Skip to main content

The Holistic Approach to Stress Fracture Treatment

  • Chapter
  • First Online:
Stress Fractures in Athletes

Abstract

Stress fractures are overuse injuries of bone that result from an imbalance of training, healing, nutrition, hormones, and biomechanics. They present most commonly in the lower extremities of runners and military personnel but can also occur in the upper extremity and spine depending on the causative activity. Stress fractures occur along a continuum of severity with no two stress fractures exhibiting the same behavior. A detailed history that includes training frequency and intensity, dietary habits, menstruation, and rest/sleep along with a thorough physical examination and proper imaging are required for diagnosing and risk stratifying these injuries. Treatment of stress fractures requires nutritional and emotional support, rest from the causative activity, and surgical stabilization in the case of high-risk sites. In recent years, orthobiologic treatment options to enhance the healing potential of bone have been developed and have shown promise for the treatment of stress fractures in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bräunlich A, et al. Epidemiology of stress fractures from an occupational health viewpoint. Z Orthop Ihre Grenzgeb. 1996;134(6):553–61.

    Google Scholar 

  2. Waterman BR, et al. Epidemiology of lower extremity stress fractures in the United States military. Mil Med. 2016;181(10):1308–13.

    Google Scholar 

  3. Krauss MR, et al. excess stress fractures, musculoskeletal injuries, and health care utilization among unfit and overweight female army trainees. Am J Sports Med. 2017;45(2):311–6.

    Google Scholar 

  4. DeFroda SF, et al. Bone stress injuries in the military: diagnosis, management, and prevention. Am J Orthop. 2017;46(4):176–83.

    Google Scholar 

  5. Milgrom C, et al. The effect of stress fracture interventions in a single elite infantry training unit (1983–2015). Bone. 2017;103:125–30.

    Google Scholar 

  6. Jacobs JM. Lower extremity stress fractures in the military. Clin Sports Med. 2014;33(4):591–613.

    Google Scholar 

  7. Khan M, et al. Epidemiology and impact on performance of lower extremity stress injuries in professional basketball players. Sports Health. 2018;10(2):169–74.

    Google Scholar 

  8. Larsson D, et al. Fracture epidemiology in male elite football players from 2001 to 2013: ‘How long will this fracture keep me out?’. Br J Sports Med. 2016;50(12):759–63.

    Google Scholar 

  9. Werner BC, et al. Distal fibula fractures in national football league athletes. Orthop J Sports Med. 2017;5(9):2325967117726515.

    PubMed  PubMed Central  Google Scholar 

  10. Sandlin MI, et al. High-risk stress fractures in elite athletes. Instr Course Lect. 2017;66:281–92.

    Google Scholar 

  11. Changstrom BG, et al. Epidemiology of stress fracture injuries among US high school athletes, 2005–2006 through 2012–2013. Am J Sports Med. 2015;43(1):26–33.

    Google Scholar 

  12. Sobrino FJ, et al. Overuse injuries in professional ballet: influence of age and years of professional practice. Orthop J Sports Med. 2017;5(6):2325967117712704.

    PubMed  PubMed Central  Google Scholar 

  13. Neidel P, et al. Cross-sectional investigation of stress fractures in german elite triathletes. Sports (Basel). 2019;7(4):88.

    Google Scholar 

  14. Ekstrand J, et al. Stress fractures in elite male football players. Scand J Med Sci Sports. 2012;22(3):341–6.

    CAS  Google Scholar 

  15. Robertson G, et al. Lower limb stress fractures in sport: optimising their management and outcome. World J Orthop. 2017;8(3):242–55.

    PubMed  PubMed Central  Google Scholar 

  16. Kaeding CC, Spindler KP, Amendola A. Management of troublesome stress fractures. Instr Course Lect. 2004;53:455–69.

    Google Scholar 

  17. Kaeding CC, Miller TL. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg. 2013;95(13):1214–20.

    Google Scholar 

  18. Kaeding CC, Yu JR, Wright R, et al. Management and return to play of stress fractures. Clin J Sports Med. 2005;15(6):442–7.

    Google Scholar 

  19. Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med. 2001;29(1):100–11.

    CAS  Google Scholar 

  20. Boden BP. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8:344–53.

    CAS  Google Scholar 

  21. Miller TL, Best TM. Taking a holistic approach to managing difficult stress fractures. J Orthop Surg Res. 2016;11(1):98.

    PubMed  PubMed Central  Google Scholar 

  22. Crowell HP, Davis IS. Gait retraining to reduce lower extremity loading in runners. Clin Biomech (Bristol, Avon). 2011;26(1):78–83.

    Google Scholar 

  23. Papageorgiou M, et al. Reduced energy availability: implications for bone health in physically active populations. Eur J Nutr. 2018;57(3):847–59.

    Google Scholar 

  24. Barrack MT, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

    Google Scholar 

  25. Duignan M, et al. Female athlete triad: at breaking point. Int Emerg Nurs. 2017;34:51–4.

    Google Scholar 

  26. Jamieson M, Everson S, Siegel C, Miller TL. Expected time to return to athletic participation following stress fracture in Division I collegiate athletes. Sports Health. 2018;10(4):340–4.

    Google Scholar 

  27. Jamieson M, Schroeder A, Day J, et al. Time to return to running after tibial stress fracture in female division I collegiate track and field. Curr Orthopedic Pract. 2017;31(4):393–7.

    Google Scholar 

  28. Carter CW, Ireland ML, Johnson AE, et al. Sex-based differences in common sports injuries. JAAOS. 2018;26(13):447–54.

    Google Scholar 

  29. Tenforde AS, et al. Identifying sex-specific risk factors for stress fractures in adolescent runners. Med Sci Sports Exerc. 2013;45(10):1843–51.

    CAS  Google Scholar 

  30. Prather H, et al. Are elite female soccer athletes at risk for disordered eating attitudes, menstrual dysfunction, and stress fractures? PMR. 2016;8(3):208–13.

    Google Scholar 

  31. Mayolas-Pi C, et al. Exercise addiction risk and health in male and female amateur endurance cyclists. J Behav Addict. 2017;6(1):74–83.

    PubMed  PubMed Central  Google Scholar 

  32. Krauss MR, Garvin NU, Boivin MR, Cowan DN. Excess stress fractures, musculoskeletal injuries, and health care utilization among unfit and overweight female army trainees. Am J Sports Med. 2017;45(2):311–6.

    Google Scholar 

  33. Dixon S, Nunns M, House C, et al. Excess stress fractures, musculoskeletal injuries, and health care utilization among unfit and overweight female Army trainees. Am J Sports Med. 2017;45(2):311–6.

    Google Scholar 

  34. Salzler MJ, Bluman EM, Noonan S, et al. Injuries observed in minimalist runners. Foot Ankle Int. 2012;33(4):262–6.

    Google Scholar 

  35. McCabe MP, Smyth MP, Richardson DR. Current concept review: vitamin D and stress fractures. Foot Ankle Int. 2012;33(6):526–33.

    Google Scholar 

  36. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.

    CAS  Google Scholar 

  37. Tenforde AS, Carlson JL, Chang A, Sainani KL, Shultz R, Kim JH, Cutti P, Golden NH, Fredericson M. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.

    Google Scholar 

  38. Frank RM, et al. Injuries to the female athlete in 2017: part I: general considerations, concussions, stress fractures, and the female athlete triad. JBJS Rev. 2017;5(10):e4.

    Google Scholar 

  39. Choi HJ, et al. Multiple stress fractures of the lower extremity in healthy young men. J Orthop Traumatol. 2012;13(2):105–10.

    Google Scholar 

  40. Hosey RG, Fernandez MM, Johnson DL. Evaluation and management of stress fractures of the pelvis and sacrum. Orthopedics. 2008;31(4):383–5.

    Google Scholar 

  41. Miller TL, Harris JD, Kaeding CC. Stress fractures of the ribs and upper extremities: causation, evaluation, and management. Sports Med. 2013;43(8):665–74.

    Google Scholar 

  42. Jones BH, Harris JM, Vinh TN, Rubin C. Exercise-induced stress fractures and stress reactions of bone: epidemiology, etiology, and classification. Exercise Sport Sci Rev. 1989;17:379–422.

    CAS  Google Scholar 

  43. Bennell K, Brukner P. Epidemiology and site specificity of stress fractures. Clin Sports Med. 1997;16:179–96.

    CAS  Google Scholar 

  44. McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PMR. 2016;8(3 Suppl):S113–24.

    Google Scholar 

  45. Toney CM, Games KE, Winkelmann ZK, Eberman LE. Using tuning-fork tests in diagnosing fractures. J Athl Train. 2016;51(6):498–9.

    PubMed  PubMed Central  Google Scholar 

  46. Coughlin MJ, Grimes JS, Traughber PD, Jones CP. Comparison of radiographs and CT scans in the prospective evaluation of the fusion of hindfoot arthrodesis. Foot Ankle Int. 2006;27(10):780–7.

    Google Scholar 

  47. Wall J, Feller JF. Imaging of stress fractures in runners. Clin Sports Med. 2006;25(4):781–802.

    Google Scholar 

  48. Brukner P, Bradshaw C, Khan KM, White S, Crossley K. Stress fractures: a review of 180 cases. Clin J Sports Med. 1996;6(2):85–9.

    CAS  Google Scholar 

  49. Dobrindt O, Hoffmeyer B, Ruf J, Seidensticker M, Steffen IG, Zarva A, Fischbach F, Wieners G, Furth C, Lohmann CH, et al. MRI versus bone scintigraphy. Evaluation for diagnosis and grading of stress injuries. Nuklearmedizin. 2012;51(3):88–94.

