Skip to main content

Advertisement

Log in

Second Harmonic Generation Imaging Distinguishes Both High-Grade Dysplasia and Cancer from Normal Colonic Mucosa

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aim

Second harmonic generation (SHG) is a novel imaging technology that could provide optical biopsy during endoscopy with advantages over current technology. SHG has the unique ability to evaluate the amount of extracellular matrix collagen protein and its alignment.

Methods

Hematoxylin- and eosin-stained slides from colon biopsies (normal, low-grade dysplasia (LGD), high-grade dysplasia (HGD), and cancer) were examined with SHG imaging. Both signal intensity and collagen fiber alignment were measured. Average intensity per pixel (AIPP) was obtained, and an analyzing polarizer was used to calculate β, an alignment parameter.

Results

The mean AIPP for normal mucosa was 48, LGD was 38, HGD was 42, and malignancy was 123 (p < 0.01). The AIPP ROC curve between malignant versus non-malignant tissue was 0.96 (0.93–0.99). An AIPP value of 60 can differentiate malignancy with 87 % sensitivity and 90 % specificity. The mean β for normal tissue was 0.490, LGD was 0.379, HGD was 0.345, and cancer was 0.453 (p = 0.013), with a normal tissue mean rank of 6.5 compared to 2.5 for HGD (p = 0.029).

Conclusions

SHG signal intensity can differentiate malignant from non-malignant colonic polyp tissue with high sensitivity and specificity. Anisotropic polarization can discern HGD from normal colonic polyp tissue. SHG can thus distinguish both HGD and malignant lesions in an objective numeric fashion, without contrast agents or interpretation skills. SHG could be incorporated into endoscopy equipment to enhance white light endoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brkic T, Kalauz M, Ostojic R. Novel endoscopic optical techniques for the detection of early gastrointestinal neoplasia. Lijec Vjesn. 2009;131:69–73.

    PubMed  Google Scholar 

  2. Monkemuller K, Neumann H, Fry LC. Enteroscopy: advances in diagnostic imaging. Best Pract Res Clin Gastroenterol. 2012;26:221–233.

    Article  PubMed  Google Scholar 

  3. Aisenberg J. Gastrointestinal endoscopy nears “the molecular era”. Gastrointest Endosc. 2008;68:528–530.

    Article  PubMed  Google Scholar 

  4. ASGE Technology Committee, Kantsevoy SV, Adler DG, et al. Confocal laser endomicroscopy. Gastrointest Endosc. 2009;70:197–200.

    Article  PubMed  Google Scholar 

  5. Saftoiu A, Vilman P. Endoscopic ultrasound elastography—a new imaging technique for the visualization of tissue elasticity distribution. J Gastrointestin Liver Dis. 2006;15:161–165.

    PubMed  Google Scholar 

  6. Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J. 2002;82:493–508.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wang M, Reiser KM, Knoesen A. Spectral moment invariant analysis of disorder in polarization-modulated second-harmonic-generation images obtained from collagen assemblies. J Opt Soc Am A Opt Image Sci Vis. 2007;24:3573–3586.

    Article  PubMed  Google Scholar 

  8. Cox G, Kable E, Jones A, Fraser I, Manconi F, Gorrell MD. 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol. 2003;141:53–62.

    Article  CAS  PubMed  Google Scholar 

  9. Han M, Giese G, Bille JF. Second harmonic generation imaging of collagen fibrils in cornea and sciera. Opt Express. 2005;13:5791–5797.

    Article  CAS  PubMed  Google Scholar 

  10. Nadiarnykh O, LaComb RB, Brewer MA, Campagnola PJ. Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy. BMC Cancer. 2010;10:94.

    Google Scholar 

  11. Ajeti V, Nadiarnykh O, Ponik SM, Keely PJ, Eliceiri KW, Campagnola PJ. Structural changes in mixed col I/Col V collagen gels probed by SHG microscopy: implications for probing stromal alterations in human breast cancer. Biomed Opt Express. 2011;2:2307–2316.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Débarre D, Supatto W, Pena A, et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods. 2006;3:47–53.

    Article  PubMed  Google Scholar 

  13. Deniset-Besseau A, Duboisse J, Benkhou E, Hache F, Brevet P, Schanne-Klein M. Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin. J Phys Chem B. 2009;113:13437–13445.

    Article  CAS  PubMed  Google Scholar 

  14. Han M, Zickler L, Giese G, Walter M, Loesel FH, Bille JF. Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation. J Biomed Opt. 2004;9:760–766.

    Article  PubMed  Google Scholar 

  15. Lacomb R, Nadiarnykh O, Campagnola PJ. Quantitative SHG imaging of the diseased state osteogenesis imperfecta: experiment and simulation. Biophys J. 2008;94:4104.

    Google Scholar 

  16. Lin S, Jee S, Kuo C, et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett. 2006;31:2756–2758.

    Article  PubMed  Google Scholar 

  17. Matteini P, Ratto F, Rossi F, et al. Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging. Opt Express. 2009;17:4868–4878.

    Article  CAS  PubMed  Google Scholar 

  18. Nadiarnykh O, Plotnikov S, Mohler WA, Kalajzic I, Redford-Badwal D, Campagnola PJ. Second harmonic generation imaging microscopy studies of osteogenesis imperfecta. J Biomed Opt. 2007;12:051805.

    Google Scholar 

  19. Plotnikov S, Juneja V, Isaacson AB, Mohler WA, Campagnola PJ. Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophys J. 2006;90:328–339.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4:38.

    Google Scholar 

  21. Strupler M, Pena A, Hernest M, et al. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express. 2007;15:4054–4065.

    Article  CAS  PubMed  Google Scholar 

  22. Sun W, Chang S, Tai DCS, et al. Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies. J Biomed Opt. 2008;13:064010.

    Google Scholar 

  23. Tai S, Tsai T, Lee W, et al. Optical biopsy of fixed human skin with backward-collected optical harmonics signals. Opt Express. 2005;13:8231–8242.

    Article  PubMed  Google Scholar 

  24. Tan H-, Sun Y, Lo W, et al. Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo. Invest Ophthalmol Vis Sci. 2006;47:5251–5259.

    Article  PubMed  Google Scholar 

  25. Theodossiou TA, Thrasivoulou C, Ekwobi C, Becker DL. Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections. Biophys J. 2006;91:4665–4677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Williams RM, Zipfel WR, Webb WW. Interpreting second-harmonic generation images of collagen I fibrils. Biophys J. 2005;88:1377–1386.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yeh AT, Choi B, Nelson JS, Tromberg BJ. Reversible dissociation of collagen in tissues. J Invest Dermatol. 2003;121:1332–1335.

    Article  CAS  PubMed  Google Scholar 

  28. Brown E, McKee T, diTomaso E, et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med. 2003;9:796–800.

    Article  CAS  PubMed  Google Scholar 

  29. Cicchi R, Massi D, Sestini S, et al. Multidimensional non-linear laser imaging of basal cell carcinoma. Opt Express. 2007;15:10135–10148.

    Article  CAS  PubMed  Google Scholar 

  30. Campagnola P. Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem. 2011;83:3224–3231.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shen Y. The Principles of Nonlinear Optics. New York: Wiley-Interscience; 1984.

    Google Scholar 

  32. Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol. 2003;21:1356–1360.

    Article  CAS  PubMed  Google Scholar 

  33. Odin C, Le Grand Y, Renault A, Gailhouste L, Baffet G. Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy. J Microsc. 2008;229:32–38.

    Article  CAS  PubMed  Google Scholar 

  34. Ricciardelli C, Rodgers RJ. Extracellular matrix of ovarian tumors. Semin Reprod Med. 2006;24:270–282.

    Article  CAS  PubMed  Google Scholar 

  35. Pupa SM, Menard S, Forti S, Tagliabue E. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol. 2002;192:259–267.

    Article  CAS  PubMed  Google Scholar 

  36. Theret N, Musso O, Turlin B, et al. Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas. Hepatology. 2001;34:82–88.

    Article  CAS  PubMed  Google Scholar 

  37. Huang S, Van Arsdall M, Tedjarati S, et al. Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst. 2002;94:1134–1142.

    Article  CAS  PubMed  Google Scholar 

  38. Hugo H, Ackland ML, Blick T, et al. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213:374–383.

    Article  CAS  PubMed  Google Scholar 

  39. Provenzano PP, Inman DR, Eliceiri KW, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.

    Google Scholar 

  40. Freund I, Deutsch M, Sprecher A. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J. 1986;50:693–712.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Cicchi R, Kapsokalyvas D, De Giorgi V, et al. Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy. J Biophotonics. 2010;3:34–43.

    Article  CAS  PubMed  Google Scholar 

  42. LaComb R, Nadiarnykh O, Townsend SS, Campagnola PJ. Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt Commun. 2008;281:1823–1832.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Plotnikov SV, Millard AC, Campagnola PJ, Mohler WA. Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys J. 2006;90:693–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zhuo S, Zhu X, Wu G, Chen J, Xie S. Quantitative biomarkers of colonic dysplasia based on intrinsic second-harmonic generation signal. J Biomed Opt. 2011;16:120501.

    Article  PubMed  Google Scholar 

  45. Zhuo S, Yan J, Chen G, et al. Label-free imaging of basement membranes differentiates normal, precancerous, and cancerous colonic tissues by second-harmonic generation microscopy. PLoS One. 2012;7:e38655.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Amy Pallotti (UConn Health Center) for her assistance with formatting and submitting the article.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Birk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birk, J.W., Tadros, M., Moezardalan, K. et al. Second Harmonic Generation Imaging Distinguishes Both High-Grade Dysplasia and Cancer from Normal Colonic Mucosa. Dig Dis Sci 59, 1529–1534 (2014). https://doi.org/10.1007/s10620-014-3121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3121-7

Keywords

Navigation