Skip to main content

Polarization-Resolved SHG Microscopy for Biomedical Applications

  • Chapter
  • First Online:
Optical Polarimetric Modalities for Biomedical Research

Abstract

Polarization-resolved second harmonic generation (PSHG) microscopy is a powerful technique capable of differentiating biological tissues as well as determining ultrastructural parameters important to the biological function of the tissue. As such, PSHG microscopy is particularly useful in biomedical research. Here, innovative and developing PSHG microscopy techniques and their application in the field of biomedicine are described. The polarization-resolved SHG microscopy techniques include modulation of laser linear polarization, circular dichroism, double Stokes Mueller polarimetry, and detection of outgoing linear laser polarization. These techniques have been used to investigate collagenous tissues, muscle tissue, and much more. This chapter concludes with an outlook of the future of PSHG microscopy and briefly describes advances being performed to use this technique for in vivo functional tissue studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aït-Belkacem, D., Gasecka, A., Munhoz, F., Brustlein, S., & Brasselet, S. (2010). Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging. Optics Express, 18(14), 14859–14870. http://www.opticsexpress.org/abstract.cfm?URI=oe-18-14-14859

    Article  ADS  Google Scholar 

  • Ajeti, V., Nadiarnykh, O., Ponik, S. M., Keely, P. J., Eliceiri, K. W., & Campagnola, P. J. (2011). Structural changes in mixed Col I/Col V collagen gels probed by SHG microscopy: Implications for probing stromal alterations in human breast cancer. Biomedical Optics Express, 2(8), 2307–2316. https://doi.org/10.1364/BOE.2.002307

    Article  Google Scholar 

  • Alizadeh, M., Ghotbi, M., Loza-Alvarez, P., & Merino, D. (2019). Comparison of different polarization sensitive second harmonic generation imaging techniques. Methods and Protocols, 2(49), 1–14. https://doi.org/10.3390/mps2020049

    Article  Google Scholar 

  • Alizadeh, M., Mazeika, V., Maciulis, M., Riauka, M., & Barzda, V. (2022). Revealing chirality of biological structures using different polarimetric SHG microscopy techniques. In Proceedings SPIE (p. PC12144).

    Google Scholar 

  • Amat-Roldan, I., Psilodimitrakopoulos, S., Loza-Alvarez, P., & Artigas, D. (2010). Fast image analysis in polarization SHG microscopy. Optics Express, 18(16), 17209–17219. https://doi.org/10.1364/OE.18.017209

    Article  ADS  Google Scholar 

  • Ambekar, R., Lau, T.-Y., Walsh, M., Bhargava, R., & Toussaint, K. C. (2012). Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomedical Optics Express, 3(9), 2021–2035. https://doi.org/10.1364/BOE.3.002021

    Article  Google Scholar 

  • Ávila, F. J., & Bueno, J. M. (2015). Analysis and quantification of collagen organization with the structure tensor in second harmonic microscopy images of ocular tissues. Applied Optics, 54(33), 9848–9854. https://doi.org/10.1364/AO.54.009848

    Article  ADS  Google Scholar 

  • Ávila, F. J., del Barco, O., & Bueno, J. M. (2016). Polarization response of second-harmonic images for different collagen spatial distributions. Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Apr 2022. Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Polarization response of second-harmonic images for different collagen spatial distributions. Journal of Biomedical Optics, 21(6), 66015. https://doi.org/10.1117/1.JBO.21.6.066015

  • Ávila, F. J., del Barco, O., & Bueno, J. M. (2017). Quantifying external and internal collagen organization from stokes-vector-based second harmonic generation imaging polarimetry. Journal of Optics (United Kingdom), 19(10), 105301. https://doi.org/10.1088/2040-8986/aa825d

    Article  ADS  Google Scholar 

  • Birk, J. W., Tadros, M., Moezardalan, K., Nadyarnykh, O., Forouhar, F., Anderson, J., & Campagnola, P. (2014). Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal colonic mucosa. Digestive Diseases and Sciences, 59, 1529–1534. https://doi.org/10.1007/s10620-014-3121-7

    Article  Google Scholar 

  • Boulesteix, T., Beaurepaire, E., Sauviat, M.-P., & Schanne-Klein, M.-C. (2004). Second-harmonic microscopy of unstained living cardiac myocytes: Measurements of sarcomere length with 20-nm accuracy. Optics Letters, 29(17), 2031–2033.

    Article  ADS  Google Scholar 

  • Brittain, K., Harvey, M., Cisek, R., Pillai, S., Christie, S. D., & Tokarz, D. (2022). Second harmonic generation microscopy of otoconia. Biomedical Optics Express, 13(6), 3593. https://doi.org/10.1364/boe.457967

    Article  Google Scholar 

  • Brown, R. M., Millard, A. C., & Campagnola, P. J. (2003). Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. Optics Letters, 28(22), 2207–2209.

    Article  ADS  Google Scholar 

  • Brown, C. P., Houle, M.-A., Popov, K., Nicklaus, M., Couture, C.-A., Laliberté, M., Brabec, T., Ruediger, A., Carr, A. J., Price, A. J., Gill, H. S., Ramunno, L., & Légaré, F. (2014). Imaging and modeling collagen architecture from the nano to micro scale. Biomedical Optics Express, 5(1), 233–243. https://doi.org/10.1364/boe.5.000233

    Article  Google Scholar 

  • Bueno, J. M., Ávila, F. J., & Martínez-Garciá, M. C. (2019). Quantitative analysis of the corneal collagen distribution after in vivo cross-linking with second harmonic microscopy. BioMed Research International, 2019, 3860498. https://doi.org/10.1155/2019/3860498

    Article  Google Scholar 

  • Bueno, J. M., Ávila, F. J., Hristu, R., Stanciu, S. G., Eftimie, L., & Stanciu, G. A. (2020). Objective analysis of collagen organization in thyroid nodule capsules using second harmonic generation microscopy images and the Hough transform. Applied Optics, 59(23), 6925. https://doi.org/10.1364/ao.393721

    Article  ADS  Google Scholar 

  • Burke, M., Golaraei, A., Atkins, A., Akens, M., Barzda, V., & Whyne, C. (2017). Collagen fibril organization within rat vertebral bone modified with metastatic involvement. Journal of Structural Biology, 199(2), 153–164. https://doi.org/10.1016/j.jsb.2017.06.008

    Article  Google Scholar 

  • Campagnola, P. J., Millard, A. C., Terasaki, M., Hoppe, P. E., Malone, C. J., & Mohler, W. A. (2002). Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophysical Journal, 82(1), 493–508.

    Article  ADS  Google Scholar 

  • Campbell, K. R., & Campagnola, P. J. (2017). Wavelength-dependent second harmonic generation circular dichroism for differentiation of Col I and Col III isoforms in stromal models of ovarian cancer based on intrinsic chirality differences. Journal of Physical Chemistry B, 121(8), 1749–1757. https://doi.org/10.1021/acs.jpcb.6b06822

    Article  Google Scholar 

  • Campbell, K. R., Chaudhary, R., Handel, J. M., Patankar, M. S., & Campagnola, P. J. (2018). Polarization-resolved second harmonic generation imaging of human ovarian cancer. Journal of Biomedical Optics, 23(6), 066501. https://doi.org/10.1117/1.JBO.23.6.066501

    Article  ADS  Google Scholar 

  • Chen, W. L., Li, T. H., Su, P. J., Chou, C. K., Fwu, P. T., Lin, S. J., Kim, D., So, P. T. C., & Dong, C. Y. (2009). Second harmonic generation χ tensor microscopy for tissue imaging. Applied Physics Letters, 94(18). https://doi.org/10.1063/1.3132062

  • Chen, X., Raggio, C., & Campagnola, P. J. (2012). Second-harmonic generation circular dichroism studies of osteogenesis imperfecta. Optics Letters, 37(18), 3837–3839. https://doi.org/10.1364/OL.37.003837

    Article  ADS  Google Scholar 

  • Chen, W. C., Chen, Y. J., Lin, S. T., Hung, W. H., Chan, M. C., Wu, I. C., Wu, M. T., Kuo, C. T., Das, S., Kao, F. J., & Zhuo, G. Y. (2020). Label-free characterization of collagen fibers in cancerous esophagus tissues using ratiometric nonlinear optical microscopy. Experimental Biology and Medicine, 245(14), 1213–1221. https://doi.org/10.1177/1535370220934039

    Article  Google Scholar 

  • Chen, C.-H., Nair, A. V., Chuang, S.-C., Lin, Y.-S., Cheng, M.-H., Lin, C.-Y., Chang, C.-Y., Chen, S.-J., & Lien, C.-H. (2021). Dual-LC PSHG microscopy for imaging collagen type I and type II gels with pixel-resolution analysis. Biomedical Optics Express, 12(5), 3050. https://doi.org/10.1364/boe.416193

    Article  Google Scholar 

  • Chipman, R. A. (1995). Polarimetry. In M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, & E. van Stryland (Eds.), The handbook of optics (3rd ed., pp. 21–35). McGraw-Hill Professional.

    Google Scholar 

  • Chou, C.-K., Chen, W.-L., Fwu, P. T., Lin, S.-J., Lee, H.-S., & Dong, C.-Y. (2008). Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation. Journal of Biomedical Optics, 13(1), 014005. https://doi.org/10.1117/1.2824379

    Article  ADS  Google Scholar 

  • Chu, S. W., Chen, S. Y., Chern, G. W., Tsai, T. H., Chen, Y. C., Lin, B. L., & Sun, C. K. (2004). Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophysical Journal, 86(6), 3914–3922. https://doi.org/10.1529/biophysj.103.034595

    Article  ADS  Google Scholar 

  • Cisek, R., Spencer, L., Prent, N., Zigmantas, D., Espie, G. S., & Barzda, V. (2009). Optical microscopy in photosynthesis. Photosynthesis Research, 102(2), 111–141. https://doi.org/10.1007/s11120-009-9500-9

    Article  Google Scholar 

  • Dailey, C. A., Burke, B. J., & Simpson, G. J. (2004). The general failure of Kleinman symmetry in practical nonlinear optical applications. Chemical Physics Letters, 390(1–3), 8–13. https://doi.org/10.1016/j.cplett.2004.03.109

    Article  ADS  Google Scholar 

  • Deniset-Besseau, A., Duboisse, J., Benkhou, E., Hache, F., Brevet, P. F., & Schanne-Klein, M. C. (2009). Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin. Journal of Physical Chemistry B, 113(40), 13437–13445. https://doi.org/10.1021/jp9046837

    Article  Google Scholar 

  • Dewalt, E. L., Sullivan, S. Z., Schmitt, P. D., Muir, R. D., & Simpson, G. J. (2014). Polarization-modulated second harmonic generation ellipsometric microscopy at video rate. Analytical Chemistry, 86(16), 8448–8456. https://doi.org/10.1021/ac502124v

    Article  Google Scholar 

  • Doras, C., Taupier, G., Barsella, A., Mager, L., Boeglin, A., Bulou, H., Bousquet, P., & Dorkenoo, K. D. (2011). Polarization state studies in second harmonic generation signals to trace atherosclerosis lesions. Optics Express, 19(16), 15062. https://doi.org/10.1364/oe.19.015062

    Article  ADS  Google Scholar 

  • Dow, X. Y., DeWalt, E. L., Sullivan, S. Z., Schmitt, P. D., Ulcickas, J. R. W., & Simpson, G. J. (2016). Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical Stokes ellipsometry. Biophysical Journal, 111(7), 1361–1374. https://doi.org/10.1016/j.bpj.2016.05.055

    Article  ADS  Google Scholar 

  • Duboisset, J., Aït-Belkacem, D., Roche, M., Rigneault, H., & Brasselet, S. (2012). Generic model of the molecular orientational distribution probed by polarization-resolved second-harmonic generation. Physical Review A: Atomic, Molecular, and Optical Physics, 85(4), 1–9. https://doi.org/10.1103/PhysRevA.85.043829

    Article  Google Scholar 

  • Dubreuil, M., Tissier, F., le Roy, L., Pennec, J.-P., Rivet, S., Giroux-Metges, M.-A., & le Grand, Y. (2018). Polarization-resolved second harmonic microscopy of skeletal muscle in sepsis. Biomedical Optics Express, 9(12), 6350. https://doi.org/10.1364/boe.9.006350

    Article  Google Scholar 

  • Ehmke, T., Nitzsche, T. H., Knebl, A., & Heisterkamp, A. (2014). Molecular orientation sensitive second harmonic microscopy by radially and azimuthally polarized light. Biomedical Optics Express, 5(7), 2231. https://doi.org/10.1364/boe.5.002231

    Article  Google Scholar 

  • Erikson, A., Örtegren, J., Hompland, T., de Lange Davies, C., & Lindgren, M. (2007). Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope. Journal of Biomedical Optics, 12(4), 044002. https://doi.org/10.1117/1.2772311

    Article  ADS  Google Scholar 

  • Förderer, M., Georgiev, T., Mosqueira, M., Fink, R. H. A., & Vogel, M. (2016). Functional second harmonic generation microscopy probes molecular dynamics with high temporal resolution. Biomedical Optics Express, 7(2), 525. https://doi.org/10.1364/boe.7.000525

    Article  Google Scholar 

  • Freund, I., & Deutsch, M. (1986). Second-harmonic microscopy of biological tissue. Optics Letters, 11(2), 94–96. https://doi.org/10.1364/OL.11.000094

    Article  ADS  Google Scholar 

  • Freund, I., Deutsch, M., & Sprecher, A. (1986). Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophysical Journal, 50(4), 693–712. https://doi.org/10.1016/S0006-3495(86)83510-X

    Article  ADS  Google Scholar 

  • Fu, Y., Wang, H., Shi, R., & Cheng, J.-X. (2007). Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues. Biophysical Journal, 92, 3251–3259.

    Article  ADS  Google Scholar 

  • Fuentes-Corona, C. G., Licea-Rodriguez, J., Younger, R., Rangel-Rojo, R., Potma, E. O., & Rocha-Mendoza, I. (2019). Second harmonic generation signal from type I collagen fibers grown in vitro. Biomedical Optics Express, 10(12), 6449. https://doi.org/10.1364/boe.10.006449

    Article  Google Scholar 

  • Fukushima, S., Yonetsu, M., & Yasui, T. (2019). Polarization-resolved second-harmonic-generation imaging of dermal collagen fiber in prewrinkled and wrinkled skins of ultraviolet-B- exposed mouse and wrinkled skins of ultraviolet-B-exposed mouse. Journal of Biomedical Optics, 24(3), 031006. https://doi.org/10.1117/1.JBO.24.3.031006

    Article  ADS  Google Scholar 

  • Galli, R., Meinhardt, M., Koch, E., Schackert, G., Steiner, G., Kirsch, M., & Uckermann, O. (2018). Optical molecular imaging of corpora amylacea in human brain tissue. Biomedizinische Technik, 63(5), 579–585. https://doi.org/10.1515/bmt-2017-0073

    Article  Google Scholar 

  • Gant, K. L., Jambor, A. N., Li, Z., Rentchler, E. C., Weisman, P., Li, L., Patankar, M. S., & Campagnola, P. J. (2021). Evaluation of collagen alterations in early precursor lesions of high grade serous ovarian cancer by second harmonic generation microscopy and mass spectrometry. Cancers, 13(11), 2794. https://doi.org/10.3390/cancers13112794

    Article  Google Scholar 

  • Golaraei, A., Cisek, R., Krouglov, S., Navab, R., Niu, C., Sakashita, S., Yasufuku, K., Tsao, M.-S., Wilson, B. C., & Barzda, V. (2014). Characterization of collagen in non-small cell lung carcinoma with second harmonic polarization microscopy. Biomedical Optics Express, 5(10), 3562–3567. https://doi.org/10.1364/BOE.5.003562

    Article  Google Scholar 

  • Golaraei, A., Kontenis, L., Cisek, R., Tokarz, D., Done, S. J., Wilson, B. C., & Barzda, V. (2016). Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy. Biomedical Optics Express, 7(10), 4054–4068. https://doi.org/10.1364/BOE.7.004054

    Article  Google Scholar 

  • Golaraei, A., Kontenis, L., Mirsanaye, K., Krouglov, S., Akens, M. K., Wilson, B. C., & Barzda, V. (2019a). Complex susceptibilities and chiroptical effects of collagen measured with polarimetric second-harmonic generation microscopy. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-48636-w

  • Golaraei, A., Mirsanaye, K., Ro, Y., Krouglov, S., Akens, M. K., Wilson, B. C., & Barzda, V. (2019b). Collagen chirality and three-dimensional orientation studied with polarimetric second-harmonic generation microscopy. Journal of Biophotonics, 12, e201800241. https://doi.org/10.1002/jbio.201800241

    Article  Google Scholar 

  • Golaraei, A., Kontenis, L., Karunendiran, A., Stewart, B. A., & Barzda, V. (2020a). Dual- and single-shot susceptibility ratio measurements with circular polarizations in second-harmonic generation microscopy. Journal of Biophotonics, 13(4). https://doi.org/10.1002/jbio.201960167

  • Golaraei, A., Mostaço-Guidolin, L. B., Raja, V., Navab, R., Wang, T., Sakashita, S., Yasufuku, K., Tsao, M.-S., Wilson, B. C., & Barzda, V. (2020b). Polarimetric second-harmonic generation microscopy of the hierarchical structure of collagen in stage I-III non-small cell lung carcinoma. Biomedical Optics Express, 11(4), 1851. https://doi.org/10.1364/boe.387744

    Article  Google Scholar 

  • Gusachenko, I., Tran, V., Houssen, Y. G., Allain, J. M., & Schanne-Klein, M. C. (2012). Polarization-resolved second-harmonic generation in tendon upon mechanical stretching. Biophysical Journal, 102(9), 2220–2229. https://doi.org/10.1016/j.bpj.2012.03.068

    Article  ADS  Google Scholar 

  • Hall, G., Eliceiri, K. W., & Campagnola, P. J. (2013). Simultaneous determination of the second-harmonic generation emission directionality and reduced scattering coefficient from three-dimensional imaging of thick tissues. Journal of Biomedical Optics, 18(11), 116008. https://doi.org/10.1117/1.jbo.18.11.116008

    Article  ADS  Google Scholar 

  • Han, X., Burke, R. M., Zettel, M. L., Tang, P., & Brown, E. B. (2008). Second harmonic properties of tumor collagen: Determining the structural relationship between reactive stroma and healthy stroma. Optics Express, 16(3), 1846–1859. https://doi.org/10.1364/oe.16.001846

    Article  ADS  Google Scholar 

  • Hicks, D. G., & Kulkarni, S. (2008). HER2+ breast cancer: Review of biologic relevance and optimal use of diagnostic tools. American Journal of Clinical Pathology, 129(2), 263–273. https://doi.org/10.1309/99AE032R9FM8WND1

    Article  Google Scholar 

  • Hompland, T., Erikson, A., Lindgren, M., Lindmo, T., & de Lange Davies, C. (2008). Second-harmonic generation in collagen as a potential cancer diagnostic parameter. Journal of Biomedical Optics, 13(5), 1–11. https://doi.org/10.1117/1.2983664

    Article  Google Scholar 

  • Hristu, R., Stanciu, S. G., Tranca, D. E., & Stanciu, G. A. (2017). Improved quantification of collagen anisotropy with polarization-resolved second harmonic generation microscopy. Journal of Biophotonics, 10(9), 1171–1179. https://doi.org/10.1002/jbio.201600197

    Article  Google Scholar 

  • Hristu, R., Stanciu, S. G., Dumitru, A., Paun, B., Floroiu, I., Costache, M., & Stanciu, G. A. (2021). Influence of hematoxylin and eosin staining on the quantitative analysis of second harmonic generation imaging of fixed tissue sections. Biomedical Optics Express, 12(9), 5829. https://doi.org/10.1364/boe.428701

    Article  Google Scholar 

  • James, D. S., Jambor, A. N., Chang, H.-Y., Alden, Z., Tilbury, K. B., Sandbo, N. K., & Campagnola, P. J. (2019). Probing ECM remodeling in idiopathic pulmonary fibrosis via second harmonic generation microscopy analysis of macro/supramolecular collagen structure. Journal of Biomedical Optics, 25(01), 1–10. https://doi.org/10.1117/1.jbo.25.1.014505

    Article  Google Scholar 

  • James, D. S., Brereton, C. J., Davies, D. E., Jones, M. G., & Campagnola, P. J. (2021). Examining lysyl oxidase-like modulation of collagen architecture in 3D spheroid models of idiopathic pulmonary fibrosis via second-harmonic generation microscopy. Journal of Biomedical Optics, 26(06), 1–14. https://doi.org/10.1117/1.jbo.26.6.066501

    Article  Google Scholar 

  • Johnson, P. B., Karvounis, A., Singh, H. J., Brereton, C. J., Bourdakos, K. N., Lunn, K., Roberts, J. J. W., Davies, D. E., Muskens, O. L., Jones, M. G., & Mahajan, S. (2021). Superresolved polarization-enhanced second-harmonic generation for direct imaging of nanoscale changes in collagen architecture. Optica, 8(5), 674. https://doi.org/10.1364/optica.411325

    Article  ADS  Google Scholar 

  • Kaneshiro, J., Okada, Y., Shima, T., Tsujii, M., Imada, K., Ichimura, T., & Watanabe, T. M. (2019). Second harmonic generation polarization microscopy as a tool for protein structure analysis. Biophysics and Physicobiology, 16(0), 147–157. https://doi.org/10.2142/biophysico.16.0_147

    Article  Google Scholar 

  • Karunendiran, A., Mirsanaye, K., Stewart, B. A., & Barzda, V. (2022). Second harmonic generation properties in chiral sarcomeres of drosophila larval muscles. Frontiers in Physics, 10. https://doi.org/10.3389/fphy.2022.758709

  • Kleinman, D. A. (1962). Nonlinear dielectric polarization in optical media. Physical Review, 126(6), 1977–1979. https://doi.org/10.1103/PhysRev.126.1977

    Article  ADS  Google Scholar 

  • Kontenis, L., Samim, M., Karunendiran, A., Krouglov, S., Stewart, B., & Barzda, V. (2016). Second harmonic generation double stokes Mueller polarimetric microscopy of myofilaments. Biomedical Optics Express, 7(5592), 559–569. https://doi.org/10.1364/BOE.7.000559

    Article  Google Scholar 

  • Kumar, R., Grønhaug, K. M., Romijn, E. I., Finnøy, A., Davies, C. L., Drogset, J. O., & Lilledahl, M. B. (2015). Polarization second harmonic generation microscopy provides quantitative enhanced molecular specificity for tissue diagnostics. Journal of Biophotonics, 8(9), 730–739. https://doi.org/10.1002/jbio.201400086

    Article  Google Scholar 

  • LaComb, R., Nadiarnykh, O., & Campagnola, P. J. (2008a). Quantitative second harmonic generation imaging of the diseased state Osteogenesis Imperfecta: Experiment and simulation. Biophysical Journal, 94(11), 4504–4514. https://doi.org/10.1529/biophysj.107.114405

    Article  ADS  Google Scholar 

  • LaComb, R., Nadiarnykh, O., Carey, S., & Campagnola, P. J. (2008b). Quantitative second harmonic generation imaging and modeling of the optical clearing mechanism in striated muscle and tendon. Journal of Biomedical Optics, 13(2), 021109. https://doi.org/10.1117/1.2907207

    Article  ADS  Google Scholar 

  • Latour, G., Gusachenko, I., Kowalczuk, L., Lamarre, I., & Schanne-Klein, M.-C. (2012). In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy. Biomedical Optics Express, 3(1), 1. https://doi.org/10.1364/boe.3.000001

    Article  Google Scholar 

  • Lien, C.-H., Tilbury, K., Chen, S.-J., & Campagnola, P. J. (2013). Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space. Biomedical Optics Express, 4(10), 1991–2002. https://doi.org/10.1364/BOE.4.001991

    Article  Google Scholar 

  • Lin, J., Pan, S., Zheng, W., & Huang, Z. (2013). Polarization-resolved second-harmonic generation imaging for liver fibrosis assessment without labeling. Applied Physics Letters, 103(17), 2–7. https://doi.org/10.1063/1.4826516

    Article  Google Scholar 

  • Lombardo, M., Merino, D., Loza-Alvarez, P., & Lombardo, G. (2015). Translational label-free nonlinear imaging biomarkers to classify the human corneal microstructure. Biomedical Optics Express, 6(8), 2803. https://doi.org/10.1364/boe.6.002803

    Article  Google Scholar 

  • Mansfield, J. C., Winlove, C. P., Moger, J., & Matcher, S. J. (2008). Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy. Journal of Biomedical Optics, 13(4), 044020. https://doi.org/10.1117/1.2950318

    Article  ADS  Google Scholar 

  • Mansfield, J. C., Mandalia, V., Toms, A., Peter Winlove, C., & Brasselet, S. (2019). Collagen reorganization in cartilage under strain probed by polarization sensitive second harmonic generation microscopy. Journal of the Royal Society Interface, 16(150), 20180611. https://doi.org/10.1098/rsif.2018.0611

    Article  Google Scholar 

  • Matteini, P., Cicchi, R., Ratto, F., Kapsokalyvas, D., Rossi, F., De Angelis, M., Pavone, F. S., & Pini, R. (2012). Thermal transitions of fibrillar collagen unveiled by second-harmonic generation microscopy of corneal stroma. Biophysical Journal, 103(6), 1179–1187. https://doi.org/10.1016/j.bpj.2012.07.055

    Article  ADS  Google Scholar 

  • Mazumder, N., & Kao, F.-J. (2021). Stokes polarimetry-based second harmonic generation microscopy for collagen and skeletal muscle fiber characterization. Lasers in Medical Science, 36, 1161–1167. https://doi.org/10.1007/s10103-020-03144-6

    Article  Google Scholar 

  • Mazumder, N., Qiu, J., Foreman, M. R., Macias-Romero, C., Hu, C.-W., Tsai, H.-R., Török, P., & Kao, F.-J. (2012). Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter. Optics Express, 20(13), 14090–14099. https://doi.org/10.1364/OE.20.014090

    Article  ADS  Google Scholar 

  • Mercatelli, R., Triulzi, T., Pavone, F. S., Orlandi, R., & Cicchi, R. (2020). Collagen ultrastructural symmetry and its malignant alterations in human breast cancer revealed by polarization-resolved second-harmonic generation microscopy. Journal of Biophotonics, 13(8), 1–7. https://doi.org/10.1002/jbio.202000159

    Article  Google Scholar 

  • Miler, I., Rabasovic, M. D., Aleksic, M., Krmpot, A. J., Kalezic, A., Jankovic, A., Korac, B., & Korac, A. (2021). Polarization-resolved SHG imaging as a fast screening method for collagen alterations during aging: Comparison with light and electron microscopy. Journal of Biophotonics, 14(3), 1–11. https://doi.org/10.1002/jbio.202000362

    Article  Google Scholar 

  • Mirsanaye, K., Golaraei, A., Habach, F., Žurauskas, E., Venius, J., Rotomskis, R., & Barzda, V. (2019). Polar organization of collagen in human cardiac tissue revealed with polarimetric second-harmonic generation microscopy. Biomedical Optics Express, 10(10), 5025. https://doi.org/10.1364/boe.10.005025

    Article  Google Scholar 

  • Mitchell, S. A., McAloney, R. A., Moffatt, D., Mora-Dieza, N., & Zgierski, M. Z. (2005). Second-harmonic generation optical activity of a polypeptide α-helix at the air/water interface. Journal of Chemical Physics, 122, 114707.

    Article  ADS  Google Scholar 

  • Mizutani, G., Sonoda, Y., Sano, H., Sakamoto, M., Takahashi, T., & Ushioda, S. (2000). Detection of starch granules in a living plant by optical second harmonic microscopy. Journal of Luminescence, 87–9, 824–826.

    Article  ADS  Google Scholar 

  • Monaghan, M. G., Kroll, S., Brucker, S. Y., & Schenke-Layland, K. (2016). Enabling multiphoton and second harmonic generation imaging in paraffin-embedded and histologically stained sections. Tissue Engineering – Part C: Methods, 22(6), 517–523. https://doi.org/10.1089/ten.tec.2016.0071

    Article  Google Scholar 

  • Mostaço-Guidolin, L. B., Osei, E. T., Ullah, J., Hajimohammadi, S., Fouadi, M., Li, X., Li, V., Shaheen, F., Yang, C. X., Chu, F., Cole, D. J., Brandsma, C. A., Heijink, I. H., Maksym, G. N., Walker, D., & Hackett, T. L. (2019). Defective fibrillar collagen organization by fibroblasts contributes to airway remodeling in asthma. American Journal of Respiratory and Critical Care Medicine, 200(4), 431–443. https://doi.org/10.1164/rccm.201810-1855OC

    Article  Google Scholar 

  • Nadiarnykh, O., & Campagnola, P. J. (2009). Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing. Optics Express, 17(7), 5794–5806. https://doi.org/10.1364/OE.17.005794

    Article  ADS  Google Scholar 

  • Nadiarnykh, O., LaComb, R., Campagnola, P. J., & Mohler, W. A. (2007). Coherent and incoherent SHG in fibrillar cellulose matrices. Optics Express, 15(6), 3348–3360.

    Article  ADS  Google Scholar 

  • Nadiarnykh, O., LaComb, R. B., Brewer, M. A., & Campagnola, P. J. (2010). Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy. BMC Cancer, 10(94), 1471–2407. https://doi.org/10.1186/1471-2407-10-94

    Article  Google Scholar 

  • Nucciotti, V., Stringari, C., Sacconi, L., Vanzi, F., Fusi, L., Linari, M., Piazzesi, G., Lombardi, V., & Pavone, F. S. (2010). Probing myosin structural conformation in vivo by second-harmonic generation microscopy. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7763–7768. https://doi.org/10.1073/pnas.0914782107

    Article  ADS  Google Scholar 

  • Odin, C., le Grand, Y., Renault, A., Gailhouste, L., & Baffet, G. (2008). Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy. Journal of Microscopy, 229, 32–38.

    Article  MathSciNet  Google Scholar 

  • Okoro, C., & Toussaint, K. C. (2017). Second-harmonic patterned polarization-analyzed reflection confocal microscope. Journal of Biomedical Optics, 22(8), 086007.

    Article  ADS  Google Scholar 

  • Okoro, C., Kelkar, V., Sivaguru, M., Emmadi, R., & Toussaint, K. C. (2018). Second-harmonic patterned polarization-analyzed reflection confocal microscopy of stromal collagen in benign and malignant breast tissues. Scientific Reports, 8, 16243. https://doi.org/10.1038/s41598-018-34693-0

    Article  ADS  Google Scholar 

  • Paesen, R., Sanen, K., Smisdom, N., Michiels, L., & Ameloot, M. (2014). Polarization second harmonic generation by image correlation spectroscopy on collagen type I hydrogels. Acta Biomaterialia, 10(5), 2036–2042. https://doi.org/10.1016/j.actbio.2014.01.011

    Article  Google Scholar 

  • Pena, A. M., Boulesteix, T., Dartigalongue, T., & Schanne-Klein, M. C. (2005). Chiroptical effects in the second harmonic signal of collagens I and IV. Journal of the American Chemical Society, 127(29), 10314–10322. https://doi.org/10.1021/ja0520969

    Article  Google Scholar 

  • Pendleton, E. G., Tehrani, K. F., Barrow, R. P., & Mortensen, L. J. (2020). Second harmonic generation characterization of collagen in whole bone. Biomedical Optics Express, 11(8), 4379–4396. https://doi.org/10.1364/BOE.391866

    Article  Google Scholar 

  • Petralli-Mallow, T., Wong, T. M., Byers, J. D., Yee, H. I., & Hicks, J. M. (1993). Circular dichroism spectroscopy at interfaces: A surface second harmonic generation study. The Journal of Physical Chemistry, 97. https://pubs.acs.org/sharingguidelines

  • Pinsard, M., Laverty, S., Richard, H., Dubuc, J., Schanne-Klein, M. C., & Légaré, F. (2019). Maturation of the meniscal collagen structure revealed by polarization-resolved and directional second harmonic generation microscopy. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-54942-0

  • Plotnikov, S. V., Millard, A. C., Campagnola, P. J., & Mohler, W. A. (2006). Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophysical Journal, 90(2), 693–703. https://doi.org/10.1529/biophysj.105.071555

    Article  ADS  Google Scholar 

  • Pouli, D., Genega, E. M., Sullivan, T. B., Rieger-Christ, K. M., Wright, V., Georgakoudi, I., & Schnelldorfer, T. (2019). Two-photon images reveal unique texture features for label-free identification of ovarian cancer peritoneal metastases. Biomedical Optics Express, 10(9), 4479. https://doi.org/10.1364/boe.10.004479

    Article  Google Scholar 

  • Psilodimitrakopoulos, S., Petegnief, V., Soria, G., Amat-Roldan, I., Artigas, D., Planas, A. M., & Loza-Alvarez, P. (2009). Estimation of the effective orientation of the SHG source in primary cortical neurons. Optics Express, 17(16), 14418–14425. http://www.opticsexpress.org/abstract.cfm?URI=oe-17-16-14418

    Article  ADS  Google Scholar 

  • Psilodimitrakopoulos, S., Petegnief, V., de Vera, N., Hernandez, O., Artigas, D., Planas, A. M., & Loza-Alvarez, P. (2013). Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons. Biophysical Journal, 104(5), 968–975. https://doi.org/10.1016/j.bpj.2013.01.020

    Article  ADS  Google Scholar 

  • Psilodimitrakopoulos, S., Loza-Alvarez, P., & Artigas, D. (2014). Fast monitoring of in-vivo conformational changes in myosin using single scan polarization-SHG microscopy. Biomedical Optics Express, 5(12), 4362–4373. https://doi.org/10.1364/BOE.5.004362

    Article  Google Scholar 

  • Radaelli, F., D’Alfonso, L., Collini, M., Mingozzi, F., Marongiu, L., Granucci, F., Zanoni, I., Chirico, G., & Sironi, L. (2017). μmAPPS: A novel phasor approach to second harmonic analysis for in vitro-in vivo investigation of collagen microstructure. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-17726-y

    Article  Google Scholar 

  • Raoux, C., Schmeltz, M., Bied, M., Alnawaiseh, M., Hansen, U., Latour, G., & Schanne-Klein, M.-C. (2021). Quantitative structural imaging of keratoconic corneas using polarization-resolved SHG microscopy. Biomedical Optics Express, 12(7), 4163–4178. https://doi.org/10.1364/boe.426145

    Article  Google Scholar 

  • Reiser, K., Stoller, P., & Knoesen, A. (2017). Three-dimensional geometry of collagenous tissues by second harmonic polarimetry. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-02326-7

    Article  Google Scholar 

  • Romijn, E. I., Finnøy, A., Kumar, R., & Lilledahl, M. B. (2018). Automated calibration and control for polarization-resolved second harmonic generation on commercial microscopes. PLoS One, 13(4). https://doi.org/10.1371/journal.pone.0195027

  • Romijn, E. I., Finnøy, A., & Lilledahl, M. B. (2019). Analyzing the feasibility of discriminating between collagen types I and II using polarization-resolved second harmonic generation. Journal of Biophotonics, 12(1). https://doi.org/10.1002/jbio.201800090

  • Roth, S., & Freund, I. (1979). Second harmonic generation in collagen. The Journal of Chemical Physics, 70(1979), 1637–1643. https://doi.org/10.1063/1.437677

    Article  ADS  Google Scholar 

  • Roth, S., & Freund, I. (1981). Optical second-harmonic scattering in rat-tail tendon. Biopolymers, 20(6), 1271–1290. https://doi.org/10.1002/bip.1981.360200613

    Article  Google Scholar 

  • Rouède, D., Bellanger, J.-J., Bomo, J., Baffet, G., & Tiaho, F. (2015). Linear least square (LLS) method for pixel-resolution analysis of polarization dependent SHG images of collagen fibrils. Optics Express, 23(10), 13309. https://doi.org/10.1364/oe.23.013309

    Article  ADS  Google Scholar 

  • Rouède, D., Schaub, E., Bellanger, J.-J., Ezan, F., Scimeca, J.-C., Baffet, G., & Tiaho, F. (2017). Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy. Scientific Reports, 7(12197), 1–12. https://doi.org/10.1038/s41598-017-12398-0

    Article  Google Scholar 

  • Rouède, D., Schaub, E., Bellanger, J.-J., Ezan, F., & Tiaho, F. (2020). Wavy nature of collagen fibrils deduced from the dispersion of their second-order nonlinear optical anisotropy parameters. Optics Express, 28(4), 4845–4858. https://doi.org/10.1364/OE.380089

    Article  ADS  Google Scholar 

  • Samim, M., Prent, N., Dicenzo, D., Stewart, B., & Barzda, V. (2014). Second harmonic generation polarization properties of myofilaments. Journal of Biomedical Optics, 19(5), 056005. https://doi.org/10.1117/1.JBO.19.5.056005

    Article  ADS  Google Scholar 

  • Samim, M., Krouglov, S., & Barzda, V. (2015). Double Stokes Mueller polarimetry of second-harmonic generation in ordered molecular structures. Journal of the Optical Society of America B, 32(3), 451. https://doi.org/10.1364/JOSAB.32.000451

    Article  ADS  Google Scholar 

  • Samim, M., Krouglov, S., & Barzda, V. (2016). Nonlinear Stokes-Mueller polarimetry. Physical Review A, 93(1), 013847. https://doi.org/10.1103/PhysRevA.93.013847

    Article  ADS  Google Scholar 

  • Sanen, K., Paesen, R., Luyck, S., Phillips, J., Lambrichts, I., Martens, W., & Ameloot, M. (2016). Label-free mapping of microstructural organisation in self-aligning cellular collagen hydrogels using image correlation spectroscopy. Acta Biomaterialia, 30, 258–264. https://doi.org/10.1016/j.actbio.2015.10.047

    Article  Google Scholar 

  • Santos, S. I. C. O., Mathew, M., Olarte, O. E., Psilodimitrakopoulos, S., & Loza-Alvarez, P. (2013). Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques. PLoS One, 8(3). https://doi.org/10.1371/journal.pone.0058600

  • Schmeltz, M., Teulon, C., Pinsard, M., Hansen, U., Alnawaiseh, M., Ghoubay, D., Borderie, V., Mosser, G., Aimé, C., Légaré, F., Latour, G., & Schanne-Klein, M.-C. (2020). Circular dichroism second-harmonic generation microscopy probes the polarity distribution of collagen fibrils. Optica, 7(11), 1469. https://doi.org/10.1364/optica.399246

    Article  ADS  Google Scholar 

  • Scodellaro, R., Bouzin, M., Mingozzi, F., D’Alfonso, L., Granucci, F., Collini, M., Chirico, G., Sironi, L., Ambekar, R., Lau, T.-Y., Walsh, M., Bhargava, R., Toussaint, K. C., Galli, R., Meinhardt, M., Koch, E., Schackert, G., Steiner, G., Kirsch, M., et al. (2019). Whole-section tumor micro-architecture analysis by a two-dimensional phasor-based approach applied to polarization-dependent second harmonic imaging. Frontiers in Oncology, 9(527), 1–14. https://doi.org/10.3389/fonc.2019.00527

    Article  Google Scholar 

  • Sharoukhov, D., & Lim, H. (2016). On probing conformation of microtubules by second-harmonic generation. Journal of Modern Optics, 63(1), 71–75. https://doi.org/10.1080/09500340.2015.1080866

    Article  ADS  Google Scholar 

  • Silva, D. F. T., Gomes, A. S. L., De Campos Vidal, B., & Ribeiro, M. S. (2013). Birefringence and second harmonic generation on tendon collagen following red linearly polarized laser irradiation. Annals of Biomedical Engineering, 41(4), 752–762. https://doi.org/10.1007/s10439-012-0720-3

    Article  Google Scholar 

  • Stoller, P., Kim, B. M., Rubenchik, A. M., Reiser, K. M., & da Silva, L. B. (2002a). Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. Journal of Biomedical Optics, 7(2), 205–214. https://doi.org/10.1117/1.1431967

    Article  ADS  Google Scholar 

  • Stoller, P., Reiser, K. M., Celliers, P. M., & Rubenchik, A. M. (2002b). Polarization-modulated second harmonic generation in collagen. Biophysical Journal, 82(6), 3330–3342. https://doi.org/10.1016/S0006-3495(02)75673-7

    Article  ADS  Google Scholar 

  • Stoller, P., Celliers, P. M., Reiser, K. M., & Rubenchik, A. M. (2003). Quantitative second-harmonic generation microscopy in collagen. Applied Optics, 42(25), 5209–5219. https://doi.org/10.1364/AO.42.005209

    Article  ADS  Google Scholar 

  • Su, P. J., Chen, W. L., Chen, Y. F., & Dong, C. Y. (2011). Determination of collagen nanostructure from second-order susceptibility tensor analysis. Biophysical Journal, 100(8), 2053–2062. https://doi.org/10.1016/j.bpj.2011.02.015

    Article  ADS  Google Scholar 

  • Suhalim, J. L., Chung, C. Y., Lilledahl, M. B., Lim, R. S., Levi, M., Tromberg, B. J., & Potma, E. O. (2012). Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy. Biophysical Journal, 102(8), 1988–1995. https://doi.org/10.1016/j.bpj.2012.03.016

    Article  ADS  Google Scholar 

  • Tanaka, Y., Hase, E., Fukushima, S., Ogura, Y., Yamashita, T., Hirao, T., Araki, T., & Yasui, T. (2014). Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin. Biomedical Optics Express, 5(4), 1099–1113. https://doi.org/10.1364/boe.5.001099

    Article  Google Scholar 

  • Tiaho, F., Recher, G., & Rouède, D. (2007). Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy. Optics Express, 15(19), 12286–12295. https://doi.org/10.1364/OE.15.012286

    Article  ADS  Google Scholar 

  • Tilbury, K., Lien, C.-H., Chen, S.-J., & Campagnola, P. J. (2014). Differentiation of Col I and Col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality. Biophysical Journal, 106(2). https://doi.org/10.1016/j.bpj.2013.10.044

  • Tokarz, D., Cisek, R., El-Ansari, O., Espie, G. S., Fekl, U., & Barzda, V. (2014a). Organization of astaxanthin within oil bodies of Haematococcus pluvialis studied with polarization-dependent harmonic generation microscopy. PLoS One, 9(9), e107804. https://doi.org/10.1371/journal.pone.0107804

    Article  ADS  Google Scholar 

  • Tokarz, D., Cisek, R., Krouglov, S., Kontenis, L., Fekl, U., & Barzda, V. (2014b). Molecular organization of crystalline β-carotene in carrots determined with polarization-dependent second and third harmonic generation microscopy. Journal of Physical Chemistry B, 118(14), 3814–3822. https://doi.org/10.1021/jp411387p

    Article  Google Scholar 

  • Tokarz, D., Cisek, R., Golaraei, A., Asa, S. L., Barzda, V., & Wilson, B. C. (2015). Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy. Biomedical Optics Express, 6(9), 3475–3481. https://doi.org/10.1364/BOE.6.003475

    Article  Google Scholar 

  • Tokarz, D., Cisek, R., Joseph, A., Golaraei, A., Mirsanaye, K., Krouglov, S., Asa, S. L., Wilson, B. C., & Barzda, V. (2019). Characterization of pancreatic cancer tissue using multiphoton excitation fluorescence and polarization-sensitive harmonic generation microscopy. Frontiers in Oncology, 9(272), 1–10. https://doi.org/10.3389/fonc.2019.00272

    Article  Google Scholar 

  • Tokarz, D., Cisek, R., Joseph, A., Asa, S. L., Wilson, B. C., & Barzda, V. (2020). Characterization of pathological thyroid tissue using polarization-sensitive second harmonic generation microscopy. Laboratory Investigation, 100, 1280–1287. https://doi.org/10.1038/s41374-020-0475-7

    Article  Google Scholar 

  • Tsafas, V., Gavgiotaki, E., Tzardi, M., Tsafa, E., Fotakis, C., Athanassakis, I., & Filippidis, G. (2020). Polarization-dependent second-harmonic generation for collagen-based differentiation of breast cancer samples. Journal of Biophotonics, 13(10), 1–10. https://doi.org/10.1002/jbio.202000180

    Article  Google Scholar 

  • Tuer, A. E., Krouglov, S., Prent, N., Cisek, R., Sandkuijl, D., Yasufuku, K., Wilson, B. C., & Barzda, V. (2011). Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy. The Journal of Physical Chemistry. B, 115(44), 12759–12769. https://doi.org/10.1021/jp206308k

    Article  Google Scholar 

  • Tuer, A. E., Akens, M. K., Krouglov, S., Sandkuijl, D., Wilson, B. C., Whyne, C. M., & Barzda, V. (2012). Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue. Biophysical Journal, 103(10), 2093–2105. https://doi.org/10.1016/j.bpj.2012.10.019

    Article  ADS  Google Scholar 

  • Williams, R. M., Zipfel, W. R., & Webb, W. W. (2005). Interpreting second-harmonic generation images of collagen I fibrils. Biophysical Journal, 88(2), 1377–1386. https://doi.org/10.1529/biophysj.104.047308

    Article  ADS  Google Scholar 

  • Winters, D. G., Smith, D. R., Schlup, P., & Bartels, R. A. (2012). Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope. Biomedical Optics Express, 3(9), 2004–2011.

    Article  Google Scholar 

  • Xydias, D., Ziakas, G., Psilodimitrakopoulos, S., Lemonis, A., Bagli, E., Fotsis, T., Gravanis, A., Tzeranis, D. S., & Stratakis, E. (2021). Three-dimensional characterization of collagen remodeling in cell-seeded collagen scaffolds via polarization second harmonic generation. Biomedical Optics Express, 12(2), 1136. https://doi.org/10.1364/boe.411501

    Article  Google Scholar 

  • Yasui, T., Takahashi, Y., Fukushima, S., Ogura, Y., Yamashita, T., Kuwahara, T., Hirao, T., & Araki, T. (2009). Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy. Optics Express, 17(2), 912–923. https://doi.org/10.1364/oe.17.000912

    Article  ADS  Google Scholar 

  • Yuan, C., Wang, Z., Borg, T. K., Ye, T., Baicu, C., Bradshaw, A., Zile, M., Runyan, R. B., Shao, Y., & Gao, B. Z. (2019). Changes in the crystallographic structures of cardiac myosin filaments detected by polarization-dependent second harmonic generation microscopy. Biomedical Optics Express, 10(7), 3183. https://doi.org/10.1364/boe.10.003183

    Article  Google Scholar 

  • Yuan, C., Zhao, X., Wang, Z., Borg, T. K., Ye, T., Khalpey, Z. I., Runyan, R. B., Shao, Y., & Gao, B. Z. (2020). Study of the expression transition of cardiac myosin using polarization-dependent SHG microscopy. Biophysical Journal, 118(5), 1058–1066. https://doi.org/10.1016/j.bpj.2019.12.030

    Article  ADS  Google Scholar 

  • Zhao, H., Cisek, R., Karunendiran, A., Tokarz, D., Stewart, B. A., & Barzda, V. (2019). Live imaging of contracting muscles with wide-field second harmonic generation microscopy using a high power laser. Biomedical Optics Express, 10(10). https://doi.org/10.1364/BOE.10.005130

Download references

Acknowledgements

This book chapter was supported by the Natural Science and Engineering Research Council of Canada (NSERC) Discovery Grants Program (RGPIN-2018-05444), Canada’s Research Support Fund, and Saint Mary’s University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Tokarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cisek, R., Harvey, M., Bennett, E., Jeon, H., Tokarz, D. (2023). Polarization-Resolved SHG Microscopy for Biomedical Applications. In: Mazumder, N., Kistenev, Y.V., Borisova, E., Prasada K., S. (eds) Optical Polarimetric Modalities for Biomedical Research. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-31852-8_9

Download citation

Publish with us

Policies and ethics