    CAS  Google Scholar 

  50. Dutton J. Clinical value of grading the Scintigraphic appearances of tibial stress fractures in military recruits. Clin Nucl Med. 2002;27(1):18–21.

    Google Scholar 

  51. Gaeta M, Minutoli F, Vinci S, Salamone I, D’Andrea L, Bitto L, Magaudda L, Blandino A. High-resolution CT grading of tibial stress reactions in distance runners. Am J Roentgenol. 2006;187:789–93.

    Google Scholar 

  52. Bradshaw C, Khan K, Brukner P. Stress fracture of the body of the talus in athletes demonstrated with computer tomography. Clin J Sports Med. 1996;6:48–51.

    CAS  Google Scholar 

  53. Standaert CJ. Spondylolysis in the adolescent athlete. Clin J Sport Med. 2002;12(2):119–22.

    Google Scholar 

  54. Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med. 1997;16:291–306.

    CAS  Google Scholar 

  55. Miller T, Kaeding CC, Flanigan D. The classification systems of stress fractures: a systematic review. Phys Sportsmed. 2011;39(1):93–100.

    Google Scholar 

  56. Rettig AC, Shelbourne KD, McCarroll JR, Bisesi M, Watts J. The natural history and treatment of delayed union stress fractures of the anterior cortex of the tibia. Am J Sports Med. 1988;16(3):250–5.

    CAS  Google Scholar 

  57. Miller TL, Kaeding CC, Rodeo SA. Emerging options for biologic enhancement of stress fracture healing in athletes. J Am Acad Orthop Surg. 2019;28:1. https://doi.org/10.5435/JAAOS-D-19-00112.

    Article  Google Scholar 

  58. Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res. 2014;472(12):3789–97.

    PubMed  PubMed Central  Google Scholar 

  59. Jäger M, Jelinek EM, Wess KM, Scharfstädt A, Jacobson M, Kevy SV, Krauspe R. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther. 2009;4(1):34–43.

    Google Scholar 

  60. Murawski CD, Kennedy JG. Percutaneous internal fixation of proximal fifth metatarsal jones fractures (zones II and III) with Charlotte Carolina screw and bone marrow aspirate concentrate: an outcome study in athletes. Am J Sports Med. 2011;39(6):1295–301.

    Google Scholar 

  61. Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am. 2013;95(14):1312–6.

    Google Scholar 

  62. Gianakos A, Ni A, Zambrana L, Kennedy JG, Lane JM. Bone marrow aspirate concentrate in animal long bone healing: an analysis of basic science evidence. J Orthop Trauma. 2016;30:1–9.

    Google Scholar 

  63. Tiedeman JJ, Connolly JF, Strates BS, Lippiello L. Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix: an experimental study in dogs. Clin Orthop Relat Res. 1991;268:294–302.

    Google Scholar 

  64. Elena N, Woodall BM, Lee K, et al. Intraosseous bioplasty for a chondral cyst in the lateral tibial plateau. Arthrosc Tech. 2018;7:e1149–56.

    PubMed  PubMed Central  Google Scholar 

  65. Cohen SB, Sharkey PF. Subchondroplasty for the treating bone marrow lesions. J Knee Surg. 2016;29(7):555–63.

    Google Scholar 

  66. Bonadio MB, Giglio PN, Helito CP, et al. Subchondroplasty for treating bone marrow lesions in the knee – initial experience. Rev Bras Ortop. 2017;52(3):325–30.

    PubMed  PubMed Central  Google Scholar 

  67. Massar L, Caruso G, Sollazzo V, Setti S. Pulsed electromagnetic fields and low intensity pulsed ultrasound in bone tissue. Clin Cases Miner Bone Metab. 2009;6(2):149–54.

    Google Scholar 

  68. Tomohiko T, Nagase T, Nakagawa T, Masamitsu T. Treatment of incomplete Jones fractures with low-intensity pulsed ultrasound (LIPUS). J Orthop Trauma. 2017;31:S2–3.

    Google Scholar 

  69. Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res. 1999;14:960–8.

    CAS  Google Scholar 

  70. Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures. Acta Orthop. 2010;81(2):234–6.

    PubMed  PubMed Central  Google Scholar 

  71. O’Loughlin PF, Cunningham ME, Bukata SV, et al. Parathyroid hormone (1–34) augments spinal fusion, fusion mass volume, and fusion mass quality in a rabbit spinal fusion model. Spine. 2009;34(2):121–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, T.L. (2020). The Holistic Approach to Stress Fracture Treatment. In: Miller, T.L., Kaeding, C.C. (eds) Stress Fractures in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-030-46919-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46919-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46918-4

  • Online ISBN: 978-3-030-46919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics