Skip to main content

Biologic Advancements in the Treatment of Stress Fractures

  • Chapter
  • First Online:
Endurance Sports Medicine

Abstract

Stress fractures are common injuries particularly in endurance athletes and military recruits as well as those who choose single sport specialization. With more athletes participating in year-round training and focusing on only one sport, overuse injuries have become a common ailment within the athletic community. These pathologies, especially stress injuries to the bone, can become particularly bothersome in the endurance athlete and those who undergo repetitive, high impact activity. Traditional conservative treatment options including prolonged rest from sport have become less acceptable to many athletes who wish to continue participation and maintain optimal athletic performance. Although activity modification and surgical fixation remain the gold standard for chronic and/or severe stress fractures, direct injectable orthobiologics modalities and indirect systemic stimulating treatments can be used as an adjunct to optimize an athlete’s internal healing environment. These newly emerging biologic technologies along with holistic treatment strategies are allowing for maintenance of an athlete’s conditioning even during their healing process with the ultimate goal of expediting an athlete’s safe and healthy return to play.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feeley BT, Agel J, LaPrade RF. When is it too early for single sport specialization? Am J Sports Med. 2016;44(1):234–41.

    Article  PubMed  Google Scholar 

  2. Miller TL, Best TM. Taking a holistic approach to managing difficult stress fractures. J Orthop Surg Res. 2016;11(1):98.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaeding CC, Spindler KP, Amendola A. Management of troublesome stress fractures. Instr Course Lect. 2004;53:455–69.

    PubMed  Google Scholar 

  4. Kaeding CC, Yu JR, Wright R, Amendola A, Spindler KP. Management and return to play of stress fractures. Clin J Sport Med. 2005;15(6):442–7.

    Article  PubMed  Google Scholar 

  5. Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthopaed Surg. 2000;8(6):344–53.

    Article  CAS  Google Scholar 

  6. Kaeding CC, Miller T. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg Am. 2013;95(13):1214–20.

    Article  PubMed  Google Scholar 

  7. Jamieson M, Schroeder A, Campbell J, Seigel C, Everson S, Miller TL. Time to return to running after tibial stress fracture in female Division I collegiate track and field. Curr Orthop Pract. 2017;28(4):393–7.

    Article  Google Scholar 

  8. Pastorelli F, Pasquetti P. Biomechanical analysis and rehabilitation in athletes. Clin Cases Miner Bone Metab. 2013;10(2):96.

    PubMed  PubMed Central  Google Scholar 

  9. Vajapey S, Matic G, Hartz C, Miller TL. Sacral stress fractures: a rare but curable cause of back pain in athletes. Sports Health. 2019;11(5):446–52.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aicale R, Tarantino D, Maffulli N. Overuse injuries in sport: a comprehensive overview. J Orthop Surg Res. 2018;13(1):309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abrams GD, Feldman D, Safran MR. Effects of vitamin D on skeletal muscle and athletic performance. J Am Acad Orthopaed Surg. 2018;26(8):278–85.

    Article  Google Scholar 

  12. Frank RM, Romeo AA, Bush-Joseph CA, Bach BR Jr. Injuries to the female athlete in 2017: part I: general considerations, concussions, stress fractures, and the female athlete triad. JBJS Rev. 2017;5(10):e4.

    Article  PubMed  Google Scholar 

  13. Goolsby MA, Boniquit N. Bone health in athletes. Sports Health. 2017;9(2):108–17.

    Article  PubMed  Google Scholar 

  14. Tenforde AS, Carlson JL, Chang A, Sainani KL, Shultz R, Kim JH, et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.

    Article  PubMed  Google Scholar 

  15. Booth-Kewley S, Schmied EA, Highfill-McRoy RM, Sander TC, Blivin SJ, Garland CF. A prospective study of factors affecting recovery from musculoskeletal injuries. J Occup Rehabil. 2014;24(2):287–96.

    Article  PubMed  Google Scholar 

  16. Marusic J, Dolenc P, Sarabon N. Psychological aspect of rehabilitation and return to sport following lower limb injuries. Montenegrin J Sport. 2020;9(2):59–64.

    Article  Google Scholar 

  17. Chaudhry ZS, Raikin SM, Harwood MI, Bishop ME, Ciccotti MG, Hammoud S. Outcomes of surgical treatment for anterior tibial stress fractures in athletes: a systematic review. Am J Sports Med. 2019;47(1):232–40.

    Article  PubMed  Google Scholar 

  18. Robertson GA, Wood AM. Lower limb stress fractures in sport: optimising their management and outcome. World J Orthop. 2017;8(3):242–55.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6.

    Article  PubMed  Google Scholar 

  20. Miller TL, Kaeding CC, Rodeo SA. Emerging options for biologic enhancement of stress fracture healing in athletes. J Am Acad Orthopaed Surg. 2020;28(1):1–9.

    Article  Google Scholar 

  21. Imam MA, Holton J, Ernstbrunner L, Pepke W, Grubhofer F, Narvani A, et al. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int Orthop. 2017;41(11):2213–20.

