Skip to main content

High-Intensity Interval Training and Resistance Training for Endurance Athletes

  • Chapter
  • First Online:
Endurance Sports Medicine

Abstract

Endurance performance is characterized by numerous physiological and neuromuscular factors. In order to maximize training adaptations in well-trained and elite athletes and, thereby, improve endurance performance, athletes in various sports use high-intensity training (HIT) and strength training to enhance their performance. In this chapter, we highlight the importance of HIT and strength training on the endurance capacity by summarizing the current evidence. Furthermore, ready-to-use recommendations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For further dissection of the contributors to the VO2max, the reader is referred to a review by Lundby, Montero, and Joyner, Acta Physiol 2017, 220, 218–228.

  2. 2.

    N.B. “economy” and “efficiency” are often used synonymously. Nonetheless, economy refers to the relationship between oxygen consumption and movement speed/power, while efficiency circumscribes the ratio between the mechanical energy and the energy cost of exercise (Hackney, 2018).

  3. 3.

    The time in zone approach uses the time spend in the respective intensity zones based on heart rate or power, while the session goal approach categorizes sessions into a single intensity zone based on the predetermined “goal.”

  4. 4.

    High-intensity interval training (HIIT) and sprint interval training (SIT) are both part of training in the high-intensity zone (HIT) but can be distinguished by certain characteristics. In HIIT, the work-to-rest ratio is kept >1, whereas SIT comprises of all-out performances between 15 and 30 seconds with a work-to-rest ratio of <1.

References

  1. Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29:218–22. https://doi.org/10.1046/j.1440-1681.2002.03623.x.

    Article  CAS  PubMed  Google Scholar 

  2. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014;159(4):738–49.

    Article  CAS  PubMed  Google Scholar 

  3. Lepers R, Knechtle B, Stapley PJ. Trends in triathlon performance: effects of sex and age. Sports Med. 2013;43(9):851–63.

    Article  PubMed  Google Scholar 

  4. Millet GY, Tomazin K, Verges S, et al. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One. 2011;6(2):e17059. https://doi.org/10.1371/journal.pone.0017059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84. https://doi.org/10.1097/00005768-200001000-00012.

    Article  PubMed  Google Scholar 

  6. Saltin B, Astrand PO. Maximal oxygen uptake in athletes. J Appl Physiol. 1967;23(3):353–8. https://doi.org/10.1152/jappl.1967.23.3.353.

    Article  CAS  PubMed  Google Scholar 

  7. Milanović Z, Sporiš G, Weston M. Effectiveness of High-Intensity Interval Training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–81.

    Article  PubMed  Google Scholar 

  8. Hagerman FC, David Lee W. Measurement of oxygen consumption, heart rate, and work output during rowing. Med Sci Sports Exerc. 1971;3(4):155–60. https://doi.org/10.1249/00005768-197100340-00003.

    Article  CAS  Google Scholar 

  9. Larsen HB. Kenyan dominance in distance running. Comp Biochem Physiol - A Mol Integr Physiol. 2003;136(1):161–70.

    Article  PubMed  Google Scholar 

  10. Lundby C, Montero D, Joyner M. Biology of VO2max: looking under the physiology lamp. Acta Physiol. 2017;220(2):218–28.

    Article  CAS  Google Scholar 

  11. Martin WH, Coyle EF, Bloomfield SA, Ehsani AA. Effects of physical deconditioning after Intense endurance training on left ventricular dimensions and stroke volume. J Am Coll Cardiol. 1986;7(5):982–9. https://doi.org/10.1016/S0735-1097(86)80215-7.

    Article  PubMed  Google Scholar 

  12. Montero D, Díaz-Cañestro C. Endurance training and maximal oxygen consumption with ageing: Role of maximal cardiac output and oxygen extraction. Eur J Prev Cardiol. 2016;23:733–43. https://doi.org/10.1177/2047487315617118.

    Article  PubMed  Google Scholar 

  13. Montero D, Diaz-Cañestro C, Lundby C. Endurance training and V O2max: role of maximal cardiac output and oxygen extraction. Med Sci Sports Exerc. 2015b;47(10):2024–33.

    Article  CAS  PubMed  Google Scholar 

  14. Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol. 2016;101:17–22. https://doi.org/10.1113/EP085319.

    Article  CAS  PubMed  Google Scholar 

  15. Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29(6):373–86.

    Article  CAS  PubMed  Google Scholar 

  16. Morgan DW, Baldini FD, Martin PE, Kohrt WM. Ten kilometer performance and predicted velocity at VO2max among well-trained male runners. Med Sci Sports Exerc. 1989;21:78–83. https://doi.org/10.1249/00005768-198902000-00014.

    Article  CAS  PubMed  Google Scholar 

  17. Morgan DW, Craib M. Physiological aspects of running economy. Med Sci Sports Exerc. 1992;24(4):456–61. https://doi.org/10.1249/00005768-199204000-00011.

    Article  CAS  PubMed  Google Scholar 

  18. Thomason H, Thomason H, Roberts E. Fractional utilization of the aerobic capacity during distance running. Med Sci Sports Exerc. 1973;5(4):248–52. https://doi.org/10.1249/00005768-197300540-00007.

    Article  Google Scholar 

  19. Krahenbuhl GS, Pangrazi RP. Characteristics associated with running performance in young boys. Med Sci Sports Exerc. 1983;15:486–90. https://doi.org/10.1249/00005768-198315060-00008.

    Article  CAS  PubMed  Google Scholar 

  20. Bell PG, Furber MJW, Van Someren KA, et al. The physiological profile of a multiple tour de france winning cyclist. Med Sci Sports Exerc. 2017;49:115–23. https://doi.org/10.1249/MSS.0000000000001068.

    Article  PubMed  Google Scholar 

  21. Shaw AJ, Ingham SA, Fudge BW, Folland JP. The reliability of running economy expressed as oxygen cost and energy cost in trained distance runners. Appl Physiol Nutr Metab. 2013;38(12):1268–72. https://doi.org/10.1139/apnm-2013-0055.

    Article  PubMed  Google Scholar 

  22. Zamparo P, Bonifazi M, Faina M, et al. Energy cost of swimming of elite long-distance swimmers. Eur J Appl Physiol. 2005;94(5-6):697–704. https://doi.org/10.1007/s00421-005-1337-0.

    Article  CAS  PubMed  Google Scholar 

  23. Bosco C, Montanari G, Ribacchi R, et al. Relationship between the efficiency of muscular work during jumping and the energetics of running. Eur J Appl Physiol Occup Physiol. 1987;56:138–43. https://doi.org/10.1007/BF00640636.

    Article  CAS  PubMed  Google Scholar 

  24. Coyle EF, Sidossis LS, Horowitz JF, Beltz JD. Cycling efficiency is related to the percentage of Type I muscle fibers. Med Sci Sports Exerc. 1992;24(7):782–8. https://doi.org/10.1249/00005768-199207000-00008.

    Article  CAS  PubMed  Google Scholar 

  25. Foster C, Costill DL, Daniels JT, Fink WJ. Skeletal muscle enzyme activity, fiber composition and {Mathematical expression}O2 max in relation to distance running performance. Eur J Appl Physiol Occup Physiol. 1978;39:73–80. https://doi.org/10.1007/BF00421711.

    Article  CAS  PubMed  Google Scholar 

  26. Howald H, Hoppeler H, Claassen H, et al. Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch - Eur J Physiol. 1985;403(4):369–76. https://doi.org/10.1007/BF00589248.

    Article  CAS  Google Scholar 

  27. Jansson E, Sjödin B, Tesch P. Changes in muscle fibre type distribution in man after physical training: a sign of fibre type transformation? Acta Physiol Scand. 1978;104:235–7. https://doi.org/10.1111/j.1748-1716.1978.tb06272.x.

    Article  CAS  PubMed  Google Scholar 

  28. Montero D, Cathomen A, Jacobs RA, et al. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. J Physiol. 2015a;593(20):4677–88. https://doi.org/10.1113/JP270250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:831–8. https://doi.org/10.1152/jappl.1984.56.4.831.

    Article  CAS  PubMed  Google Scholar 

  30. Ørtenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013;591(18):4405–13.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dandanell S, Meinild-Lundby AK, Andersen AB, et al. Determinants of maximal whole-body fat oxidation in elite cross-country skiers: Role of skeletal muscle mitochondria. Scand J Med Sci Sports. 2018;28(12):2494–504. https://doi.org/10.1111/sms.13298.

    Article  PubMed  Google Scholar 

  32. Millet GY, Temesi J. Neural adaptations to endurance training. In: Concurrent aerobic and strength training. Berlin/Heidelberg, Germany: Springer; 2019.

    Google Scholar 

  33. Taylor JL, Amann M, Duchateau J, et al. Neural contributions to muscle fatigue: From the brain to the muscle and back again. Med Sci Sports Exerc. 2016;48(11):2294–306. https://doi.org/10.1249/MSS.0000000000000923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2(9):817–28.

    Article  CAS  PubMed  Google Scholar 

  35. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity-from gene to form and function. In: Amara SG, Bamberg E, Blaustein MP, et al., editors. Reviews of physiology, biochemistry and pharmacology, vol. 146; 2003. p. 159–216.

    Chapter  Google Scholar 

  36. Millet GY, Martin V, Lattier G, Ballay Y. Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol. 2003;94(1):193–8. https://doi.org/10.1152/japplphysiol.00600.2002.

    Article  CAS  PubMed  Google Scholar 

  37. Doma K, Deakin GB, Bentley DJ. Implications of impaired endurance performance following single bouts of resistance training: an alternate concurrent training perspective. Sports Med. 2017;47:2187–200. https://doi.org/10.1007/s40279-017-0758-3.

    Article  PubMed  Google Scholar 

  38. Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5:276–91. https://doi.org/10.1123/ijspp.5.3.276.

    Article  PubMed  Google Scholar 

  39. Esteve-Lanao J, Foster C, Seiler S, Lucia A. Impact of training intensity distribution on performance in endurance athletes. J Strength Cond Res. 2007;21:943–9. https://doi.org/10.1519/R-19725.1.

    Article  PubMed  Google Scholar 

  40. Kenneally M, Casado A, Gomez-Ezeiza J, Santos-Concejero J. Training intensity distribution analysis by race pace vs. physiological approach in world-class middle- and long-distance runners. Eur J Sport Sci. 2021;21:819–26. https://doi.org/10.1080/17461391.2020.1773934.

    Article  PubMed  Google Scholar 

  41. Sanders D, Myers T, Akubat I. Training-Intensity distribution in road cyclists: Objective versus subjective measures. Int J Sports Physiol Perform. 2017;12(9):1232–7. https://doi.org/10.1123/ijspp.2016-0523.

    Article  PubMed  Google Scholar 

  42. Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):49–56. https://doi.org/10.1111/j.1600-0838.2004.00418.x.

    Article  PubMed  Google Scholar 

  43. Stöggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014a;5:33. https://doi.org/10.3389/fphys.2014.00033.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295. https://doi.org/10.3389/fphys.2015.00295.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sandbakk O, Holmberg HC, Leirdal S, Ettema G. The physiology of world-class sprint skiers. Scand J Med Sci Sports. 2011;21:e9–e16. https://doi.org/10.1111/j.1600-0838.2010.01117.x.

    Article  CAS  PubMed  Google Scholar 

  46. Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart-rate variability and training-intensity distribution in Elite rowers. Int J Sports Physiol Perform. 2014;9(6):1026–32. https://doi.org/10.1123/ijspp.2013-0497.

    Article  PubMed  Google Scholar 

  47. Lucia A, Hoyos J, Pardo J, Chichiarro JL. Metabolic and neuromuscular adaptations to endurance training in professional cyclists: a longitudinal study. Jpn J Physiol. 2000;50(3):381–8. https://doi.org/10.2170/jjphysiol.50.381.

    Article  CAS  PubMed  Google Scholar 

  48. Sylta Ø, Tønnessen E, Seiler S. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis. Int J Sports Physiol Perform. 2014;9:100–7. https://doi.org/10.1123/IJSPP.2013-0298.

    Article  PubMed  Google Scholar 

  49. Tnønessen E, Sylta Ø, Haugen TA, et al. The road to gold: Training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS One. 2014;9:e101796. https://doi.org/10.1371/journal.pone.0101796.

    Article  CAS  Google Scholar 

  50. Solli GS, Tønnessen E, Sandbakk Ø. The training characteristics of the world’s most successful female cross-country skier. Front Physiol. 2017;8:1069. https://doi.org/10.3389/fphys.2017.01069.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Talsnes RK, van den Tillaar R, Sandbakk Ø. Effects of increased load of low-versus high-intensity endurance training on performance and physiological adaptations in endurance athletes. Int J Sports Physiol Perform. 2021;17(2):216–25. https://doi.org/10.1123/ijspp.2021-0190.

    Article  PubMed  Google Scholar 

  52. Koral J, Oranchuk DJ, Herrera R, Millet GY. Six sessions of sprint interval training improves running performance in trained athletes. J Strength Cond Res. 2018;32:617. https://doi.org/10.1519/jsc.0000000000002286.

    Article  PubMed  Google Scholar 

  53. Rosenblat MA, Perrotta AS, Thomas SG. Effect of high-intensity interval training versus sprint interval training on time-trial performance: a systematic review and meta-analysis. Sports Med. 2020;50:1145–61. https://doi.org/10.1007/s40279-020-01264-1.

    Article  PubMed  Google Scholar 

  54. Almquist NW, Løvlien I, Byrkjedal PT, et al. Effects of including sprints in one weekly low-intensity training session during the transition period of elite cyclists. Front Physiol. 2020;11:1000. https://doi.org/10.3389/fphys.2020.01000.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Valstad S, von Heimburg E, Welde B, van den Tillaar R. Comparison of long and short high-intensity interval exercise bouts on running performance, physiological and perceptual responses. Sport Med Int Open. 2018;2:E20–7. https://doi.org/10.1055/s-0043-124429.

    Article  Google Scholar 

  56. Stepto NK, Hawley JA, Dennis SC, Hopkins WG. Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc. 1999;31:746–1. https://doi.org/10.1097/00005768-199905000-00018.

    Article  Google Scholar 

  57. Westgarth-Taylor C, Hawley JA, Rickard S, et al. Metabolic and performance adaptations to interval training in endurance-trained cyclists. Eur J Appl Physiol Occup Physiol. 1997;75(4):298–304. https://doi.org/10.1007/s004210050164.

    Article  CAS  PubMed  Google Scholar 

  58. Weston AR, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol. 1996;75(1):7–13. https://doi.org/10.1007/s004210050119.

    Article  Google Scholar 

  59. Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc. 1997;29:837–43. https://doi.org/10.1097/00005768-199706000-00016.

    Article  CAS  PubMed  Google Scholar 

  60. Muñoz I, Seiler S, Bautista J, et al. Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform. 2014;9:265–72. https://doi.org/10.1123/IJSPP.2012-0350.

    Article  PubMed  Google Scholar 

  61. Hughes DC, Ellefsen S, Baar K. Adaptations to endurance and strength training. Cold Spring Harb Perspect Med. 2018;8:a029769. https://doi.org/10.1101/cshperspect.a029769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochim. Biophys. Acta-Gen. Subj. 2014;1840(4):1266–75.

    Article  CAS  Google Scholar 

  63. Hellsten Y, Nyberg M. Cardiovascular adaptations to exercise training. Compr Physiol. 2016;6:1–32. https://doi.org/10.1002/cphy.c140080.

    Article  Google Scholar 

  64. Daussin FN, Ponsot E, Dufour SP, et al. Improvement of V̇O2max by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol. 2007;101:377–83. https://doi.org/10.1007/s00421-007-0499-3.

    Article  PubMed  Google Scholar 

  65. Helgerud J, Høydal K, Wang E, et al. Aerobic high-intensity intervals improve V̇O2max more than moderate training. Med Sci Sports Exerc. 2007;39:665–71. https://doi.org/10.1249/mss.0b013e3180304570.

    Article  PubMed  Google Scholar 

  66. Lepretre PM, Koralsztein JP, Billat VL. Effect of exercise intensity on relationship between V̇O2max and cardiac output. Med Sci Sports Exerc. 2004;36(8):1357–63. https://doi.org/10.1249/01.MSS.0000135977.12456.8F.

    Article  PubMed  Google Scholar 

  67. Granata C, Oliveira RSF, Little JP, et al. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB J. 2016;30:3413–23. https://doi.org/10.1096/fj.201500100R.

    Article  CAS  PubMed  Google Scholar 

  68. Serpiello FR, McKenna MJ, Bishop DJ, et al. Repeated sprints alter signaling related to mitochondrial biogenesis in humans. Med Sci Sports Exerc. 2012;44:827–34. https://doi.org/10.1249/MSS.0b013e318240067e.

    Article  CAS  PubMed  Google Scholar 

  69. Altenburg TM, Degens H, Van Mechelen W, et al. Recruitment of single muscle fibers during submaximal cycling exercise. J Appl Physiol. 2007;103:1752–6. https://doi.org/10.1152/japplphysiol.00496.2007.

    Article  CAS  PubMed  Google Scholar 

  70. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.

    Article  CAS  PubMed  Google Scholar 

  71. Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57. https://doi.org/10.1113/jphysiol.1974.sp010639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Russell AP, Feilchenfeldt J, Schreiber S, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle. Diabetes. 2003;52:2874–81. https://doi.org/10.2337/diabetes.52.12.2874.

    Article  CAS  PubMed  Google Scholar 

  73. Hamilton MT, Booth FW. Skeletal muscle adaptation to exercise: A century of progress. J Appl Physiol. 2000;88(1):327–31.

    Article  CAS  PubMed  Google Scholar 

  74. Chwalbińska-Moneta J, Kaciuba-Uściłko H, Krysztofiak H, et al. Relationship between EMG, blood lactate, and plasma catecholamine thresholds during graded exercise in men. J Physiol Pharmacol. 1998;49(3):433–41.

    PubMed  Google Scholar 

  75. Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc. 2007;39(8):1366–73. https://doi.org/10.1249/mss.0b013e318060f17d.

    Article  PubMed  Google Scholar 

  76. Neal CM, Hunter AM, Brennan L, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol. 2013;114(4):461–71. https://doi.org/10.1152/japplphysiol.00652.2012.

    Article  CAS  PubMed  Google Scholar 

  77. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013;43(10):927–54. https://doi.org/10.1007/s40279-013-0066-5.

    Article  PubMed  Google Scholar 

  78. Midgley AW, Mc Naughton LR. Time at or near V̇O 2max during continuous and intermittent running: a review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near V̇O 2max. J Sports Med Phys Fitness. 2006;46(1):1.

    CAS  PubMed  Google Scholar 

  79. Seiler S, Sjursen JE. Effect of work duration on physiological and rating scale of perceived exertion responses during self-paced interval training. Scand J Med Sci Sports. 2004;14(5):318–25. https://doi.org/10.1046/j.1600-0838.2003.00353.x.

    Article  PubMed  Google Scholar 

  80. Seiler S, Jøranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic interval training: Interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23:74–83. https://doi.org/10.1111/j.1600-0838.2011.01351.x.

    Article  CAS  PubMed  Google Scholar 

  81. Billat VL, Slawinski J, Bocquet V, et al. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol Occup Physiol. 2000;81:188–96. https://doi.org/10.1007/s004210050029.

    Article  CAS  Google Scholar 

  82. Rønnestad BR, Hansen J. Optimizing interval training at power output associated with peak oxygen uptake in well-trained cyclists. J Strength Cond Res. 2016;30(4):999–1006. https://doi.org/10.1519/JSC.0b013e3182a73e8a.

    Article  PubMed  Google Scholar 

  83. Rønnestad BR, Hansen J, Vegge G, et al. Short intervals induce superior training adaptations compared with long intervals in cyclists - an effort-matched approach. Scand J Med Sci Sports. 2015;25(2):143–51. https://doi.org/10.1111/sms.12165.

    Article  PubMed  Google Scholar 

  84. Laursen PB, Shing CM, Peake JM, et al. Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res. 2005;19:527–33. https://doi.org/10.1519/15964.1.

    Article  PubMed  Google Scholar 

  85. Rønnestad BR, Hansen J, Nygaard H, Lundby C. Superior performance improvements in elite cyclists following short-interval vs effort-matched long-interval training. Scand J Med Sci Sports. 2020a;30(5):849–57. https://doi.org/10.1111/sms.13627.

    Article  PubMed  Google Scholar 

  86. Rønnestad BR, Rømer T, Hansen J. Increasing oxygen uptake in well-trained cross-country skiers during work intervals with a fast start. Int J Sports Physiol Perform. 2020b:1–7. https://doi.org/10.1123/ijspp.2018-0360.

  87. Bishop D, Bonetti D, Dawson B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med Sci Sports Exerc. 2002;34(6):1041–7. https://doi.org/10.1097/00005768-200206000-00022.

    Article  PubMed  Google Scholar 

  88. Issurin VB. Benefits and limitations of block periodized training approaches to athletes’ preparation: a review. Sports Med. 2016;46(3):329–38.

    Article  PubMed  Google Scholar 

  89. Rønnestad BR, Hansen J. A scientific approach to improve physiological capacity of an elite cyclist. Int J Sports Physiol Perform. 2018;13:390–3. https://doi.org/10.1123/ijspp.2017-0228.

    Article  PubMed  Google Scholar 

  90. Solli GS, Tønnessen E, Sandbakk Ø. Block vs. traditional periodization of HIT: Two different paths to success for the world’s best cross-country skier. Front Physiol. 2019;10:375. https://doi.org/10.3389/fphys.2019.00375.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rønnestad BR, Ellefsen S, Nygaard H, et al. Effects of 12 weeks of block periodization on performance and performance indices in well-trained cyclists. Scand J Med Sci Sports. 2014;24(2):327–35. https://doi.org/10.1111/sms.12016.

    Article  PubMed  Google Scholar 

  92. Hawley JA, Burke LM. Peak performance: training and nutritional strategies for sport. Allen & Unwin; 1998.

    Google Scholar 

  93. Hickson RC, Rosenkoetter MA, Brown MM. Strength training effects on aerobic power and short-term endurance. Med Sci Sports Exerc. 1980;12:336–9.

    Article  CAS  PubMed  Google Scholar 

  94. Hickson RC, Dvorak BA, Gorostiaga EM, et al. Potential for strength and endurance training to amplify endurance performance. J Appl Physiol. 1988;65:2285–90. https://doi.org/10.1152/jappl.1988.65.5.2285.

    Article  CAS  PubMed  Google Scholar 

  95. Hoff J, Helgerud J, Wisløff U. Maximal strength training improves work economy in trained female cross- country skiers. Med Sci Sports Exerc. 1999;31:870–7. https://doi.org/10.1097/00005768-199906000-00016.

    Article  CAS  PubMed  Google Scholar 

  96. Paavolainen L, Häkkinen K, Hämäläinen I, et al. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86:1527–33. https://doi.org/10.1152/jappl.1999.86.5.1527.

    Article  CAS  PubMed  Google Scholar 

  97. Piacentini MF, De Ioannon G, Comotto S, et al. Concurrent strength and endurance training effects on running economy in master endurance runners. J Strength Cond Res. 2013;27(8):2295–303. https://doi.org/10.1519/JSC.0b013e3182794485.

    Article  PubMed  Google Scholar 

  98. Rønnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014;24:603–12. https://doi.org/10.1111/sms.12104.

    Article  PubMed  Google Scholar 

  99. Balsalobre-Fernández C, Santos-Concejero J, Grivas GV. Effects of strength training on running economy in highly trained runners: a systematic review with meta-analysis of controlled trials. J Strength Cond Res. 2016;30:2361–8. https://doi.org/10.1519/JSC.0000000000001316.

    Article  PubMed  Google Scholar 

  100. Alcaraz-Ibañez M, Rodríguez-Pérez M. Effects of resistance training on performance in previously trained endurance runners: A systematic review. J Sports Sci. 2018;36:613–29. https://doi.org/10.1080/02640414.2017.1326618.

    Article  PubMed  Google Scholar 

  101. Blagrove RC, Howatson G, Hayes PR. Effects of strength training on the physiological determinants of middle- and long-distance running performance: a systematic review. Sports Med. 2018;48:1117–49. https://doi.org/10.1007/s40279-017-0835-7.

    Article  PubMed  Google Scholar 

  102. Trowell D, Vicenzino B, Saunders N, et al. Effect of strength training on biomechanical and neuromuscular variables in distance runners: a systematic review and meta-analysis. Sports Med. 2020;50:133–50. https://doi.org/10.1007/s40279-019-01184-9.

    Article  PubMed  Google Scholar 

  103. Ramirez-Campillo R, Andrade DC, García-Pinillos F, et al. Effects of jump training on physical fitness and athletic performance in endurance runners: A meta-analysis: Jump training in endurance runners. J Sports Sci. 2021;39:2030–50. https://doi.org/10.1080/02640414.2021.1916261.

    Article  PubMed  Google Scholar 

  104. Amaro NM, Morouço PG, Marques MC, et al. A systematic review on dry-land strength and conditioning training on swimming performance. Sci Sport. 2019;34(1):e1–4. https://doi.org/10.1016/j.scispo.2018.07.003.

    Article  Google Scholar 

  105. Crowley E, Harrison AJ, Lyons M. The impact of resistance training on swimming performance: a systematic review. Sports Med. 2017;47:2285–307. https://doi.org/10.1007/s40279-017-0730-2.

    Article  PubMed  Google Scholar 

  106. Yamamoto LM, Klau JF, Casa DJ, et al. The effects of resistance training on road cycling performance among highly trained cyclists: A systematic review. J Strength Cond Res. 2010;24:560–6. https://doi.org/10.1519/JSC.0b013e3181c86583.

    Article  PubMed  Google Scholar 

  107. Losnegard T. Strength training for cross-country skiers. In: Concurrent aerobic and strength training; 2019. p. 357–68.

    Chapter  Google Scholar 

  108. Vikmoen O, Rønnestad BR. A comparison of the effect of strength training on cycling performance between men and women. J Funct Morphol Kinesiol. 2021;6(1):29. https://doi.org/10.3390/jfmk6010029.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ploutz LL, Tesch PA, Biro RL, Dudley GA. Effect of resistance training on muscle use during exercise. J Appl Physiol. 1994;76(4):1675–81. https://doi.org/10.1152/jappl.1994.76.4.1675.

    Article  CAS  PubMed  Google Scholar 

  110. Craib MW, Mitchell VA, Fields KB, et al. The association between flexibility and running economy in sub-elite male distance runners. Med Sci Sports Exerc. 1996;28:737–43. https://doi.org/10.1097/00005768-199606000-00012.

    Article  CAS  PubMed  Google Scholar 

  111. Millet GP, Tronche C, Fuster N, Candau R. Level ground and uphill cycling efficiency in seated and standing positions. Med Sci Sports Exerc. 2002;34:1645–52. https://doi.org/10.1097/00005768-200210000-00017.

    Article  PubMed  Google Scholar 

  112. Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89:1–7. https://doi.org/10.1007/s00421-002-0741-y.

    Article  PubMed  Google Scholar 

  113. Rønnestad BR, Hansen EA, Raastad T. Strength training improves 5-min all-out performance following 185 min of cycling. Scand J Med Sci Sports. 2011;21:250–9. https://doi.org/10.1111/j.1600-0838.2009.01035.x.

    Article  PubMed  Google Scholar 

  114. Aagaard P, Andersen JL, Bennekou M, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sports. 2011;21:e298–307. https://doi.org/10.1111/j.1600-0838.2010.01283.x.

    Article  CAS  PubMed  Google Scholar 

  115. Vikmoen O, Ellefsen S, Trøen Ø, et al. Strength training improves cycling performance, fractional utilization of VO2max and cycling economy in female cyclists. Scand J Med Sci Sports. 2016;26:384–96. https://doi.org/10.1111/sms.12468.

    Article  CAS  PubMed  Google Scholar 

  116. van der Zwaard S, Al E. Training-induced muscle adaptations during competitive preparation in elite female rowers. Front Sport Act Living; 2021.

    Google Scholar 

  117. Ache-Dias J, Dellagrana RA, Teixeira AS, et al. Effect of jumping interval training on neuromuscular and physiological parameters: A randomized controlled study. Appl Physiol Nutr Metab. 2015;41:20–5. https://doi.org/10.1139/apnm-2015-0368.

    Article  CAS  PubMed  Google Scholar 

  118. Mujika I, Crowley E. Strength training for swimmers. In: Concurrent aerobic and strength training; 2019. p. 369–86.

    Chapter  Google Scholar 

  119. Schumann M, Notbohm H, Bäcker S, et al. Strength-training periodization: no effect on swimming performance in well-trained adolescent swimmers. Int J Sports Physiol Perform. 2020:1–9. https://doi.org/10.1123/ijspp.2019-0715. LK - http://link.kib.ki.se/?sid=EMBASE & issn=15550273 & id=doi:10.1123%2Fijspp.2019–0715 & atitle=Strength-Training+Periodization%3A+No+Effect+on+Swimming+Performance+in+Well-Trained+Adolescent+Swimmers & stitle=Int+J+Sports+Physiol+Perform & title=International+journal+of+sports+physiology+and+performance & volume= & issue= & spage=1 & epage=9 & aulast=Schumann & aufirst=Moritz & auinit=M. & aufull=Schumann+M. & coden= & isbn= & pages=1–9 & date=2020 & auinit1=M & auinitm=

  120. Toussaint HM, Beek PJ. Biomechanics of competitive front crawl swimming. Sports Med. 1992;13(1):8–24.

    Article  CAS  PubMed  Google Scholar 

  121. Ache-Dias J, Dal Pupo J, Dellagrana RA, et al. Effect of jump interval training on kinematics of the lower limbs and running economy. J Strength Cond Res. 2018;32:416–22. https://doi.org/10.1519/JSC.0000000000002332.

    Article  PubMed  Google Scholar 

  122. Ferrauti A, Bergermann M, Fernandez-Fernandez J. Effects of a concurrent strength and endurance training on running performance and running economy in recreational marathon runners. J Strength Cond Res. 2010;24:2770–8. https://doi.org/10.1519/JSC.0b013e3181d64e9c.

    Article  PubMed  Google Scholar 

  123. Saunders PU, Telford RD, Pyne DB, et al. Short-term plyometric training improves running economy in highly trained middle and long distance runners. J Strength Cond Res. 2006;20:947–54. https://doi.org/10.1519/R-18235.1.

    Article  PubMed  Google Scholar 

  124. Schumann M, Pelttari P, Doma K, et al. Neuromuscular adaptations to same-session combined endurance and strength training in recreational endurance runners. Int J Sports Med. 2016;37:1136–43. https://doi.org/10.1055/s-0042-112592.

    Article  CAS  PubMed  Google Scholar 

  125. Jones TW, Howatson G, Russell M, French DN. Performance and neuromuscular adaptations following differing ratios of concurrent strength and endurance training. J Strength Cond Res. 2013;27(12):3342–51. https://doi.org/10.1519/JSC.0b013e3181b2cf39. PMID: 24270456.

  126. Sandbakk Ø. Long-term effects of strength training on aerobic capacity and endurance performance. In: Concurrent Aerobic and Strength Training; 2019. p. 325–31.

    Chapter  Google Scholar 

  127. Bishop D, Jenkins DG, Mackinnon LT, et al. The effects of strength training on endurance performance and muscle characteristics. Med Sci Sports Exerc. 1999;31:886–91. https://doi.org/10.1097/00005768-199906000-00018.

    Article  CAS  PubMed  Google Scholar 

  128. Doma K, Deakin GB. The acute effects intensity and volume of strength training on running performance. Eur J Sport Sci. 2014;14:107–15. https://doi.org/10.1080/17461391.2012.726653.

    Article  PubMed  Google Scholar 

  129. Palmer CD, Sleivert GG. Running economy is impaired following a single bout of resistance exercise. J Sci Med Sport. 2001;4:447–59. https://doi.org/10.1016/s1440-2440(01)80053-0.

    Article  CAS  PubMed  Google Scholar 

  130. Doma K, Deakin G. The acute effect of concurrent training on running performance over 6 days. Res Q Exerc Sport. 2015;86:387–96. https://doi.org/10.1080/02701367.2015.1053104.

    Article  PubMed  Google Scholar 

  131. Ache-Dias J, Dellagrana RA, Teixeira AS, et al. Effect of jumping interval training on neuromuscular and physiological parameters: a randomized controlled study. Appl Physiol Nutr Metab = Physiol Appl. Nutr Metab. 2016;41:20–5. https://doi.org/10.1139/apnm-2015-0368.

    Article  CAS  Google Scholar 

  132. Lauersen JB, Bertelsen DM, Andersen LB. The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2014;48:871–7. https://doi.org/10.1136/bjsports-2013-092538.

    Article  PubMed  Google Scholar 

  133. Schumann M, Feuerbacher JF, Sünkeler M, et al. An updated systematic review and meta-analysis on the compatibility of concurrent aerobic and strength training for skeletal muscle size and function. Preprint. 2021.

    Google Scholar 

  134. Häkkinen K, Alen M, Kraemer WJ, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89:42–52. https://doi.org/10.1007/s00421-002-0751-9.

    Article  PubMed  Google Scholar 

  135. Rønnestad BR. Strength Training for Endurance Cyclists. In: Concurrent Aerobic and Strength Training. Cham: Springer International Publishing; 2019. p. 333–40.

    Chapter  Google Scholar 

  136. Schumann M, Mykkänen O-P, Doma K, et al. Effects of endurance training only versus same-session combined endurance and strength training on physical performance and serum hormone concentrations in recreational endurance runners. Appl Physiol Nutr Metab = Physiol Appl Nutr Metab. 2015;40:28–36. https://doi.org/10.1139/apnm-2014-0262.

    Article  CAS  Google Scholar 

  137. Spiliopoulou P, Zaras N, Methenitis S, et al. Effect of concurrent power training and high-intensity interval cycling on muscle morphology and performance. J Strength Cond Res. 2021;35:2464–71. https://doi.org/10.1519/JSC.0000000000003172.

    Article  PubMed  Google Scholar 

  138. Terzis G, Spengos K, Methenitis S, et al. Early phase interference between low-intensity running and power training in moderately trained females. Eur J Appl Physiol. 2016;116:1063–73. https://doi.org/10.1007/s00421-016-3369-z.

    Article  PubMed  Google Scholar 

  139. Tsitkanou S, Spengos K, Stasinaki AN, et al. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy. Scand J Med Sci Sports. 2017;27(11):1317–27. https://doi.org/10.1111/sms.12751.

    Article  CAS  PubMed  Google Scholar 

  140. Henneman E. The size-principle: a deterministic output emerges from a set of probabilistic connections. J Exp Biol. 1985;115:105–12. https://doi.org/10.1242/jeb.115.1.105.

    Article  CAS  PubMed  Google Scholar 

  141. Cormie P, McGuigan MR, Newton RU. Influence of strength on magnitude and mechanisms of adaptation to power training. Med Sci Sports Exerc. 2010;42:1566–81. https://doi.org/10.1249/MSS.0b013e3181cf818d.

    Article  PubMed  Google Scholar 

  142. Rønnestad BR, Hansen EA, Raastad T. In-season strength maintenance training increases well-trained cyclists’ performance. Eur J Appl Physiol. 2010;110:1269–82. https://doi.org/10.1007/s00421-010-1622-4.

    Article  PubMed  Google Scholar 

  143. Karsten B, Larumb-Zabala E, Kandemir G, et al. The effects of a 6-week strength training on critical velocity, anaerobic running distance, 30-M sprint and Yo-Yo intermittent running test performances in male soccer players. PLoS One. 2016;11(3):e0151448. https://doi.org/10.1371/journal.pone.0151448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rønnestad BR, Hansen J, Hollan I, et al. Impairment of Performance Variables After In-Season Strength-Training Cessation in Elite Cyclists. Int J Sports Physiol Perform. 2016;11:727–35. https://doi.org/10.1123/ijspp.2015-0372.

    Article  PubMed  Google Scholar 

  145. Doma K, Deakin GB, Schumann M, Bentley DJ. Training considerations for optimising endurance development: an alternate concurrent training perspective. Sports Med. 2019;49:669–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Schumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feuerbacher, J.F., Schumann, M. (2023). High-Intensity Interval Training and Resistance Training for Endurance Athletes. In: Miller, T.L. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-26600-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26600-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26599-0

  • Online ISBN: 978-3-031-26600-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics