Skip to main content

Genome Editing Tools for Lysosomal Storage Disorders

  • Chapter
  • First Online:
Genome Editing in Biomedical Sciences

Abstract

Genome editing has multiple applications in the biomedical field. They can be used to modify genomes at specific locations, being able to either delete, reduce, or even enhance gene transcription and protein expression. Here, we summarize applications of genome editing used in the field of lysosomal disorders. We focus on the development of cell lines for study of disease pathogenesis, drug discovery, and pathogenicity of specific variants. Furthermore, we highlight the main studies that use gene editing as a gene therapy platform for these disorders, both in preclinical and clinical studies. We conclude that gene editing has been able to change quickly the scenario of these disorders, allowing the development of new therapies and improving the knowledge on disease pathogenesis. Should they confirm their hype, the first gene editing-based products for lysosomal disorders could be available in the next years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-González A, González-Correa JE, Barriocanal-Casado E et al (2022) Isogenic GAA-KO murine muscle cell lines mimicking severe Pompe mutations as preclinical models for the screening of potential gene therapy strategies. Int J Mol Sci 23:6298. https://doi.org/10.3390/ijms23116298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allende ML, Cook EK, Larman BC, Nugent A, Brady JM, Golebiowski D, Sena-Esteves M, Tifft CJ, Proia RL (2018) Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res 59:550. https://doi.org/10.1194/jlr.M081323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alroy J, Lyons JA (2014) Lysosomal storage diseases. J Inborn Errors Metab Screen 2:2326409813517663. https://doi.org/10.1177/2326409813517663

    Article  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149. https://doi.org/10.1038/s41586-019-1711-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844

    Article  CAS  PubMed  Google Scholar 

  • Azambuja AS, Pimentel-Vera LN, Gonzalez EA, Poletto E, Pinheiro CV, Matte U, Giugliani R, Baldo G (2020) Evidence for inflammasome activation in the brain of mucopolysaccharidosis type II mice. Metab Brain Dis 35:1231–1236

    Article  CAS  PubMed  Google Scholar 

  • Baehner F, Schmiedeskamp C, Krummenauer F, Miebach E, Bajbouj M, Whybra C, Kohlschütter A, Kampmann C, Beck M (2005) Cumulative incidence rates of the mucopolysaccharidoses in Germany. J Inherit Metab Dis 28:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Baldo G, Tavares AMV, Gonzalez E, Poletto E, Mayer FQ, Matte U d S, Giugliani R (2017) Progressive heart disease in mucopolysaccharidosis type I mice may be mediated by increased cathepsin B activity. Cardiovasc Pathol 27:45–50

    Article  CAS  PubMed  Google Scholar 

  • Benetó N, Cozar M, García-Morant M, Creus-Bachiller E, Vilageliu L, Grinberg D, Canals I (2019) Generation of two compound heterozygous HGSNAT-mutated lines from healthy induced pluripotent stem cells using CRISPR/Cas9 to model Sanfilippo C syndrome. Stem Cell Res 41:101616

    Article  PubMed  Google Scholar 

  • Benetó N, Cozar M, Gort L, Pacheco L, Vilageliu L, Grinberg D, Canals I (2020) Generation of two NAGLU-mutated homozygous cell lines from healthy induced pluripotent stem cells using CRISPR/Cas9 to model Sanfilippo B syndrome. Stem Cell Res 42:101668

    Article  PubMed  Google Scholar 

  • Bétermier M, Bertrand P, Lopez BS (2014) Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10:e1004086

    Article  PubMed  PubMed Central  Google Scholar 

  • Birket MJ, Raibaud S, Lettieri M et al (2019) A human stem cell model of Fabry disease implicates LIMP-2 accumulation in cardiomyocyte pathology. Stem cell reports 13:380–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose SK, White BM, Kashyap MV et al (2021) In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nat Commun 12:4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    Article  CAS  PubMed  Google Scholar 

  • Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta, Mol Cell Res 1793:605–614

    Article  CAS  PubMed  Google Scholar 

  • Cachon-Gonzalez MB, Zaccariotto E, Cox TM (2018) Genetics and therapies for GM2 Gangliosidosis. Curr Gene Ther 18:68–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Motta FM, Bender F, Acosta A et al (2014) A community-based study of Mucopolysaccharidosis type VI in Brazil: the influence of founder effect, endogamy and consanguinity. Hum Hered 77:189–196

    Article  PubMed  Google Scholar 

  • de Carvalho TG, Schuh R, Pasqualim G, Pellenz FM, Filippi-Chiela EC, Giugliani R, Baldo G, Matte U (2018) CRISPR-Cas9-mediated gene editing in human MPS I fibroblasts. Gene 678:33–37

    Article  PubMed  Google Scholar 

  • Dever DP, Scharenberg SG, Camarena J et al (2019) CRISPR/Cas9 genome engineering in engraftable human brain-derived neural stem cells. Iscience 15:524–535. https://doi.org/10.1016/j.isci.2019.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douek AM, Amiri Khabooshan M, Henry J, Stamatis S-A, Kreuder F, Ramm G, Änkö M-L, Wlodkowic D, Kaslin J (2021) An engineered sgsh mutant zebrafish recapitulates molecular and Behavioural pathobiology of Sanfilippo syndrome a/MPS IIIA. Int J Mol Sci 22:5948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drews K, Calgi MP, Harrison WC et al (2019) Glucosylceramidase maintains influenza virus infection by regulating endocytosis. J Virol 93:e00017–e00019. https://doi.org/10.1128/jvi.00017-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du X, Lukmantara I, Yang H (2017) CRISPR/Cas9-mediated generation of Niemann-pick C1 knockout cell line. Methods Mol Biol 1583:73–83

    Article  CAS  PubMed  Google Scholar 

  • Du S, Wang G, Zhang Z, Ma C, Gao N, Xiao J (2022) Structural insights into how GlcNAc-1-phosphotransferase directs lysosomal protein transport. J Biol Chem 298:101702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erwood S, Brewer RA, Bily TMI, Maino E, Zhou L, Cohn RD, Ivakine EA (2019) Modeling Niemann-pick disease type C in a human haploid cell line allows for patient variant characterization and clinical interpretation. Genome Res 29:2010. https://doi.org/10.1101/gr.250720.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federhen A, Pasqualim G, de Freitas TF, Gonzalez EA, Trapp F, Matte U, Giugliani R (2020) Estimated birth prevalence of mucopolysaccharidoses in Brazil. Am J Med Genet Part A 182:469–483

    Article  CAS  PubMed  Google Scholar 

  • Feltri ML, Weinstock NI, Favret J, Dhimal N, Wrabetz L, Shin D (2021) Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia 69:2309–2331

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Pereira C, Millán-Tejado BS, Gallardo-Gómez M, Pérez-Márquez T, Alves-Villar M, Melcón-Crespo C, Fernández-Martín J, Ortolano S (2021) Therapeutic approaches in lysosomal storage diseases. Biomol Ther 11:1–19

    Google Scholar 

  • Fuller M, Meikle PJ, Hopwood JJ (2006) Epidemiology of lysosomal storage diseases: an overview. In: Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis, Oxford

    Google Scholar 

  • Futerman AH, Van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554–565

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giugliani R, Vairo F, Beck M, Wraith E, Cowan T, Grabowski G (2017) Lysosomal disorders. In: Pediatric endocrinology and inborn errors of metabolism, 2nd edn. McGraw-Hill Education, New York, pp 983–1021

    Google Scholar 

  • Giugliani R, Barth AL, Dumas MRC et al (2021) Mucopolysaccharidosis VII in Brazil: natural history and clinical findings. Orphanet J Rare Dis 16:1–9

    Article  Google Scholar 

  • Gomez-Ospina N, Scharenberg SG, Mostrel N et al (2019) Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nat Commun 10:1–14

    Article  Google Scholar 

  • Gonzalez EA, Martins GR, Tavares AMV, Viegas M, Poletto E, Giugliani R, Matte U, Baldo G (2018) Cathepsin B inhibition attenuates cardiovascular pathology in mucopolysaccharidosis I mice. Life Sci 196:102–109

    Article  CAS  PubMed  Google Scholar 

  • Harmatz P (2019) EMPOWERS: A phase 1/2 clinical trial of SB-318 ZFN-mediated in vivo human genome editing for treatment of MPSI (Hurler Syndrome). Mol Genet Metab 126(2):S68

    Google Scholar 

  • Huang JY, Kan S-H, Sandfeld EK, Dalton ND, Rangel AD, Chan Y, Davis-Turak J, Neumann J, Wang RY (2020) CRISPR-Cas9 generated Pompe knock-in murine model exhibits early-onset hypertrophic cardiomyopathy and skeletal muscle weakness. Sci Rep 10:10321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneski CR, Hanover JA, Schueler Hoffman UH (2022) Generation of an in vitro model for peripheral neuropathy in Fabry disease using CRISPR-Cas9 in the nociceptive dorsal root ganglion cell line 50B11. Mol Genet Metab reports 31:100871

    Article  CAS  Google Scholar 

  • Kao W, Ferreira T, Yuan Y, Dong F, Hu Y-C, Call M, Coulson-Thomas VJ, Zhang J, Rice T (2017) Gene therapy of Mucopolysaccharidosis type VII (MPS VII) with CRISPR/Cas9 genome editing. Invest Ophthalmol Vis Sci 58:3374

    Google Scholar 

  • Khan S, Alméciga-Díaz CJ, Sawamoto K, Mackenzie WG, Theroux MC, Pizarro C, Mason RW, Orii T, Tomatsu S (2017) Mucopolysaccharidosis IVA and glycosaminoglycans. Mol Genet Metab 120:78–95

    Article  CAS  PubMed  Google Scholar 

  • Krohn P, Rega LR, Harvent M et al (2022) Multisystem involvement, defective lysosomes and impaired autophagy in a novel rat model of nephropathic cystinosis. Hum Mol Genet 31:2262–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchař L, Ledvinová J, Hřebíček M et al (2009) Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am J Med Genet Part A 149A:613–621

    Article  PubMed  Google Scholar 

  • Laoharawee K, DeKelver RC, Podetz-Pedersen KM et al (2018) Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing. Mol Ther 26:1127. https://doi.org/10.1016/j.ymthe.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal AF, Alméciga-Díaz CJ (2022) Efficient CRISPR/Cas9 nickase-mediated genome editing in an in vitro model of mucopolysaccharidosis IVA. Gene Ther 30:107. https://doi.org/10.1038/s41434-022-00344-3

    Article  CAS  PubMed  Google Scholar 

  • Leal AF, Benincore-Flórez E, Solano-Galarza D, Garzón Jaramillo RG, Echeverri-Peña OY, Suarez DA, Alméciga-Díaz CJ, Espejo-Mojica AJ (2020a) GM2 Gangliosidoses: clinical features, pathophysiological aspects, and current therapies. Int J Mol Sci 21:6213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal AF, Espejo-Mojica AJ, Sánchez OF, Ramírez CM, Reyes LH, Cruz JC, Alméciga-Díaz CJ (2020b) Lysosomal storage diseases: current therapies and future alternatives. J Mol Med 98:931–946

    Article  PubMed  Google Scholar 

  • Lelieveld LT, Mirzaian M, Kuo C-L et al (2019) Role of β-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. J Lipid Res 60:1851–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, Koblan LW, Comander J, Liu Q, Liu DR (2020) Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 4:97. https://doi.org/10.1038/s41551-019-0501-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Feng Y, Huang Y, Jiang X, Tang C, Tang F, Zeng C, Liu L (2021) A GM1 gangliosidosis mutant mouse model exhibits activated microglia and disturbed autophagy. Exp Biol Med (Maywood) 246:1330–1341

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Muenzer J (2019) CHAMPIONS: A phase 1/2 clinical trial with dose escalation of SB-913 ZFN-mediated in vivo human genome editing for treatment of MPS II (Hunter Syndrome). Mol Genet Metab 126:S104

    Google Scholar 

  • Ou L, DeKelver RC, Rohde M et al (2019) ZFN-mediated in vivo genome editing corrects murine hurler syndrome. Mol Ther 27:178. https://doi.org/10.1016/j.ymthe.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  • Ou L, Przybilla MJ, Tăbăran A-F, Overn P, O’Sullivan MG, Jiang X, Sidhu R, Kell PJ, Ory DS, Whitley CB (2020a) A novel gene editing system to treat both Tay–Sachs and Sandhoff diseases. Gene Ther 27(5):226–236

    Google Scholar 

  • Ou L, Przybilla MJ, Ahlat O, Kim S, Overn P, Jarnes J, O’Sullivan MG, Whitley CB (2020b) A highly efficacious PS gene editing system corrects metabolic and neurological complications of Mucopolysaccharidosis type I. Mol Ther 28:1442–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parenti G, Pignata C, Vajro P, Salerno M (2013) New strategies for the treatment of lysosomal storage diseases (review). Int J Mol Med 31:11–20

    Article  CAS  PubMed  Google Scholar 

  • Parenti G, Andria G, Ballabio A (2015) Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 66:471–486

    Article  CAS  PubMed  Google Scholar 

  • Pavan E, Ormazabal M, Peruzzo P, Vaena E, Rozenfeld P, Dardis A (2020) CRISPR/Cas9 editing for Gaucher disease modelling. Int J Mol Sci 21:3268. https://doi.org/10.3390/ijms21093268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña O, Sosa Á, Echeverri O, Saenz H, Barrera LA (2005) Producción de anticuerpos policlonales IgG contra la proteína iduronato-2-sulfato sulfatasa y desarrollo de un sistema de detección para IDS humana recombinante. Biomedica 25:181–188

    Article  PubMed  Google Scholar 

  • Pereira VG, Gazarini ML, Rodrigues LC, Da Silva FH, Han SW, Martins AM, Tersariol ILS, D’Almeida V (2010) Evidence of lysosomal membrane permeabilization in mucopolysaccharidosis type I: rupture of calcium and proton homeostasis. J Cell Physiol 223:335–342

    CAS  PubMed  Google Scholar 

  • Pimentel-Vera LN, Poletto E, Gonzalez EA, de Oliveira PF, Giugliani R, Baldo G (2021) Genome editing in lysosomal disorders. Prog Mol Biol Transl Sci 182:289–325

    Article  CAS  PubMed  Google Scholar 

  • Platt FM, Boland B, van der Spoel AC (2012) Lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199:723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt FM, D’Azzo A, Davidson BL, Neufeld EF, Tifft CJ (2018) Lysosomal storage diseases. Nat Rev Dis Prim 4:27

    Article  PubMed  Google Scholar 

  • Poletto E, Baldo G, Gomez-Ospina N (2020) Genome editing for Mucopolysaccharidoses. Int J Mol Sci 21:500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Politei J, Cabello J, Jacobo V, Guillermo V, Antonio L, Ballesteros A, Ana Maria M (2019) Enfermedad de Fabry: Nuevos conceptos en su historia natural, evolución y tratamiento, en relación a los hallazgos del Registro Fabry. Revista de nefrología, diálisis y transplante 29(4):145–152

    Google Scholar 

  • Poswar F, Vairo F, Burin M, Michelin-Tirelli K, Brusius-Facchin A, Kubaski F, Desouza C, Baldo G, Giugliani R (2019) Lysosomal diseases: overview on current diagnosis and treatment. Genet Mol Biol 42:165–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebiai R, Rue E, Zaldua S et al (2022) CRISPR-Cas9 Knock-in of T513M and G41S mutations in the murine β-Galactosyl-ceramidase gene re-capitulates early-onset and adult-onset forms of Krabbe disease. Front Mol Neurosci 15:896314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Álvarez NT, Bautista-Niño PK, Trejos-Suárez J, Serrano-Díaz NC (2022) A model of metformin mitochondrial metabolism in metachromatic leukodystrophy: first description of human Schwann cells transfected with CRISPR-Cas9. Open Biol 12:210371. https://doi.org/10.1098/rsob.210371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawamoto K, Alméciga-Díaz CJ, Mason RW, Orii T, Tomatsu S (2018) Mucopolysaccharidosis type IVA: clinical features, biochemistry, diagnosis, genetics, and treatment. In: Tomatsu S, Lavery C, Giugliani R, Harmatz P, Scarpa M, Węgrzyn G, Orii T (eds) Mucopolysaccharidoses Updat. (2 Vol. set). Nova Science Publishers, Inc., Hauppauge, pp 235–272

    Google Scholar 

  • Scharenberg SG, Poletto E, Lucot KL, Colella P, Sheikali A, Montine TJ, Porteus MH, Gomez-Ospina N (2020) Engineering monocyte/macrophage−specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing. Nat Commun 11:3327. https://doi.org/10.1038/s41467-020-17148-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiffmann R (2006) Neuropathy and Fabry disease: pathogenesis and enzyme replacement therapy. Acta Neurol Belg 106:61–65

    PubMed  Google Scholar 

  • Schuh RS, Poletto É, Pasqualim G, Tavares AMV, Meyer FS, Gonzalez EA, Giugliani R, Matte U, Teixeira HF, Baldo G (2018) In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Release 288:23–33

    Article  CAS  PubMed  Google Scholar 

  • Schuh RS, Gonzalez EA, Tavares AMV et al (2020) Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice. Gene Ther 27:74–84

    Article  CAS  PubMed  Google Scholar 

  • Schuller Y, Linthorst GE, Hollak CEM, Van Schaik IN, Biegstraaten M (2016) Pain management strategies for neuropathic pain in Fabry disease--a systematic review. BMC Neurol 16:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sévin M, Lesca G, Baumann N, Millat G, Lyon-Caen O, Vanier MT, Sedel F (2007) The adult form of Niemann-pick disease type C. Brain 130:120–133

    Article  PubMed  Google Scholar 

  • Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA (2020) Metachromatic Leukodystrophy: diagnosis, modeling, and treatment approaches. Front Med 7:1–17

    Article  Google Scholar 

  • Sharma R, Anguela XM, Doyon Y et al (2015) In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126:1777–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonaro CM, Tomatsu S, Sikora T et al (2016) Pentosan Polysulfate: Oral versus subcutaneous injection in Mucopolysaccharidosis type I dogs. PLoS One 11:e0153136

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon M, Muro S (2017) Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 118:109–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H-Y, Chiang H-C, Tseng W-L et al (2016) Using CRISPR/Cas9-mediated GLA gene knockout as an in vitro drug screening model for Fabry disease. Int J Mol Sci 17:2089. https://doi.org/10.3390/ijms17122089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H-Y, Yang Y-P, Chien Y et al (2021) Reversal of the inflammatory responses in Fabry patient iPSC-derived cardiovascular endothelial cells by CRISPR/Cas9-corrected mutation. Int J Mol Sci 22:2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirnemann J, Belmatoug N, Camou F et al (2017) A review of Gaucher disease pathophysiology, Clinical Presentation and Treatments. Int J Mol Sci 18:441. https://doi.org/10.3390/ijms18020441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun A (2018) Lysosomal storage disease overview. Ann Transl Med 6:476–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Town M, Jean G, Cherqui S et al (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18:319–324

    Article  CAS  PubMed  Google Scholar 

  • Velho RV, Harms FL, Danyukova T et al (2019) The lysosomal storage disorders mucolipidosis type II, type III alpha/beta, and type III gamma: update on GNPTAB and GNPTG mutations. Hum Mutat humu 40(7):842–864

    CAS  Google Scholar 

  • Vellodi A (2005) Lysosomal storage disorders. Br J Haematol 128:413–431

    Article  CAS  PubMed  Google Scholar 

  • Vera LNP, Schuh RS, Fachel FNS et al (2022) Brain and visceral gene editing of mucopolysaccharidosis I mice by nasal delivery of the CRISPR/Cas9 system. J Gene Med 24:e3410. https://doi.org/10.1002/jgm.3410

    Article  CAS  PubMed  Google Scholar 

  • Villalobos J, Politei JM, Martins AM, Cabrera G, Amartino H, Lemay R, Ospina S, Ordoñez SS, Varas C (2013) Fabry disease in latin america: data from the fabry registry. JIMD Rep 8:91–99

    Article  CAS  PubMed  Google Scholar 

  • Wagner V, Northrup H (2019) Mucopolysaccharidosis Type III. In: Adam M, Ardinger H, Pagon R et al (eds) GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA), pp 1993–2021

    Google Scholar 

  • Wang D, Li J, Song CQ et al (2018) Cas9-mediated allelic exchange repairs compound heterozygous recessive mutations in mice. Nat Biotechnol 36:839. https://doi.org/10.1038/nbt.4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson L, Keatinge M, Gegg M, Bai Q, Sandulescu MC, Vardi A, Futerman AH, Schapira AHV, Burton EA, Bandmann O (2019) Ablation of the pro-inflammatory master regulator miR-155 does not mitigate neuroinflammation or neurodegeneration in a vertebrate model of Gaucher’s disease. Neurobiol Dis 127:563–569

    Article  CAS  PubMed  Google Scholar 

  • Wiweger M, Majewski L, Adamek-Urbanska D, Wasilewska I, Kuznicki J (2021) npc2-deficient zebrafish reproduce neurological and inflammatory symptoms of Niemann-pick type C disease. Front Cell Neurosci 15:647860. https://doi.org/10.3389/fncel.2021.647860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wraith JE (2002) Lysosomal disorders. Semin Neonatol 7:75–83

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Peterson RT (2020) Modeling lysosomal storage diseases in the zebrafish. Front Mol Biosci 7:82. https://doi.org/10.3389/fmolb.2020.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

DAS received doctoral a scholarship from Pontificia Universidad Javeriana. CJAD is supported by Ministerio de Ciencia, Tecnología e Innovación, Colombia (Contract 120380763212, ID 8352); Pontificia Universidad Javeriana (ID 20289); the National MPS Society (ID 9509); and the Institute for the Study of Inborn Errors of Metabolism (Activity 120289301011ZZ). This work was supported by FIPE-HCPA, CNPq, CAPES, FAPESP (2019/15369-6), and FAPERGS (22/2551-0000385-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Baldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzalez, E.A., Nader, H., Siebert, M., Suarez, D.A., Alméciga-Díaz, C.J., Baldo, G. (2023). Genome Editing Tools for Lysosomal Storage Disorders. In: Passos, G.A. (eds) Genome Editing in Biomedical Sciences. Advances in Experimental Medicine and Biology, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-33325-5_8

Download citation

Publish with us

Policies and ethics