Skip to main content
Log in

APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Monocrotophos (MCP) and chlorpyrifos (CP) are widely used organophosphate pesticides (OPPs), speculated to be linked with human pathologies including cancer. Owing to the fact that lung cells are most vulnerable to the environmental toxins, the development and progression of lung cancer can be caused by the exposure of OPPs. The present study investigates the oxidative DNA damage response evoked by MCP and CP in human non-small cell lung carcinoma A549 cells. A549 cells were exposed to MCP and CP; cytotoxicity and reactive oxygen species (ROS) generation were measured to select the non-toxic dose. In order to establish whether MCP and CP can initiate the DNA repair and cell survival signalling pathways in A549 cells, qRT-PCR and Western blotting techniques were used to investigate the mRNA and protein expression levels of DNA base excision repair (BER)-pathway enzymes and transcription factors (TFs) involved in cell survival mechanisms. A significant increase in cell viability and ROS generation was observed when exposed to low and moderate doses of MCP and CP at different time points (24, 48 and 72 h) studied. A549 cells displayed a dose-dependent accumulation of apurinic/apyrimidinic (AP) sites after 24 h exposure to MCP advocating for the activation of AP endonuclease-mediated DNA BER-pathway. Cellular responses to MCP- and CP-induced oxidative stress resulted in an imbalance in the mRNA and protein expression of BER-pathway enzymes, viz. PARP1, OGG1, APE1, XRCC1, DNA pol β and DNA ligase III α at different time points. The treatment of OPPs resulted in the upregulation of TFs, viz. Nrf2, c-jun, phospho-c-jun and inducible nitric oxide synthase. Immunofluorescent confocal imaging of A549 cells indicated that MCP and CP induces the translocation of APE1 within the cytoplasm at an early 6 h time point, whereas it promotes nuclear localization after 24 h of treatment, which suggests that APE1 subcellular distribution is dynamically regulated in response to OPP-induced oxidative stress. Furthermore, nuclear colocalization of APE1 and the TF c-jun was observed in response to the treatment of CP and MCP for different time points in A549 cells. Therefore, in this study we demonstrate that MCP- and CP-induced oxidative stress alters APE1-dependent BER-pathway and also mediates cell survival signalling mechanisms via APE1 regulation, thereby promoting lung cancer cell survival and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kisby GE, Muniz JF, Scherer J, Lasarev MR, Koshy M, Kow YW, McCauley L (2009) Oxidative stress and DNA damage in agricultural workers. J Agromedicine 14:206–214

    Article  PubMed  Google Scholar 

  2. Ojha A, Srivastava N (2014) In vitro studies on organophosphate pesticides induced oxidative DNA damage in rat lymphocytes. Mutat Res, Genet Toxicol Environ Mutagen 761:10–17

    Article  CAS  Google Scholar 

  3. Kamel F, Hoppin JA (2004) Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 112:950–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raanan R, Harley KG, Balmes JR, Bradman A, Lipsett M, Eskenazi B (2015) Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the CHAMACOS cohort. Environ Health Perspect 123:179

    CAS  PubMed  Google Scholar 

  5. Lee WJ, Blair A, Hoppin JA, Lubin JH, Rusiecki JA, Sandler DP, Dosemeci M, Alavanja MC (2004) Cancer incidence among pesticide applicators exposed to chlorpyrifos in the agricultural health study. J Natl Cancer Inst 96:1781–1789

    Article  CAS  PubMed  Google Scholar 

  6. Alavanja MC, Dosemeci M, Samanic C, Lubin J, Lynch CF, Knott C, Barker J, Hoppin JA, Sandler DP, Coble J (2004) Pesticides and lung cancer risk in the agricultural health study cohort. Am J Epidemiol 160:876–885

    Article  PubMed  Google Scholar 

  7. Y-l Zhou, J-g Yan, C-l Sun (2009) DNA damage of monocrotophos on mice. J Xinxiang Med Col 26:141–144

    Google Scholar 

  8. Isoda H, Talorete T, Han J, Oka S, Abe Y, Inamori Y (2004) Effects of organophosphorous pesticides used in china on various mammalian cells. Environ Sci 12:9–19

    Google Scholar 

  9. Kashyap M, Singh A, Siddiqui M, Kumar V, Tripathi V, Khanna V, Yadav S, Jain S, Pant A (2010) Caspase cascade regulated mitochondria mediated apoptosis in monocrotophos exposed PC12 cells. Chem Res Toxicol 23:1663–1672

    Article  CAS  PubMed  Google Scholar 

  10. Cui Y, Guo J, Xu B, Chen Z (2011) Genotoxicity of chlorpyrifos and cypermethrin to ICR mouse hepatocytes. Toxicol Mech Method 21:70–74

    Article  CAS  Google Scholar 

  11. Rahman M, Mahboob M, Danadevi K, Banu BS, Grover P (2002) Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutat Res 516:139–147

    Article  CAS  PubMed  Google Scholar 

  12. Chauhan LK, Varshney M, Pandey V, Sharma P, Verma VK, Kumar P, Goel SK (2016) ROS-dependent genotoxicity, cell cycle perturbations and apoptosis in mouse bone marrow cells exposed to formulated mixture of cypermethrin and chlorpyrifos. Mutagenesis 31:635–642

    Article  CAS  PubMed  Google Scholar 

  13. Prasad R, Horton JK, Liu Y, Wilson SH (2016) Central steps in mammalian BER and regulation by PARP1. In: Wilson DM III (ed) The base excision repair pathway: molecular mechanisms and role in disease development and therapeutic design. World Scientific, New Jersey, pp 253–280

    Google Scholar 

  14. Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK (2014) APE1/ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 46:e106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paz-Elizur T, Krupsky M, Blumenstein S, Elinger D, Schechtman E, Livneh Z (2003) DNA repair activity for oxidative damage and risk of lung cancer. J Natl Cancer Inst 95:1312–1319

    Article  CAS  PubMed  Google Scholar 

  17. Bhakat KK, Mantha AK, Mitra S (2009) Transcriptional regulatory functions of mammalian AP-endonuclease (APE1/Ref-1), an essential multifunctional protein. Antioxid Redox Signal 11:621–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fishel ML, Wu X, Devlin CM, Logsdon DP, Jiang Y, Luo M, He Y, Yu Z, Tong Y, Lipking KP (2015) Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) redox function negatively regulates NRF2. J Biol Chem 290:3057–3068

    Article  CAS  PubMed  Google Scholar 

  19. Tell G, Quadrifoglio F, Tiribelli C, Kelley MR (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11:601–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woo J, Park H, Sung SH, Moon B-I, Suh H, Lim W (2014) Prognostic value of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in breast cancer. PLoS ONE 9:e99528

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kelley MR, Cheng L, Foster R, Tritt R, Jiang J, Broshears J, Koch M (2001) Elevated and altered expression of the multifunctional DNA base excision repair and redox enzyme Ape1/ref-1 in prostate cancer. Clin Cancer Res 7:824–830

    CAS  PubMed  Google Scholar 

  22. Sevilya Z, Leitner-Dagan Y, Pinchev M, Kremer R, Elinger D, Lejbkowicz F, Rennert HS, Freedman LS, Rennert G, Paz-Elizur T (2015) Development of APE1 enzymatic DNA repair assays: low APE1 activity is associated with increase lung cancer risk. Carcinogenesis 36:982–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoo DG, Song YJ, Cho EJ, Lee SK, Park JB, Yu JH, Lim SP, Kim JM, Jeon BH (2008) Alteration of APE1/ref-1 expression in non-small cell lung cancer: the implications of impaired extracellular superoxide dismutase and catalase antioxidant systems. Lung Cancer 60:277–284

    Article  PubMed  Google Scholar 

  24. Tell G, Damante G, Caldwell D, Kelley MR (2005) The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 7:367–384

    Article  CAS  PubMed  Google Scholar 

  25. Puglisi F, Aprili G, Minisini A (2001) Prognostic significance of Ape1/ref-1 subcellular localization in non-small cell lung carcinomas. Anticancer Res 21:4041–4050

    CAS  PubMed  Google Scholar 

  26. Oostingh GJ, Wichmann G, Schmittner M, Lehmann I, Duschl A (2009) The cytotoxic effects of the organophosphates chlorpyrifos and diazinon differ from their immunomodulating effects. J Immunotoxicol 6:136–145

    Article  CAS  PubMed  Google Scholar 

  27. Gong J, Muñoz AR, Chan D, Ghosh R, Kumar AP (2014) STAT3 down regulates LC3 to inhibit autophagy and pancreatic cancer cell growth. Oncotarget 5:2529–2541

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kashyap MP, Singh AK, Kumar V, Tripathi VK, Srivastava RK, Agrawal M, Khanna VK, Yadav S, Jain SK, Pant AB (2011) Monocrotophos induced apoptosis in PC12 cells: role of xenobiotic metabolizing cytochrome P450s. PLoS ONE 6:e17757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gill I, Kaur S, Kaur N, Dhiman M, Mantha AK (2017) Phytochemical ginkgolide B attenuates amyloid-β1-42 induced oxidative damage and altered cellular responses in human neuroblastoma SH-SY5Y cells. J Alzheimer’s Dis. doi:10.3233/JAD-161086

    Google Scholar 

  30. Vaday GG, Peehl DM, Kadam PA, Lawrence DM (2006) Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 66:124–134

    Article  CAS  PubMed  Google Scholar 

  31. Mantha AK, Dhiman M, Taglialatela G, Perez-Polo RJ, Mitra S (2012) Proteomic study of amyloid beta (25–35) peptide exposure to neuronal cells: impact on APE1/Ref-1′s protein–protein interaction. J Neurosci Res 90:1230–1239

    Article  CAS  PubMed  Google Scholar 

  32. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32:4814–4824

    Article  CAS  PubMed  Google Scholar 

  33. Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300:C723–C742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Isoda H, Talorete TP, Han J, Oka S, Abe Y, Inamori Y (2005) Effects of organophosphorous pesticides used in china on various mammalian cells. Environ Sci 12:9–19

    CAS  PubMed  Google Scholar 

  35. Lu XT, Ma Y, Wang C, Zhang XF, Jin DQ, Huang CJ (2012) Cytotoxicity and DNA damage of five organophosphorus pesticides mediated by oxidative stress in PC12 cells and protection by vitamin E. J Environ Sci Health B 47:445–454

    Article  CAS  PubMed  Google Scholar 

  36. Edwards FL, Yedjou CG, Tchounwou PB (2013) Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG2) cells. Environ Toxicol 28:342–348

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura J, La DK, Swenberg JA (2000) 5′-Nicked apurinic/apyrimidinic sites are resistant to β-elimination by β-polymerase and are persistent in human cultured cells after oxidative stress. J Biol Chem 275:5323–5328

    Article  CAS  PubMed  Google Scholar 

  38. Wilson D 3rd, Sofinowski T, McNeill D (2003) Repair mechanisms for oxidative DNA damage. Front Biosci 8:d963–981

    Article  CAS  PubMed  Google Scholar 

  39. Cabelof DC, Raffoul JJ, Yanamadala S, Guo Z, Heydari AR (2002) Induction of DNA polymerase β-dependent base excision repair in response to oxidative stress in vivo. Carcinogenesis 23:1419–1425

    Article  CAS  PubMed  Google Scholar 

  40. Izumi T, Wiederhold LR, Roy G, Roy R, Jaiswal A, Bhakat KK, Mitra S, Hazra TK (2003) Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage. Toxicology 193:43–65

    Article  CAS  PubMed  Google Scholar 

  41. Horton JK, Watson M, Stefanick DF, Shaughnessy DT, Taylor JA, Wilson SH (2008) XRCC1 and DNA polymerase β in cellular protection against cytotoxic DNA single-strand breaks. Cell Res 18:48–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ko HL, Ren EC (2012) Functional aspects of PARP1 in DNA repair and transcription. Biomolecules 2:524–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dianov GL, Hübscher U (2013) Mammalian base excision repair: the forgotten archangel. Nucl Acids Res 41:3483–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hegde ML, Izumi T, Mitra S (2012) Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes. Prog Mol Biol Transl Sci 110:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sukhanova MV, Khodyreva SN, Lebedeva NA, Prasad R, Wilson SH, Lavrik OI (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase β and poly (ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucl Acids Res 33:1222–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong D, Demple B (2004) Modulation of the 5′-deoxyribose-5-phosphate lyase and DNA synthesis activities of mammalian DNA polymerase β by apurinic/apyrimidinic endonuclease 1. J Biol Chem 279:25268–25275

    Article  CAS  PubMed  Google Scholar 

  47. Poletto M, Legrand AJ, Fletcher SC, Dianov GL (2016) p53 coordinates base excision repair to prevent genomic instability. Nucl Acids Res 44:3165–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xanthoudakis S, Miao G, Wang F, Pan Y-C, Curran T (1992) Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 11:3323

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Christmann M, Kaina B (2013) Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucl Acids Res 41:8403–8420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maeno K, Masuda A, Yanagisawa K, Konishi H, Osada H, Saito T, Ueda R, Takahashi T (2006) Altered regulation of c-jun and its involvement in anchorage-independent growth of human lung cancers. Oncogene 25:271–277

    Article  CAS  PubMed  Google Scholar 

  51. Zhang G, Dass CR, Sumithran E, Di Girolamo N, Sun L-Q, Khachigian LM (2004) Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J Natl Cancer Inst 96:683–696

    Article  CAS  PubMed  Google Scholar 

  52. Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ (2006) c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol 37:668–674

    Article  CAS  PubMed  Google Scholar 

  53. Zhang S, Hu Y, Huang Y, Xu H, Wu G, Dai H (2015) Heat shock protein 27 promotes cell proliferation through activator protein-1 in lung cancer. Oncology Lett 9:2572–2576

    Article  Google Scholar 

  54. Yin Y, Wang S, Sun Y, Matt Y, Colburn NH, Shu Y, Han X (2009) JNK/AP-1 pathway is involved in tumor necrosis factor-α induced expression of vascular endothelial growth factor in MCF7 cells. Biomed Pharmacother 63:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang E, Feng X, Liu F, Zhang P, Liang J, Tang X (2014) Roles of PI3 K/Akt and c-Jun signaling pathways in human papillomavirus type 16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in non-small cell lung cancer cells. PLoS ONE 9:e103440

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jaiswal M, LaRusso NF, Nishioka N, Nakabeppu Y, Gores GJ (2001) Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res 61:6388–6393

    CAS  PubMed  Google Scholar 

  57. Kim SK, Yang JW, Kim MR, Roh SH, Kim HG, Lee KY, Jeong HG, Kang KW (2008) Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic Biol Med 45:537–546

    Article  CAS  PubMed  Google Scholar 

  58. Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD (2008) Dual roles of Nrf2 in cancer. Pharmacol Res 58:262–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12:564–571

    Article  CAS  PubMed  Google Scholar 

  60. Alexander C-M (2013) The involvement of NRF2 in lung cancer. Oxid Med Cell Longev 2013:746432

    PubMed  PubMed Central  Google Scholar 

  61. Tian Y, Liu Q, He X, Yuan X, Chen Y, Chu Q, Wu K (2016) Emerging roles of Nrf2 signal in non-small cell lung cancer. J Hematol Oncol 9:14

    Article  PubMed  PubMed Central  Google Scholar 

  62. Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N, Kikuchi N, Satoh H, Sakamoto T, Hizawa N (2009) Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 15:3423–3432

    Article  CAS  PubMed  Google Scholar 

  63. Wu H, Cheng Y, Chang J, Wu T, Liu W, Chen C, Lee H (2010) Subcellular localization of apurinic endonuclease 1 promotes lung tumor aggressiveness via NF-κB activation. Oncogene 29:4330–4340

    Article  CAS  PubMed  Google Scholar 

  64. Takeda K, Kinoshita I, Shimizu Y, Ohba Y, Itoh T, Matsuno Y, Shichinohe T, Dosaka-Akita H (2008) Clinicopathological significance of expression of pc-Jun, TCF4 and beta-Catenin in colorectal tumors. BMC Cancer 8:328

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the BSR-startup Grant from the University Grants Commission (UGC), New Delhi, India, and the funds received under the scheme Research Seed Money (RSM) from the Central University of Punjab, Bathinda (CUPB) to A.K.M. A.K.M. also acknowledges the training in the field of BER-pathway and Redox biology under the guidance of Prof. Sankar Mitra at University of Texas Medical Branch, Galveston, Texas, USA. S.T. acknowledges the financial support in the form of Senior Research Fellowship (SRF) from the Indian Council of Medical Research (ICMR), New Delhi, India. Central Instrumentation Laboratory (CIL) facility of CUPB is thankfully acknowledged for providing confocal microscopy facility. Because of the limited focus of the article, many relevant and appropriate references could not be included, for which the authors apologize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Mantha.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Dhiman, M. & Mantha, A.K. APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol Cell Biochem 441, 201–216 (2018). https://doi.org/10.1007/s11010-017-3186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3186-7

Keywords

Navigation