    Article  PubMed  Google Scholar 

  22. Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am. 2013;95(14):1312–6.

    Article  PubMed  Google Scholar 

  23. Muench LN, Berthold DP, Kia C, Otto A, Cote MP, McCarthy MB, et al. Nucleated cell count has negligible predictive value for the number of colony-forming units for connective tissue progenitor cells (stem cells) in bone marrow aspirate harvested from the proximal humerus during arthroscopic rotator cuff repair. Arthroscopy. 2021;37(7):2043–52.

    Article  PubMed  Google Scholar 

  24. Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res. 2014;472(12):3789–97.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jager M, Jelinek EM, Wess KM, Scharfstadt A, Jacobson M, Kevy SV, et al. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther. 2009;4(1):34–43.

    Article  PubMed  Google Scholar 

  26. Murawski CD, Kennedy JG. Percutaneous internal fixation of proximal fifth metatarsal jones fractures (Zones II and III) with Charlotte Carolina screw and bone marrow aspirate concentrate: an outcome study in athletes. Am J Sports Med. 2011;39(6):1295–301.

    Article  PubMed  Google Scholar 

  27. Lovy AJ, Kim JS, Di Capua J, Somani S, Shim S, Keswani A, et al. Intramedullary nail fixation of atypical femur fractures with bone marrow aspirate concentrate leads to faster union: a case-control study. J Orthop Trauma. 2017;31(7):358–62.

    Article  PubMed  Google Scholar 

  28. Gianakos A, Ni A, Zambrana L, Kennedy JG, Lane JM. Bone marrow aspirate concentrate in animal long bone healing: an analysis of basic science evidence. J Orthop Trauma. 2016;30(1):1–9.

    Article  PubMed  Google Scholar 

  29. Simman R, Hoffmann A, Bohinc RJ, Peterson WC, Russ AJ. Role of platelet-rich plasma in acceleration of bone fracture healing. Ann Plast Surg. 2008;61(3):337–44.

    Article  CAS  PubMed  Google Scholar 

  30. Gandhi A, Doumas C, O'Connor JP, Parsons JR, Lin SS. The effects of local platelet rich plasma delivery on diabetic fracture healing. Bone. 2006;38(4):540–6.

    Article  CAS  PubMed  Google Scholar 

  31. Griffin XL, Wallace D, Parsons N, Costa ML. Platelet rich therapies for long bone healing in adults. Cochrane Database Syst Rev. 2012;(7):CD009496.

    Google Scholar 

  32. Guzel Y, Karalezli N, Bilge O, Kacira BK, Esen H, Karadag H, et al. The biomechanical and histological effects of platelet-rich plasma on fracture healing. Knee Surg Sports Traumatol Arthrosc. 2015;23(5):1378–83.

    Article  PubMed  Google Scholar 

  33. Malhotra A, Pelletier MH, Yu Y, Walsh WR. Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg. 2013;133(2):153–65.

    Article  PubMed  Google Scholar 

  34. Tiedeman JJ, Garvin KL, Kile TA, Connolly JF. The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics. 1995;18(12):1153–8.

    Article  CAS  PubMed  Google Scholar 

  35. Elena N, Woodall BM, Lee K, McGahan PJ, Pathare NP, Shin EC, et al. Intraosseous bioplasty for a chondral cyst in the lateral tibial plateau. Arthrosc Tech. 2018;7(11):e1149–e56.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cohen SB, Sharkey PF. Subchondroplasty for treating bone marrow lesions. J Knee Surg. 2016;29(7):555–63.

    PubMed  Google Scholar 

  37. Bonadio MB, Giglio PN, Helito CP, Pecora JR, Camanho GL, Demange MK. Subchondroplasty for treating bone marrow lesions in the knee–initial experience. Rev Bras Ortop. 2017;52(3):325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miyamoto RG, Dhotar HS, Rose DJ, Egol K. Surgical treatment of refractory tibial stress fractures in elite dancers: a case series. Am J Sports Med. 2009;37(6):1150–4.

    Article  PubMed  Google Scholar 

  39. Pelucacci LM, LaPorta GA. Subchondroplasty: treatment of bone marrow lesions in the lower extremity. Clin Podiatr Med Surg. 2018;35(4):367–71.

    Article  PubMed  Google Scholar 

  40. Bernhard K, Ng A, Kruse D, Stone PA. Surgical treatment of bone marrow lesion associated with recurrent plantar fasciitis: a case report describing an innovative technique using subchondroplasty (R). J Foot Ankle Surg. 2018;57(4):811–5.

    Article  PubMed  Google Scholar 

  41. Chan JJ, Guzman JZ, Vargas L, Myerson CL, Chan J, Vulcano E. Safety and effectiveness of talus subchondroplasty and bone marrow aspirate concentrate for the treatment of osteochondral defects of the talus. Orthopedics. 2018;41(5):e734–e7.

    Article  PubMed  Google Scholar 

  42. Astur DC, de Freitas EV, Cabral PB, Morais CC, Pavei BS, Kaleka CC, et al. Evaluation and management of subchondral calcium phosphate injection technique to treat bone marrow lesion. Cartilage. 2019;10(4):395–401.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang D, Potty A, Vyas P, Lane J. The role of recombinant PTH in human fracture healing: a systematic review. J Orthop Trauma. 2014;28(1):57–62.

    Article  PubMed  Google Scholar 

  44. Manabe T, Mori S, Mashiba T, Kaji Y, Iwata K, Komatsubara S, et al. Human parathyroid hormone (1-34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone. 2007;40(6):1475–82.

    Article  CAS  PubMed  Google Scholar 

  45. O'Loughlin PF, Cunningham ME, Bukata SV, Tomin E, Poynton AR, Doty SB, et al. Parathyroid hormone (1-34) augments spinal fusion, fusion mass volume, and fusion mass quality in a rabbit spinal fusion model. Spine (Phila Pa 1976). 2009;34(2):121–30.

    Article  PubMed  Google Scholar 

  46. Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res. 1999;14(6):960–8.

    Article  CAS  PubMed  Google Scholar 

  47. Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25(2):404–14.

    Article  CAS  PubMed  Google Scholar 

  48. Benazzo F, Mosconi M, Beccarisi G, Galli U. Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res. 1995;310:145–9.

    Google Scholar 

  49. Longhino V, Bonora C, Sansone V. The management of sacral stress fractures: current concepts. Clin Cases Miner Bone Metab. 2011;8(3):19–23.

    PubMed  PubMed Central  Google Scholar 

  50. Daish C, Blanchard R, Fox K, Pivonka P, Pirogova E. The application of pulsed electromagnetic fields (PEMFs) for bone fracture repair: past and perspective findings. Ann Biomed Eng. 2018;46(4):525–42.

    Article  CAS  PubMed  Google Scholar 

  51. Streit A, Watson BC, Granata JD, Philbin TM, Lin HN, O'Connor JP, et al. Effect on clinical outcome and growth factor synthesis with adjunctive use of pulsed electromagnetic fields for fifth metatarsal nonunion fracture: a double-blind randomized study. Foot Ankle Int. 2016;37(9):919–23.

    Article  PubMed  Google Scholar 

  52. Tomohiko T, Nagase T, Nakagawa T, Masamitsu T. Treatment of incomplete jones fractures with low-intensity pulsed ultrasound (LIPUS). J Orthop Trauma. 2017;31(7):S2–3.

    Article  PubMed  Google Scholar 

  53. Emami A, Petren-Mallmin M, Larsson S. No effect of low-intensity ultrasound on healing time of intramedullary fixed tibial fractures. J Orthop Trauma. 1999;13(4):252–7.

    Article  CAS  PubMed  Google Scholar 

  54. Leal C, D'Agostino C, Gomez Garcia S, Fernandez A. Current concepts of shockwave therapy in stress fractures. Int J Surg. 2015;24(Pt B):195–200.

    Article  PubMed  Google Scholar 

  55. Furia JP, Rompe JD, Cacchio A, Maffulli N. Shock wave therapy as a treatment of nonunions, avascular necrosis, and delayed healing of stress fractures. Foot Ankle Clin. 2010;15(4):651–62.

    Article  PubMed  Google Scholar 

  56. Ruohola JP, Laaksi I, Ylikomi T, Haataja R, Mattila VM, Sahi T, et al. Association between serum 25(OH) D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res. 2006;21(9):1483–8.

    Article  CAS  PubMed  Google Scholar 

  57. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.

    Article  CAS  PubMed  Google Scholar 

  58. Laaksi IT, Ruohola JP, Ylikomi TJ, Auvinen A, Haataja RI, Pihlajamaki HK, et al. Vitamin D fortification as public health policy: significant improvement in vitamin D status in young Finnish men. Eur J Clin Nutr. 2006;60(8):1035–8.

    Article  CAS  PubMed  Google Scholar 

  59. Tenforde AS, Sayres LC, McCurdy ML, Sainani KL, Fredericson M. Identifying sex-specific risk factors for stress fractures in adolescent runners. Med Sci Sports Exerc. 2013;45(10):1843–51.

    Article  CAS  PubMed  Google Scholar 

  60. Shimasaki Y, Nagao M, Miyamori T, Aoba Y, Fukushi N, Saita Y, et al. Evaluating the risk of a fifth metatarsal stress fracture by measuring the serum 25-hydroxyvitamin D levels. Foot Ankle Int. 2016;37(3):307–11.

    Article  PubMed  Google Scholar 

  61. Davey T, Lanham-New SA, Shaw AM, Hale B, Cobley R, Berry JL, et al. Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training. Osteoporos Int. 2016;27(1):171–9.

    Article  CAS  PubMed  Google Scholar 

  62. Miller JR, Dunn KW, Ciliberti LJ Jr, Patel RD, Swanson BA. Association of Vitamin D with stress fractures: a retrospective cohort study. J Foot Ankle Surg. 2016;55(1):117–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grzeskiewicz, E., Miller, T.L. (2023). Biologic Advancements in the Treatment of Stress Fractures. In: Miller, T.L. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-26600-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26600-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26599-0

  • Online ISBN: 978-3-031-26600-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics