Rana I, Shaffer RM, et al. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: a meta-analysis and supporting evidence. Mutat Res Rev Mutat Res. 2019;781:186–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taehyun Roh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roh, T., Aggarwal, A., Hasan, N.T., Upadhyay, A., Trisha, N.F. (2023). Pesticides and Cancer. In: Bernicker, E.H. (eds) Environmental Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-33750-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33750-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33749-9

  • Online ISBN: 978-3-031-33750-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics