Skip to main content

The Immune System and Inflammation in Type 2 Diabetes

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

The aim of this chapter is to show how immune cells participate in the pathogenesis of type 2 diabetes (T2D). Obesity is a major T2D driver and it is also associated with insulin resistance (IR). These pathologies appear along with chronic inflammation characterized by an increased expression of proinflammatory molecules such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, resistin, and leptin, whereas anti-inflammatory cytokines as adiponectin, IL-4, IL-10, and IL-1Ra are decreased. The inflammatory response is triggered, and it occurs predominantly in adipose tissue (AT). Immune cells that secrete many inflammatory effectors related to T2D are macrophages, lymphocytes T and B-2, natural killer (NK), Th1, Th2, Th17, T regulatory, invariant (i)NKT, eosinophils, dendritic (DC), and mast cells. In obesity conditions, macrophage AT population shifts from M2 to the M1 type, the first express anti-inflammatory and the last express proinflammatory cytokines; moreover a decreased frequency of DC has been observed on AT. Mast cells in the presence of high glucose levels express proinflammatory cytokines. Proinflammatory γδ T, Th1, and CD8+ T cells increased in response to a high-fat diet (HFD) in mice, and they are concomitant with a low abundance of anti-inflammatory NK, Th2, and Treg cells, especially in visceral AT (VAT). The same effect was observed on subjects with morbid obesity as they also exhibit a selective increase of Th CD4+ cells. Finally, we will describe some strategies designed to inhibit or decrease the deleterious inflammatory effects caused by adipocytes and immune cells in human T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following references, you can find additional information about alterations of immune cells from adipose tissue during the development of type 2 diabetes, that are treated in the present chapter.

References

  1. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol. 2019;19:734–46.

    Article  CAS  PubMed  Google Scholar 

  3. Shuwa HA, Dallatu MK, Yeldu MH, Ahmed HM, Nasir IA. Effects of adalimumab, an anti-tumour necrosis factor-alpha (TNF-alpha) antibody, on obese diabetic rats. Malay J Med Sci. 2018;25:51–62.

    Google Scholar 

  4. Jörns A, Arndt T, Yamada S, Ishikawa D, Yoshimoto T, Terbish T, et al. Translation of curative therapy concepts with T cell and cytokine antibody combinations for type 1 diabetes reversal in the IDDM rat. J Mol Med. 2020;98:1125–37.

    Article  PubMed  Google Scholar 

  5. Stenkula KG, Erlanson-Albertsson C. Am J Phys Regul Integr Comp Phys. 2018;315:R284–95.

    CAS  Google Scholar 

  6. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han L, Liu J, Zhu L, Tan F, Qin Y, Huang H, et al. Free fatty acid can induce cardiac dysfunction and alter insulin signaling pathways in the heart. Lipids Health Dis. 2018;17:185.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suiter C, Singha SK, Khalili R, Shariat-Madar Z. Free fatty acids: circulating contributors of metabolic syndrome. Cardiovasc Hematol Agents Med Chem. 2018;16:20–34.

    Article  CAS  PubMed  Google Scholar 

  9. Gao W, Du X, Lei L, Wang H, Zhang M, Wang Z, et al. NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non-alcoholic steatohepatitis. J Cell Mol Med. 2018;22:3408–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: review of underlying molecular mechanisms. J Cell Physiol. 2019;234:8152–61.

    Article  CAS  PubMed  Google Scholar 

  11. Lu L, Ye X, Yao Q, Lu A, Zhao Z, Ding Y, et al. Egr2 enhances insulin resistance via JAK2/STAT3/SOCS-1 pathway in HepG2 cells treated with palmitate. Gen Comp Endocrinol. 2018;260:25–31.

    Article  CAS  PubMed  Google Scholar 

  12. Pedroso JAB, Ramos-Lobo AM, Donato J Jr. SOCS3 as a future target to treat metabolic disorders. Hormones. 2019;18:127–36.

    Article  PubMed  Google Scholar 

  13. Kuryłowicz A, Puzianowska-Kuźnicka M. Induction of adipose tissue browning as a strategy to combat obesity. Int J Mol Sci. 2020;21:6241.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang X, Smith U. Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer? Diabetologia. 2007;50:1127–39.

    Article  CAS  PubMed  Google Scholar 

  15. Hill JH, Solt C, Foster MT. Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm Mol Biol Clin Invest. 2018;33:20180012.

    Article  Google Scholar 

  16. Li J, Wu H, Liu Y, Yang L. High fat diet induced obesity model using four strains of mice: Kunming, C57BL/6, BALB/c and ICR. Exp Anim. 2020;69:326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wensveen FM, Jelencic V, Valentic S, Sestan M, Wensveen TT, Theurich S, Glasner A, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376–85.

    Article  CAS  PubMed  Google Scholar 

  18. Albert V, Svensson K, Shimobayashi M, Colombi M, Muñoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tews D, Pula T, Funcke JB, Jastroch M, Keuper M, Debatin KM, et al. Elevated UCP1 levels are sufficient to improve glucose uptake in human white adipocytes. Redox Biol. 2019;26:101286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Søndergaard E, Nielsen S. VLDL triglyceride accumulation in skeletal muscle and adipose tissue in type 2 diabetes. Curr Opin Lipidol. 2018;29(1):42–7.

    Article  PubMed  Google Scholar 

  21. Zou Y, Sheng G, Yu M, Xie G. The association between triglycerides and ectopic fat obesity: an inverted U-shaped curve. PLoS One. 2020;15(11):e0243068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front Endocrinol. 2018;9:384.

    Article  Google Scholar 

  23. Kim K, Kwak MK, Bae GD, Park EY, Baek DJ, Kim CY, Jang SE, Jun HS, Oh YS. Allomyrina dichotoma larva extract attenuates free fatty acid-induced lipotoxicity in pancreatic beta cells. Nutr Res Pract. 2021;15:294–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tomášová P, Čermáková M, Pelantová H, Vecka M, Kratochvílová H, Lipš M, et al. Lipid profiling in epicardial and subcutaneous adipose tissue of patients with coronary artery disease. J Proteome Res. 2020;19:3993–4003.

    Article  PubMed  Google Scholar 

  25. Toczylowski K, Hirnle T, Harasiuk D, Zabielski P, Lewczuk A, Dmitruk I, et al. Plasma concentration and expression of adipokines in epicardial and subcutaneous adipose tissue are associated with impaired left ventricular filling pattern. J Transl Med. 2019;17:310.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saxton SN, Withers SB, Nyvad J, Mazur A, Matchkov V, Heagerty AM, et al. Perivascular adipose tissue contributes to the modulation of vascular tone in vivo. J Vasc Res. 2019;56:320–32.

    Article  CAS  PubMed  Google Scholar 

  27. Jovanovic K, Siebeck M, Gropp R. The route to pathologies in chronic inflammatory diseases characterized by T helper type 2 immune cells. Clin Exp Immunol. 2014;178:201–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watanabe M, Toyomura T, Tomiyama M, Wake H, Liu K, Teshigawara K, et al. Advanced glycation end products (AGEs) synergistically potentiated the proinflammatory action of lipopolysaccharide (LPS) and high mobility group box-1 (HMGB1) through their direct interactions. Mol Biol Rep. 2020;47(9):7153–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ponte-Negretti CI, Wyss FS, Piskorz D, Santos RD, Villar R, Lorenzatti A, et al. Latin American Consensus on management of residual cardiometabolic risk. A consensus paper prepared by the Latin American Academy for the Study of Lipids and Cardiometabolic Risk (ALALIP) endorsed by the Inter-American Society of Cardiology (IASC), the International Atherosclerosis Society (IAS), and the Pan-American College of Endothelium (PACE). Arch Cardiol Mex. 2021;92:99.

    PubMed Central  Google Scholar 

  30. de Matos MA, Garcia BCC, Vieira DV, de Oliveira MFA, Costa KB, Aguiar PF, et al. High-intensity interval training reduces monocyte activation in obese adults. Brain Behav Immun. 2019;80:818–24.

    Article  PubMed  Google Scholar 

  31. SahBandar IN, Ndhlovu LC, Saiki K, Kohorn LB, Peterson MM, D’Antoni ML, et al. Relationship between circulating inflammatory monocytes and cardiovascular disease measures of carotid intima thickness. J Atheroscler Thromb. 2020;27:441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cruz L, Garcia-Macedo R, Garcia-Valerio Y, Gutierrez M, Medina-Navarro R, Duran G, Wacher N, Kumate J. low adiponectin levels predict type 2 diabetes in Mexican children. Diabetes Care. 2004;27:1451–3.

    Article  PubMed  Google Scholar 

  33. Chen T, Tu M, Huang L, Zheng Y. Association of serum adiponectin with intima media thickness of dorsalis pedis artery and macroangiopathy in type 2 diabetes. J Diabetes Res. 2020;2020:4739271.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metab. 2013;17:851–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med. 2000;343:338–44.

    Article  CAS  PubMed  Google Scholar 

  36. Delves PJ, Roitt D. The immune system–first of two parts. N Engl J Med. 2000;343:37–50.

    Article  CAS  PubMed  Google Scholar 

  37. Purcell AW, Ramarathinam SH, Ternette N. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Nat Protoc. 2019;14(6):1687–707.

    Article  CAS  PubMed  Google Scholar 

  38. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol. 2018;18:325–39.

    Article  CAS  PubMed  Google Scholar 

  39. McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 2017;127:5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Grant R, Youm YH, Ravussin A, Dixit VD. Quantification of adipose tissue leukocytosis in obesity. Methods Mol Biol. 2013;1040:195–209.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sárvári AK, Van Hauwaert EL, Markussen LK, Gammelmark E, Marcher AB, Ebbesen MF, et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 2021;33:437–53.e5.

    Article  PubMed  Google Scholar 

  42. Liu L, Inouye KE, Allman WR, Coleman AS, Siddiqui S, Hotamisligil GS, et al. TACI-deficient macrophages protect mice against metaflammation and obesity-induced dysregulation of glucose homeostasis. Diabetes. 2018;67:1589–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wara AK, Wang S, Wu C, Fang F, Haemmig S, Weber BN, et al. KLF10 Deficiency in CD4(+) T cells triggers obesity, insulin resistance, and fatty liver. Cell Rep. 2020;33:108550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.

    Article  CAS  PubMed  Google Scholar 

  45. Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11:738–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar D, Shankar K, Patel S, Gupta A, Varshney S, Gupta S, et al. Chronic hyperinsulinemia promotes meta-inflammation and extracellular matrix deposition in adipose tissue: implications of nitric oxide. Mol Cell Endocrinol. 2018;477:15–28.

    Article  CAS  PubMed  Google Scholar 

  47. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:75–184.

    Article  Google Scholar 

  48. McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41:36–48.

    Article  CAS  PubMed  Google Scholar 

  49. Kumar D, Pandya SK, Varshney S, Shankar K, Rajan S, Srivastava A, et al. Temporal immunometabolic profiling of adipose tissue in HFD-induced obesity: manifestations of mast cells in fibrosis and senescence. Int J Obes. 2019;43:1281–94.

    Article  CAS  Google Scholar 

  50. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes. 2009;58:2574–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK, et al. Pro-inflammatory CD11cCCD206C adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes. 2010;59:1648–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu L, He F, Huang M, Peng M, Zhou Z, Liu F, et al. NFATc3 deficiency reduces the classical activation of adipose tissue macrophages. J Mol Endocrinol. 2018;61:79–89.

    Article  CAS  PubMed  Google Scholar 

  53. Kotnik P, Keuper M, Wabitsch M, Fischer-Posovszky P. Interleukin-1β downregulates RBP4 secretion in human adipocytes. PLoS One. 2013;8:e57796. https://doi.org/10.1371/journal.pone.0057796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Constant VA, Gagnon A, Landry A, Sorisky A. Macrophage-conditioned medium inhibits the differentiation of 3T3-L1 and human abdominal preadipocytes. Diabetologia. 2006;49:1402–11.

    Article  CAS  PubMed  Google Scholar 

  55. Engin A. Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: hypoxia hypothesis. Adv Exp Med Biol. 2017;960:305–26.

    Article  CAS  PubMed  Google Scholar 

  56. Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, et al. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab. 2012;15:518–33.

    Article  CAS  PubMed  Google Scholar 

  57. Reidy PT, Yonemura NM, Madsen JH, McKenzie AI, Mahmassani ZS, Rondina MT, et al. An accumulation of muscle macrophages is accompanied by altered insulin sensitivity after reduced activity and recovery. Acta Physiol. 2019;226:e13251.

    Article  Google Scholar 

  58. He W, Yuan T, Maedler K. Macrophage-associated pro-inflammatory state in human islets from obese individuals. Nutr Diab. 2019;9:36.

    Article  Google Scholar 

  59. Kiran S, Kumar V, Kumar S, Price RL, Singh UP. Adipocyte, immune cells, and miRNA crosstalk: a novel regulator of metabolic dysfunction and obesity. Cells. 2021;10:1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abdel-Hamid AAM, Firgany AEL. Correlation between pancreatic mast cells and the low grade inflammation in adipose tissue of experimental prediabetes. Acta Histochem. 2019;121:35–42.

    Article  CAS  PubMed  Google Scholar 

  61. Yabut JM, Desjardins EM, Chan EJ, Day EA, Leroux JM, Wang B, et al. Genetic deletion of mast cell serotonin synthesis prevents the development of obesity and insulin resistance. Nat Commun. 2020;11(1):463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Żelechowska P, Agier J, Kozłowska E, Brzezińska-Błaszczyk E. Mast cells participate in chronic low-grade inflammation within adipose tissue. Obes Rev. 2018;19:686–97.

    Article  PubMed  Google Scholar 

  63. Gutierrez DA, Muralidhar S, Feyerabend TB, Herzig S, Rodewald HR. Hematopoietic kit deficiency, rather than lack of mast cells, protects mice from obesity and insulin resistance. Cell Metab. 2015;21:678–91.

    Article  CAS  PubMed  Google Scholar 

  64. Chmelar J, Chatzigeorgiou, Kyoung-Jin C, Prucnal M, Voehringer D, Roers, et al. No role for mast cells in obesity-related metabolic dysregulation. Front Immunol. 2016;7:524.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yoon J, Um HN, Jang J, Bae YA, Park WJ, Kim HJ, et al. Eosinophil activation by toll-like receptor 4 ligands regulates macrophages polarization. Front Cell Dev Biol. 2019;7:329.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kohlgruber AC, Gal-Oz ST, LaMarche NM, Shimazaki M, Duquette D, Koay HF, et al. gammadelta T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat Immunol. 2018;19:464–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li Y, Woods K, Parry-Strong A, Anderson RJ, Capistrano C, Gestin A, et al. Distinct dysfunctional states of circulating innate-like t cells in metabolic disease. Front Immunol. 2020;11:448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Herck MA, Weyler J, Kwanten WJ, Dirinck EL, De Winter BY, Francque SM, et al. The differential roles of T cells in non-alcoholic fatty liver disease and obesity. Front Immunol. 2019;10:82.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rampoldi F, Ullrich L, Prinz I. Revisiting the interaction of gammadelta T-cells and B-cells. Cells. 2020;9:743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo H, Xu BC, Yang XG, Peng D, Wang Y, Liu XB, et al. A high frequency of peripheral blood IL-22(+) CD4(+) T cells in patients with new onset type 2 diabetes mellitus. J Clin Lab Anal. 2016;30:95–102.

    Article  PubMed  Google Scholar 

  71. Goldberg EL, Shchukina I, Asher JL, Sidorov S, Artyomov MN, Dixit VD. Ketogenesis activates metabolically protective gammadelta T cells in visceral adipose tissue. Nat Metab. 2020;2:50–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15(8):921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, et al. Obesity predisposes to Th17 bias. Eur J Immunol. 2009;39:2629–35.

    Article  CAS  PubMed  Google Scholar 

  74. Tao L, Liu H, Gong Y. Role and mechanism of the Th17/Treg cell balance in the development and progression of insulin resistance. Mol Cell Biochem. 2019;459:183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mogilenko DA, Caiazzo R, L’homme L, Pineau L, Raverdy V, Noulette J, et al. IFNgamma-producing NK cells in adipose tissue are associated with hyperglycemia and insulin resistance in obese women. Int J Obes. 2021;45:1607–17.

    Article  CAS  Google Scholar 

  76. Wu L, Parekh VV, Gabriel CL, Bracy DP, Marks-Shulman PA, Tamboli RA, et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc Natl Acad Sci U S A. 2012;109:E1143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018;128:1538–50.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pirola L, Ferraz JC. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World J Biol Chem. 2017;8:120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Talwar H, Bouhamdan M, Bauerfeld C, Talreja J, Aoidi R, Houde N, et al. MEK2 Negatively regulates lipopolysaccharide-mediated IL-1beta production through HIF-1alpha expression. J Immunol. 2019;202:1815–25.

    Article  CAS  PubMed  Google Scholar 

  80. Surendar J, Karunakaran I, Frohberger SJ, Koschel M, Hoerauf A, Hübner MP. Macrophages mediate increased CD8 T cell inflammation during weight loss in formerly obese mice. Front Endocrinol. 2020;11:257.

    Article  Google Scholar 

  81. Mahmoud F, Al-Ozairi E. Inflammatory cytokines and the risk of cardiovascular complications in type 2 diabetes. Dis Markers. 2013;35:235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012;486:549–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu Z, Wang G, Zhu Y, Liu R, Song J, Ni Y, et al. PPAR-gamma agonist ameliorates liver pathology accompanied by increasing regulatory B and T cells in high-fat-diet mice. Obesity. 2017;25:581–90.

    Article  CAS  PubMed  Google Scholar 

  84. Sandoval H, Kodali S, Wang J. Regulation of B cell fate, survival, and function by mitochondria and autophagy. Mitochondrion. 2018;41:58–65.

    Article  CAS  PubMed  Google Scholar 

  85. Kaminski DA, Randall TD. Adaptive immunity and adipose tissue biology. Trends Immunol. 2010;31:384–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meza-Perez S, Randall TD. Immunological functions of the omentum. Trends Immunol. 2017;38:526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Srikakulapu P, Upadhye A, Drago F, Perry HM, Bontha SV, McSkimming C, et al. Chemokine receptor-6 promotes B-1 cell trafficking to perivascular adipose tissue, local IgM production and atheroprotection. Front Immunol. 2021;12:636013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Duffaut C, Galitzky J, Lafontan M, Bouloumie A. Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem Biophys Res Commun. 2009;384:482–5.

    Article  CAS  PubMed  Google Scholar 

  89. Frasca D, Diaz A, Romero M, Vazquez T, Blomberg BB. Obesity induces pro-inflammatory B cells and impairs B cell function in old mice. Mech Ageing Dev. 2017;162:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pham TD, Change MY, Roskin KM, Jackson KJL, Nguyen KD, Glanville J, et al. High-fat diet induces systemic B-cell repertoire changes associated with insulin resistance. Mucosal Immunol. 2017;10:1468–79.

    Article  CAS  PubMed  Google Scholar 

  91. Wang Y, Liu J, Burrows PD, Wang JY. B cell development and maturation. Adv Exp Med Biol. 2020;1254:1–22.

    Article  CAS  PubMed  Google Scholar 

  92. Srikakulapu P, Upadhye A, Rosenfeld SM, Marshall MA, McSkimming C, Hickman AW, et al. Perivascular adipose tissue harbors atheroprotective IgM-producing B cells. Front Physiol. 2017;8:719.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Defuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A. 2013;110:5133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frasca D, Blomberg BB. Adipose tissue inflammation induces B cell inflammation and decreases B cell function in aging. Front Immunol. 2017;8:1003.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Srikakulapu P, McNamara CA. B lymphocytes and adipose tissue inflammation. Arterioscler Thromb Vasc Biol. 2020;40:1110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin Exp Immunol. 2013;171:8e19.

    Google Scholar 

  97. O’Rourke RW, Meyer KA, Neeley CK, Gaston GD, Sekhri P, Szumowski M, et al. Systemic NK cell ablation attenuates intra-abdominal adipose tissue macrophage infiltration in murine obesity. Obesity. 2014;22:2109–14.

    Article  PubMed  Google Scholar 

  98. Theurich S, Tsaousidou E, Hanssen R, Lempradl AM, Mauer J, Timper K, et al. IL-6/Stat3-dependent induction of a distinct, obesity-associated NK cell subpopulation deteriorates energy and glucose homeostasis. Cell Metab. 2017;26:171–84.e6.

    Article  CAS  PubMed  Google Scholar 

  99. Lee J, Dieckmann NMG, Edgar JR, Griffiths GM, Siegel RM. Fas Ligand localizes to intraluminal vesicles within NK cell cytolytic granules and is enriched at the immune synapse. Immun Inflamm Dis. 2018;6:312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wensveen FM, Jelenčić V, Valentić S, Šestan M, Wensveen TT, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376–85.

    Article  CAS  PubMed  Google Scholar 

  101. Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity. 2012;37:574–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huh JY, Park YJ, Kim JB. Adipocyte CD1d determines adipose inflammation and insulin resistance in obesity. Adipocyte. 2018;7:129–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Rakhshandehroo M, van Eijkeren RJ, Gabriel TL, de Haar C, Gijzel SMW, Hamers N, et al. Adipocytes harbor a glucosylceramide biosynthesis pathway involved in iNKT cell activation. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:1157–67.

    Article  CAS  PubMed  Google Scholar 

  104. Kim HM, Lee BR, Lee ES, Kwon MH, Huh JH, Kwon BE, et al. iNKT cells prevent obesity-induced hepatic steatosis in mice in a C-C chemokine receptor 7-dependent manner. Int J Obes. 2018;42:270–9.

    Article  CAS  Google Scholar 

  105. Subramanian S, Goodspeed L, Wang S, Ding Y, O’Brien KD, Getz GS, et al. Deficiency of invariant natural killer T cells does not protect against obesity but exacerbates atherosclerosis in Ldlr(-/-) mice. Int J Mol Sci. 2018;19:510.

    Article  PubMed  PubMed Central  Google Scholar 

  106. van Eijkeren RJ, Morris I, Borgman A, Markovska A, Kalkhoven E. Cytokine output of adipocyte-iNKT cell interplay is skewed by a lipid-rich microenvironment. Front Endocrinol. 2020;11:479.

    Article  Google Scholar 

  107. López S, García-Serrano S, Gutierrez-Repiso C, Rodríguez-Pacheco F, Ho-Plagaro A, Santiago-Fernandez C, et al. Tissue-specific phenotype and activation of iNKT cells in morbidly obese subjects: interaction with adipocytes and effect of bariatric surgery. Obes Surg. 2018;28:2774–82.

    Article  PubMed  Google Scholar 

  108. Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. Int Rev Cell Mol Biol. 2019;349:55–151.

    Article  CAS  PubMed  Google Scholar 

  109. Antony A, Lian Z, Perrard XD, Perrard J, Liu H, Cox AR, et al. Deficiency of Stat1 in CD11c(+) cells alters adipose tissue inflammation and improves metabolic dysfunctions in mice fed a high-fat diet. Diabetes. 2021;70:720–32.

    Article  CAS  PubMed  Google Scholar 

  110. Chen Y, Tian J, Tian X, Tang X, Rui K, Tong J, et al. Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS One. 2014;9:e92450.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhang J, Chen X, Liu W, Zhang C, Xiang Y, Liu S, et al. Metabolic surgery improves the unbalanced proportion of peripheral blood myeloid dendritic cells and T lymphocytes in obese patients. Eur J Endocrinol. 2021;185:819.

    Article  CAS  PubMed  Google Scholar 

  112. Kojta I, Chacińska M, Błachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients. 2020;12:1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ying W, Fu W, Lee YS, Olefsky JM. The role of macrophages in obesity-associated islet inflammation and beta-cell abnormalities. Rev Endocrinol. 2020;16:81–90.

    Google Scholar 

  114. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–40.

    Article  CAS  PubMed  Google Scholar 

  115. Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008;114:183–94.

    Article  CAS  PubMed  Google Scholar 

  116. Vanderford NL. Defining the regulation of IL-1beta- and CHOP-mediated beta-cell apoptosis. Islets. 2010;2:334–6.

    Article  PubMed  Google Scholar 

  117. Nakamura A, Shikata K, Hiramatsu M, Nakatou T, Kitamura T, Wada J, et al. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care. 2005;28:2890–5.

    Article  CAS  PubMed  Google Scholar 

  118. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:141–50.

    Article  CAS  PubMed  Google Scholar 

  119. Qu W, Han C, Li M, Zhang J, Jiang Z. Anti-TNF-alpha antibody alleviates insulin resistance in rats with sepsis-induced stress hyperglycemia. J Endocrinol Invest. 2018;41:455–63.

    Article  CAS  PubMed  Google Scholar 

  120. Lo J, Bernstein LE, Canavan B, Torriani M, Jackson MB, Ahima RS, Grinspoon SK. Effects of TNF-alpha neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. Am J Physiol Endocrinol Metab. 2007;293:E102–9.

    Article  CAS  PubMed  Google Scholar 

  121. Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab. 1998;83:2907–10.

    CAS  PubMed  Google Scholar 

  122. Maekawa M, Tadaki H, Tomimoto D, Okuma C, Sano R, Ishii Y, et al. A novel TNF-alpha converting enzyme (TACE) selective inhibitor JTP-96193 prevents insulin resistance in KK-A(y) type 2 diabetic mice and diabetic peripheral neuropathy in type 1 diabetic mice. Biol Pharm Bull. 2019;42:1906–12.

    Article  CAS  PubMed  Google Scholar 

  123. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    Article  CAS  PubMed  Google Scholar 

  124. Akash MSH, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of Type 2 diabetes mellitus. J Cell Biochem. 2018;119:105–10.

    Article  CAS  PubMed  Google Scholar 

  125. Alipourfard I, Datukishvili N, Mikeladze D. TNF-alpha downregulation modifies insulin receptor substrate 1 (IRS-1) in metabolic signaling of diabetic insulin-resistant hepatocytes. Mediat Inflamm. 2019;2019:3560819.

    Article  Google Scholar 

  126. Zhang HH, Halbleib M, Ahmad F, Manganiello VC, Greenberg AS. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes. 2002;51:2929–35.

    Article  CAS  PubMed  Google Scholar 

  127. Xu M, Ge C, Qin Y, Gu T, Lv J, Wang S, et al. Activated TNF-alpha/RIPK3 signaling is involved in prolonged high fat diet-stimulated hepatic inflammation and lipid accumulation: inhibition by dietary fisetin intervention. Food Funct. 2019;10(3):1302–16.

    Article  CAS  PubMed  Google Scholar 

  128. Jung HS, Shimizu-Albergine M, Shen X, Kramer F, Shao D, Vivekanandan-Giri A, et al. TNF-alpha induces acyl-CoA synthetase 3 to promote lipid droplet formation in human endothelial cells. J Lipid Res. 2020;61:33–44.

    Article  CAS  PubMed  Google Scholar 

  129. Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes? Diabetologia. 2005;48:1038–50.

    Article  CAS  PubMed  Google Scholar 

  130. Pfeiler S, Winkels H, Kelm M, Gerdes N. IL-1 family cytokines in cardiovascular disease. Cytokine. 2019;122:154215.

    Article  PubMed  Google Scholar 

  131. Kim DH, Lee B, Lee J, Kim ME, Lee JS, Chung JH, et al. FoxO6-mediated IL-1beta induces hepatic insulin resistance and age-related inflammation via the TF/PAR2 pathway in aging and diabetic mice. Redox Biol. 2019;24:101184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ruscitti P, Ursini F, Cipriani P, Greco M, Alvaro S, Vasiliki L, et al. IL-1 inhibition improves insulin resistance and adipokines in rheumatoid arthritis patients with comorbid type 2 diabetes: an observational study. Medicine. 2019;98:e14587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kursawe R, Dixit VD, Scherer PE, Santoro N, Narayan D, Gordillo R, et al. A role of the inflammasome in the low storage capacity of the abdominal subcutaneous adipose tissue in obese adolescents. Diabetes. 2016;65:610–8.

    Article  CAS  PubMed  Google Scholar 

  134. Arous C, Ferreira PG, Dermitzakis ET, Halban PA. Short term exposure of beta cells to low concentrations of interleukin-1β improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression. J Biol Chem. 2015;290:6653–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hajmrle C, Smith N, Spigelman AF, Dai X, Senior L, Bautista A, et al. Interleukin-1 signaling contributes to acute islet compensation. JCI Insight. 2016;1:e86055.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nordmann TM, Dror E, Schulze F, Traub S, Berishvili E, Barbieux C, et al. The role of inflammation in beta-cell dedifferentiation. Sci Rep. 2017;7:6285.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ghiasi SM, Dahllöf MS, Osmai Y, Osmai M, Jakobsen KK, Aivazidis A, et al. Regulation of the beta-cell inflammasome and contribution to stress-induced cellular dysfunction and apoptosis. Mol Cell Endocrinol. 2018;478:106–14.

    Article  CAS  PubMed  Google Scholar 

  138. Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: structure, pathophysiological roles and inhibitors. Bioorg Med Chem. 2020;28:115327.

    Article  CAS  PubMed  Google Scholar 

  139. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell. 1994;76:241–51.

    Article  CAS  PubMed  Google Scholar 

  140. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003;278:45777–84.

    Article  CAS  PubMed  Google Scholar 

  141. Bertholdt L, Gudiksen A, Ringholm S, Pilegaard H. Impact of skeletal muscle IL-6 on subcutaneous and visceral adipose tissue metabolism immediately after high- and moderate-intensity exercises. Pflugers Arch. 2020;472:217–33.

    Article  CAS  PubMed  Google Scholar 

  142. Wueest S, Konrad D. The controversial role of IL-6 in adipose tissue on obesity-induced dysregulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2020;319:E607–13.

    Article  CAS  PubMed  Google Scholar 

  143. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265:621–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82:4196–200.

    CAS  PubMed  Google Scholar 

  145. Sindhu S, Thomas R, Shihab P, Sriraman D, Behbehani K, Ahmad R. Obesity is a positive modulator of IL-6R and IL-6 expression in the subcutaneous adipose tissue: significance for metabolic inflammation. PLoS One. 2015;10:e0133494.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145:2273–82.

    Article  CAS  PubMed  Google Scholar 

  147. Xu E, Pereira MMA, Karakasilioti I, Theurich S, Al-Maarri M, Rappl G, et al. Temporal and tissue-specific requirements for T-lymphocyte IL-6 signalling in obesity-associated inflammation and insulin resistance. Nat Commun. 2017;8:14803.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Akbari M, Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology. 2018;26:685–98.

    Article  CAS  PubMed  Google Scholar 

  149. Chen X, Gong Q, Wang CY, Zhang K, Ji X, Chen YX, et al. High-fat diet induces distinct metabolic response in interleukin-6 and tumor necrosis factor-alpha knockout mice. J Interf Cytokine Res. 2016;36:580–8.

    Article  CAS  Google Scholar 

  150. Whitham M, Pal M, Petzold T, Hjorth M, Egan CL, Brunner JS, et al. Adipocyte-specific deletion of IL-6 does not attenuate obesity-induced weight gain or glucose intolerance in mice. Am J Physiol Endocrinol Metab. 2019;317:E597–604.

    Article  CAS  PubMed  Google Scholar 

  151. Kraakman MJ, Kammoun HL, Allen TL, Deswaerte V, Henstridge DC, Estevez E, et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 2015;21:403–16.

    Article  CAS  PubMed  Google Scholar 

  152. Uciechowski P, Dempke WCM. Interleukin-6: a masterplayer in the cytokine network. Oncology. 2020;98:131–7.

    Article  CAS  PubMed  Google Scholar 

  153. Huang X, Li Y, Fu M, Xin HB. Polarizing macrophages in vitro. Methods Mol Biol. 2018;1784:119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang J, Wu Y, Gao Z. Correlations of C-reactive protein (CRP), interleukin-6 (IL-6), and insulin resistance with cerebral infarction in hypertensive patients. Med Sci Monit. 2019;25:1506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lowe G, Mark W, Graham H, Ann R, Qiang L, Stephen H, et al. Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: the ADVANCE study. Diabetes. 2014;63:1115–23.

    Article  CAS  PubMed  Google Scholar 

  156. Peppler WT, Townsend LK, Meers GM, Panasevich MR, MacPherson REK, Rector RS, et al. Acute administration of IL-6 improves indices of hepatic glucose and insulin homeostasis in lean and obese mice. Am J Physiol Gastrointest Liver Physiol. 2019;316:G166–78.

    Article  CAS  PubMed  Google Scholar 

  157. Cullen T, Thomas AW, Webb R, Hughes MG. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume. Appl Physiol Nutr Metab. 2016;41:803–8.

    Article  CAS  PubMed  Google Scholar 

  158. Pinto AP, da Rocha AL, Kohama EB, Gaspar RC, Simabuco FM, Frantz FG, et al. Exhaustive acute exercise-induced ER stress is attenuated in IL-6-knockout mice. J Endocrinol. 2019;240:181–93.

    Article  CAS  PubMed  Google Scholar 

  159. daRocha AL, Pereira BC, Teixeira GR, Pinto AP, Frantz FG, Elias LL, et al. Treadmill slope influences inflammation, changes in the fiber composition, as well as androgen and glucocorticoid receptor expressions in the skeletal muscle of overtrained mice. Front Immunol. 2017;8:1378.

    Article  Google Scholar 

  160. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24:113–9.

    Article  CAS  PubMed  Google Scholar 

  161. Wedell-Neergaard AS, Lang Lehrskov L, Christensen RH, Legaard GE, Dorph E, Larsen MK, et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 2019;29:844–55.e3.

    Article  CAS  PubMed  Google Scholar 

  162. Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in health and disease. Int J Mol Sci. 2019;20:649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Netea MG, Joosten LA, Lewis E, Jensen DR, Voshol PJ, Kullberg BJ, et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med. 2006;12:65–6.

    Article  Google Scholar 

  164. Hohenester S, Kanitz V, Schiergens T, Einer C, Nagel J, Wimmer R, et al. IL-18 but Not IL-1 Signaling is pivotal for the initiation of liver injury in murine non-alcoholic fatty liver disease. Int J Mol Sci. 2020;21:8602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zaharieva E, Kamenov Z, Velikova T, Tsakova A, El-Darawish Y, Okamura H. Interleukin-18 serum level is elevated in type 2 diabetes and latent autoimmune diabetes. Endocr Connect. 2018;7:179–85.

    Article  CAS  PubMed  Google Scholar 

  166. Maravilla Domínguez MA, Zermeño González ML, Zavaleta Muñiz ER, Montes Varela VA, Irecta Nájera CA, Fajardo Robledo NS, et al. Inflammation and atherogenic markers in patients with type 2 diabetes mellitus. Clin Invest Arteriosc. 2021;34:105–12.

    Google Scholar 

  167. Bankul A, Mitra P, Suri S, Saxena I, Shukla R, Shukla K, et al. Increased serum IL-18 levels and IL-18R expression in newly diagnosed type 2 diabetes mellitus. Minerva Endocrinol. 2020;

    Google Scholar 

  168. Ahmad R, Thomas R, Kochumon S, Sindhu S. Increased adipose tissue expression of IL-18R and its ligand IL-18 associates with inflammation and insulin resistance in obesity. Immun Inflamm Dis. 2017;5:318–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gateva A, Kamenov Z, Karamfilova V, Assyov Y, Velikova T, El-Darawish Y, et al. Higher levels of IL-18 in patients with prediabetes compared to obese normoglycaemic controls. Arch Physiol Biochem. 2020;126:449–52.

    Article  CAS  PubMed  Google Scholar 

  170. Liu SY, Chen J, Li YF. Clinical significance of serum interleukin-8 and soluble tumor necrosis factor-like weak inducer of apoptosis levels in patients with diabetic nephropathy. J Diab Invest. 2018;9:1182–8.

    Article  CAS  Google Scholar 

  171. Angelova P, Kamenov Z, Tsakova A, El-Darawish Y, Okamura H. Interleukin-18 and testosterone levels in men with metabolic syndrome. Aging Male. 2018;21:130–7.

    Article  CAS  PubMed  Google Scholar 

  172. Blankenberg S, Luc G, Ducimetiere P, Arveiler D, Ferrières J, Amouyel P, et al. Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation. 2003;108:2453–9.

    Article  CAS  PubMed  Google Scholar 

  173. Åkerblom A, James SK, Lakic TG, Becker RC, Cannon CP, Steg PG, PLATO Investigators. Interleukin-18 in patients with acute coronary syndromes. Clin Cardiol. 2019;42:1202–9.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Murphy AJ, Kraakman MJ, Kammoun HL, Dragoljevic D, Lee MK, Lawlor KE, et al. IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome. Cell Metab. 2016;23:155–64.

    Article  CAS  PubMed  Google Scholar 

  175. Tran DQ. TGF-β: the sword, the wand, and the shield of FOXP3+ regulatory T cells. J Mol Cell Biol. 2012;4:29–37.

    Article  CAS  PubMed  Google Scholar 

  176. Morikawa M, Derynck R, Miyazono K. TGF-beta and the TGF-beta Family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8:a021873.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity. 2007;26:579–91.

    Article  CAS  PubMed  Google Scholar 

  178. Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-beta: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol. 2017;9:a022236.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zhao B, Xu S, Dong X, Lu C, Springer TA. Prodomain-growth factor swapping in the structure of pro-TGF-beta1. J Biol Chem. 2018;293:1579–89.

    Article  CAS  PubMed  Google Scholar 

  180. Herder C, Zierer A, Koening W, Roden M, Meisinger C, Thorand B. Transforming growth factor-beta1 and incident type 2 diabetes: results from the MONICA/KORA case-cohort study, 1984-2002. Diabetes Care. 2009;32:1921–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lee JH, Mellado-Gil JM, Bahn YJ, Pathy SM, Zhang YE, Rane SG. Protection from beta-cell apoptosis by inhibition of TGF-beta/Smad3 signaling. Cell Death Dis. 2020;11:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yadav H, Devalaraja S, Chung ST, Rane SG. TGF-beta1/Smad3 pathway targets PP2A-AMPK-FoxO1 signaling to regulate hepatic gluconeogenesis. J Biol Chem. 2017;292:3420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P. Resistin: a reappraisal. Mech Ageing Dev. 2019;178:46–63.

    Article  CAS  PubMed  Google Scholar 

  184. Samaha FF, Szapary PO, Iqbal N, Williams MM, Bloedon LT, Kochar A, et al. Effects of rosiglitazone on lipids, adipokines, and inflammatory markers in nondiabetic patients with low high-density lipoprotein cholesterol and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2006;26:624–30.

    Article  CAS  PubMed  Google Scholar 

  185. Rawal K, Purohit KM, Patel TP, Karont N, Gupta S. Resistin mitigates stemness and metabolic profile of human adipose-derived mesenchymal stem cells via insulin resistance. Cytokine. 2021;138:155374.

    Article  CAS  PubMed  Google Scholar 

  186. Tripathi D, Kant S, Pandey S, Ehtesham NZ. Resistin in metabolism, inflammation, and disease. FEBS J. 2020;287:3141–9.

    Article  CAS  PubMed  Google Scholar 

  187. Lazar MA. Resistin- and obesity-associated metabolic diseases. Horm Metab Res. 2007;39:710–6.

    Article  CAS  PubMed  Google Scholar 

  188. Liu SX, Zheng F, Xie KL, Xie MR, Jiang LJ, Cai Y. Exercise reduces insulin resistance in type 2 diabetes mellitus via mediating the lncRNA MALAT1/MicroRNA-382-3p/resistin axis. Mol Ther Nucl Acids. 2019;18:34–44.

    Article  CAS  Google Scholar 

  189. Zayani N, Hamdouni H, Boumaiza I, Achour O, Neffati F, Omezzine A, et al. Resistin polymorphism, plasma resistin levels and obesity in Tunisian volunteers. J Clin Lab Anal. 2018;32:e22227.

    Article  PubMed  Google Scholar 

  190. Wijetunge S, Ratnayake RMCJ, Kotakadeniya HMSRB, Rosairo S, Lbracht-Schulte K, Ramalingam L, et al. Association between serum and adipose tissue resistin with dysglycemia in South Asian women. Nutr Diab. 2019;9:5.

    Article  Google Scholar 

  191. Christou KA, Christou GA, Karamoutsios A, Vartholomatos G, Gartzonika K, Tsatsoulis A, et al. The regulation of serum resistin levels in metabolically healthy and unhealthy obese individuals. Hormones. 2020;19:523–9.

    Article  PubMed  Google Scholar 

  192. Onalan E, Yakar B, Barım AO, Gursu MF. Serum apelin and resistin levels in patients with impaired fasting glucose, impaired glucose tolerance, type 2 diabetes, and metabolic syndrome. Endocrynol Pol. 2020;71:319–24.

    CAS  Google Scholar 

  193. Zou CC, Liang L, Hong F, Zhao ZY. Serum adiponectin, resistin levels and non-alcoholic fatty liver disease in obese children. Endocr J. 2005;52:519–24.

    Article  CAS  PubMed  Google Scholar 

  194. Zurita-Cruz JN, Medina-Bravo P, Manuel-Apolinar L, Damasio-Santana L, Wakida-Kusunoki G, Padilla-Rojas M, et al. Resistin levels are not associated with obesity in central precocious puberty. Peptides. 2018;109:9–13.

    Article  CAS  PubMed  Google Scholar 

  195. Chen BH, Song Y, Ding EL, Roberts CK, Manson JE, Rifai N, et al. Circulating levels of resistin and risk of type 2 diabetes in men and women: results from two prospective cohorts. Diabetes Care. 2009;32(2):329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kapłon-Cieślicka A, Tymińska A, Rosiak M, Ozierański K, Peller M, Eyileten C, et al. Resistin is a prognostic factor for death in type 2 diabetes. Diabetes Metab Res Rev. 2019;35:e3098.

    PubMed  Google Scholar 

  197. Zuniga MC, Raghuraman G, Hitchner E, Weyand C, Robinson W, Zhou W. PKC-epsilon and TLR4 synergistically regulate resistin-mediated inflammation in human macrophages. Atherosclerosis. 2017;259:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hsu WY, Chao YW, Tsai YL, Lien CC, Chang CF, Deng MC, et al. Resistin induces monocyte-endothelial cell adhesion by increasing ICAM-1 and VCAM-1 expression in endothelial cells via p38MAPK-dependent pathway. J Cell Physiol. 2011;226:2181–8.

    Article  CAS  PubMed  Google Scholar 

  199. Luo J, Huang L, Wang A, Liu Y, Cai R, Li W, et al. Corrigendum: Resistin-induced endoplasmic reticulum stress contributes to the impairment of insulin signaling in endothelium. Front Pharmacol. 2018;9:1446.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Sabry MM, Dawood AF, Rashed LA, Sayed SM, Hassan S, Younes SF. Relation between resistin, PPAR-gamma, obesity and atherosclerosis in male albino rats. Arch Physiol Biochem. 2020;126:389–98.

    Article  CAS  PubMed  Google Scholar 

  201. Wang LK, Wang H, Wu XL, Shi L, Yang RM, Wang YC. Relationships among resistin, adiponectin, and leptin and microvascular complications in patients with type 2 diabetes mellitus. J Int Med Res. 2020;48:300060519870407.

    CAS  PubMed  Google Scholar 

  202. Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI, et al. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J Cell Mol Med. 2010;14:1419–31.

    Article  CAS  PubMed  Google Scholar 

  203. Avtanski D, Chen K, Poretsky L. Resistin and adenylyl cyclase-associated protein 1 (CAP1) regulate the expression of genes related to insulin resistance in BNL CL.2 mouse liver cells. Data Brief. 2019;25:104112.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin. 2018;39:1176–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin functions in infectious diseases. Front Immunol. 2018;9:2741.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Schepers J, Gebhardt C, Bracke A, Eiffler I, von Bohlen Und Halbach O. Structural and functional consequences in the amygdala of leptin-deficient mice. Cell Tissue Res. 2020;382:421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lucka A, Wysokiński A. Association between adiposity and fasting serum levels of appetite-regulating peptides: leptin, neuropeptide Y, desacyl ghrelin, peptide YY(1-36), obestatin, cocaine and amphetamine-regulated transcript, and agouti-related protein in nonobese participants. Chin J Physiol. 2019;62:217–25.

    Article  CAS  PubMed  Google Scholar 

  208. Wang P, Loh KH, Wu M, Morgan DA, Schneeberger M, Yu X, et al. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature. 2020;583:839–44.

    Article  CAS  PubMed  Google Scholar 

  209. Zhao S, Li N, Zhu Y, Straub L, Zhang Z, Wang MY, et al. Partial leptin deficiency confers resistance to diet-induced obesity in mice. Mol Metab. 2020;37:100995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Peelman F, Zabeau L, Moharana K, Savvides SN, Tavernier J. 20 years of leptin: insights into signaling assemblies of the leptin receptor. J Endocrinol. 2014;223:T9–23.

    Article  CAS  PubMed  Google Scholar 

  211. Di Spiezio A, Sandin ES, Dore R, Müller-Fielitz H, Storck SE, Bernau M, et al. The LepR-mediated leptin transport across brain barriers controls food reward. Mol Metab. 2018;8:13–22.

    Article  PubMed  Google Scholar 

  212. Hayden MR, Banks WA. Deficient leptin cellular signaling plays a key role in brain ultrastructural remodeling in obesity and type 2 diabetes mellitus. Int J Mol Sci. 2021;22:5427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type2 diabetes. Diab Rev. 2014;10:131–45.

    Article  CAS  Google Scholar 

  214. Chen SM, Peng YJ, Wang CC, Su SL, Salter DM, Lee HS. Dexamethasone down-regulates osteocalcin in bone cells through leptin pathway. Int J Med Sci. 2018;15:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Caron A, Lee S, Elmquist JK, Gautron L. Leptin and brain-adipose crosstalks. Nat Rev Neurosci. 2018;19:153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Marques-Oliveira GH, Silva TM, Lima WG, Valadares HMS, Chaves VE. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides. 2018;106:49–58.

    Article  CAS  PubMed  Google Scholar 

  217. Liu J, Yang X, Yu S, Zheng R. The leptin resistance. Adv Exp Med Biol. 2018;1090:145–63.

    Article  CAS  PubMed  Google Scholar 

  218. Coppola A, Capuani B, Pacifici F, Pastore D, Arriga R, Bellia A, et al. Activation of peripheral blood mononuclear cells and leptin secretion: new potential role of interleukin-2 and high mobility group box (HMGB)1. Int J Mol Sci. 2021;22:7988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Pan WW, Myers MG Jr. Leptin and the maintenance of elevated body weight. Nat Rev Neurosci. 2018;19:95–105.

    Article  CAS  PubMed  Google Scholar 

  220. Sánchez-Margalet V, Martín-Romero C, Santos-Alvarez J, Goberna R, Najib S, Gonzalez-Yanes C. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol. 2003;133:11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Zarkesh-Esfahani H, Pockley AG, Wu Z, Hellewell PG, Weetman AP, Ross RJ. Leptin indirectly activates human neutrophils via induction of TNF-alpha. J Immunol. 2004;172:1809–14.

    Article  CAS  PubMed  Google Scholar 

  222. Oswald J, Büttner M, Jasinski-Bergner S, Jacobs R, Rosenstock P, Kielstein H. Leptin affects filopodia and cofilin in NK-92 cells in a dose- and time-dependent manner. Eur J Histochem. 2018;62:2848.

    PubMed  PubMed Central  Google Scholar 

  223. Souza-Almeida G, D’Avila H, Almeida PE, Luna-Gomes T, Liechocki S, Walzog B, et al. Leptin mediates in vivo neutrophil migration: involvement of tumor necrosis factor-alpha and CXCL1. Front Immunol. 2018;9:111.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110:1093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wang M, Wei J, Li H, Ouyang X, Sun X, Tang Y, et al. Leptin upregulates peripheral CD4(+)CXCR5(+)ICOS(+) T cells via increased IL-6 in rheumatoid arthritis patients. J Interf Cytokine Res. 2018;38:86–92.

    Article  CAS  Google Scholar 

  226. Meier CA, Bobbioni E, Gabay C, Assimacopoulos-Jeannet F, Golay A, Dayer JM. IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptin? J Clin Endocrinol Metab. 2002;87:1184–8.

    Article  CAS  PubMed  Google Scholar 

  227. Bruun JM, Pedersen SB, Kristensen K, Richelsen B. Effects of proinflammatory cytokines and chemokines on leptin production in human adipose tissue in vitro. Mol Cell Endocrinol. 2002;190:91–9.

    Article  CAS  PubMed  Google Scholar 

  228. Lee E, Miedzybrodzka EL, Zhang X, Hatano R, Miyamoto J, Kimura I, et al. Diet-induced obese mice and leptin-deficient Lep(ob/ob) mice exhibit increased circulating GIP levels produced by different mechanisms. Int J Mol Sci. 2019;20:4448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol. 2004;4:371–9.

    Article  PubMed  Google Scholar 

  230. Moraes-Vieira PM, Larocca RA, Bassi EJ, Peron JP, Andrade-Oliveira V, Wasinski F, et al. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells. Eur J Immunol. 2014;44:794–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Papathanassoglou E, El-Haschimi K, Li XC, Matarese G, Strom T, Mantzoros C. Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J Immunol. 2006;176:7745–52.

    Article  CAS  PubMed  Google Scholar 

  232. Tian Z, Sun R, Wei H, Gao B. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun. 2002;298:297–302.

    Article  CAS  PubMed  Google Scholar 

  233. Laue T, Wrann CD, Hoffmann-Castendiek B, Pietsch D, Hübner L, Kielstein H. Altered NK cell function in obese healthy humans. BMC Obes. 2015;2:1.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Lo CK, Lam QL, Yang, Ko KH, Sun L, Ma R, Wang S, et al. Leptin signaling protects NK cells from apoptosis during development in mouse bone marrow. Cell Mol Immunol. 2009;6:353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Volarevic A, Al-Qahtani A, Arsenijevic N, Pajovic C, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity. 2010;43:255–63.

    Article  CAS  PubMed  Google Scholar 

  236. Herder C, Brunner EJ, Rathmann W, Strassburger K, Tabák AG, Schloot NC, et al. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care. 2009;32:421–3.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Salomaa V, Havulinna A, Saarela O, Zeller T, Jousilahti P, Jula A, et al. Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS One. 2010;5:e10100.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Lind L, Sundström J, Ärnlöv J. Proteins associated with incident metabolic syndrome in population-based cohorts. Diabetol Metab Syndr. 2021;13:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356:1517–26.

    Article  CAS  PubMed  Google Scholar 

  240. Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N, et al. IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci U S A. 2009;106:13998–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Böni-Schnetzler M, Häuselmann SP, Dalmas E, Meier DT, Thienel C, Traub S, et al. beta Cell-specific deletion of the IL 1 receptor antagonist impairs beta cell proliferation and insulin secretion. Cell Rep. 2018;22:1774–86.

    Article  PubMed  Google Scholar 

  242. Dandona P, Ghanim H, Abuaysheh S, Green K, Dhindsa S, Makdissi A, et al. Exenatide increases IL-1RA concentration and induces Nrf-2-Keap-1-regulated antioxidant enzymes: relevance to beta-cell function. J Clin Endocrinol Metab. 2018;103:1180–7.

    Article  PubMed  Google Scholar 

  243. Paul WE. Interleukin 4: signaling mechanisms and control of T cell differentiation. CIBA Found Symp. 1997;204:208–16.

    CAS  PubMed  Google Scholar 

  244. Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7:485–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Hu X, Wang H, Han C, Cao X. Src promotes anti-inflammatory (M2) macrophage generation via the IL-4/STAT6 pathway. Cytokine. 2018;111:209–15.

    Article  CAS  PubMed  Google Scholar 

  246. Lin SY, Yang CP, Wang YY, Hsiao CW, Chen WY, Liao SL, et al. Interleukin-4 improves metabolic abnormalities in leptin-deficient and high-fat diet mice. Int J Mol Sci. 2020;21:4451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Choi EW, Lee M, Song JW, Kim K, Lee J, Yang J, et al. Fas mutation reduces obesity by increasing IL-4 and IL-10 expression and promoting white adipose tissue browning. Sci Rep. 2020;10:12001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Chang YH, Ho KT, Lu SH, Huang CN, Shiau MY. Regulation of glucose/lipid metabolism and insulin sensitivity by interleukin-4. Int J Obes. 2012;36:993–8.

    Article  CAS  Google Scholar 

  249. Stafeev IS, Michurina SS, Podkuychenko NV, Vorotnikov AV, Menshikov MY, Parfyonova YV. Interleukin-4 restores insulin sensitivity in lipid-induced insulin-resistant adipocytes. Biochemistry. 2018;83:498–506.

    CAS  PubMed  Google Scholar 

  250. Chang YH, Huang CN, Shiau MY. Association of IL-4 receptor gene polymorphisms with high density lipoprotein cholesterol. Cytokine. 2012;59:309–12.

    Article  CAS  PubMed  Google Scholar 

  251. Ho KT, Shiau MY, Chang YH, Chen CM, Yang SC, Huang CN. Association of IL-4 promoter polymorphisms in Taiwanese patients with type 2 diabetes mellitus. Metabolism. 2010;59:1717–22.

    Article  CAS  PubMed  Google Scholar 

  252. Han X, Boisvert WA. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb Haemost. 2015;113:505–12.

    Article  PubMed  Google Scholar 

  253. Kyriazi E, Tsiotra PC, Boutati E, Ikonomidis I, Fountoulaki K, Maratou E. Effects of adiponectin in TNF-α, IL-6, and IL-10 cytokine production from coronary artery disease macrophages. Horm Metab Res. 2011;43:537–44.

    Article  CAS  PubMed  Google Scholar 

  254. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-β and interleukin-10. Immunity. 2008;28:468–76.

    Article  PubMed  Google Scholar 

  255. Kartika R, Purnamasari D, Pradipta S, Larasati RA, Wibowo H. Impact of low interferon-γ and IL-10 levels on TNF-α and IL-6 production by PHA-induced PBMCs in type 2 Diabetes Mellitus. J Inflamm Res. 2020;13:187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Saraiva M, Vieira P, O’Garra AJ. Biology and therapeutic potential of interleukin-10. Exp Med. 2020;217:e20190418.

    Article  Google Scholar 

  257. Lynch L. Adipose invariant natural killer T cells. Immunology. 2014;142:337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. LaMarche NM, Kane H, Kohlgruber AC, Dong H, Lynch L, Brenner MB. Distinct iNKT cell populations use IFNgamma or ER stress-induced IL-10 to control adipose tissue homeostasis. Cell Metab. 2020;32:243–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Hong EG, Ko HJ, Cho YR, Kim HJ, Ma Z, Yu TY, et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes. 2009;58:2525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Dagdeviren S, Jung DY, Friedline RH, Noh HL, Kim JH, Patel PR, et al. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J. 2017;31:701–10.

    Article  CAS  PubMed  Google Scholar 

  261. Van Exel E, Gussekloo J, de Craen AJ, Frölich M, Bootsma-Van Der Wiel A, et al. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study. Diabetes. 2002;51:1088–92.

    Article  PubMed  Google Scholar 

  262. Blüher M, Fasshauer M, Tönjes A, Kratzsch J, Schön MR, Paschke R. Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma concentrations with measures of obesity, insulin sensitivity and glucose metabolism. Exp Clin Endocrinol Diabetes. 2005;113:534–7.

    Article  PubMed  Google Scholar 

  263. Zhang J, Deng Z, Jin L, Yang C, Liu J, Song H, Han W, Si Y. Spleen-derived anti-inflammatory cytokine IL-10 stimulated by adipose tissue-derived stem cells protects against type 2 diabetes. Stem Cells Dev. 2017;26:1749–58.

    Article  CAS  PubMed  Google Scholar 

  264. Welsh P, Murray HM, Ford I, Trompet S, de Craen AJ, Jukema JW, et al. Circulating interleukin-10 and risk of cardiovascular events: a prospective study in the elderly at risk. Arterioscler Thromb Vasc Biol. 2011;31:2338–44.

    Article  CAS  PubMed  Google Scholar 

  265. Francisco CO, Catai AM, Moura-Tonello SCG, Arruda LCM, Lopes SLB, Benze BG, et al. Cytokine profile and lymphocyte subsets in type 2 diabetes. Braz J Med Biol Res. 2016;49:e5062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8:1031–63.

    Article  PubMed  Google Scholar 

  267. Calle MC, Fernandez ML. Inflammation and type 2 diabetes. Diabetes Metab. 2012;38:183–91.

    Article  CAS  PubMed  Google Scholar 

  268. Li S, Shin HJ, Ding EL, VanDam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302:179–88.

    Article  CAS  PubMed  Google Scholar 

  269. Su H, Lau WB, Ma XL. Hypoadiponectinaemia in diabetes mellitus type 2: molecular mechanisms and clinical significance. Clin Exp Pharmacol Physiol. 2011;38:897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPAR gamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50:2094–9.

    Article  CAS  PubMed  Google Scholar 

  271. Liu C, Feng X, Li Q, Wang Y, Li Q, Hua M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine. 2016;86:100–9.

    Article  CAS  PubMed  Google Scholar 

  272. Borges MD, Franca EL, Fujimori M, Silva SMC, de Marchi PGF, Deluque AL, et al. Relationship between proinflammatory cytokines/chemokines and adipokines in serum of young adults with obesity. Endocr Metab Immune Disord Drug Targets. 2018;18:260–7.

    Article  CAS  PubMed  Google Scholar 

  273. Selthofer-Relatić K, Radić R, Stupin A, Šišljagić V, Bošnjak I, Bulj N, et al. Leptin/adiponectin ratio in overweight patients - gender differences. Diab Vasc Dis Res. 2018;15:260–2.

    Article  PubMed  Google Scholar 

  274. Kumari R, Kumar S, Kant R. An update on metabolic syndrome: metabolic risk markers and adipokines in the development of metabolic syndrome. Diab Metab Syndr. 2019;13:2409–17.

    Article  Google Scholar 

  275. Kopf S, Oikonomou D, von Eynaten K, Kiesser M, Zdunek D, Hess G, et al. Urinary excretion of high molecular weight adiponectin is an independent predictor of decline of renal function in type 2 diabetes. Acta Diabetol. 2014;51:479–89.

    CAS  PubMed  Google Scholar 

  276. Alnaggar ARLR, Sayed M, El-Deena KE, Gomaa M, Hamed Y. Evaluation of serum adiponectin levels in diabetic nephropathy. Diab Metab Syndr. 2019;13:128–31.

    Article  Google Scholar 

  277. Przybyciński J, Dziedziejko V, Puchałowicz K, Domański L, Pawlik A. Adiponectin in chronic kidney disease. Int J Mol Sci. 2020;21:9375.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and adipoR1 regulate PGC-1a and mitochondria by Ca2+ and AMPK/SIRT1. Nature. 2010;464:1313–9.

    Article  CAS  PubMed  Google Scholar 

  279. Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011;17:55–63.

    Article  CAS  PubMed  Google Scholar 

  280. Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol. 2006;574:41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Li X, Zhang D, Vatner DF, Goedeke L, Hirabara SM, Zhang Y, et al. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc Natl Acad Sci U S A. 2020;117:32584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Luo S, Lei H, Liu Q. Correlation between serum adiponectin and risk factors in patients with coronary artery disease. Clin Lab. 2013;59:121–6.

    Article  CAS  PubMed  Google Scholar 

  283. Frühbeck G, Catalán V, Rodríguez A, Gómez-Ambrosi J. Adiponectin-leptin ratio: a promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte. 2018;7:57–62.

    Article  PubMed  Google Scholar 

  284. Brolin EB, Agewall S, Cederlund K, Ekenbäck C, Henareh L, Malmqvist K, et al. Plasma biomarker levels and non obstructive coronary artery disease determined by coronary computed tomography angiography. Clin Physiol Funct Imaging. 2018;38:246–53.

    Article  CAS  PubMed  Google Scholar 

  285. Goeller M, Achenbach S, Marwan M, Doris MK, Cadet S, Commandeur F, et al. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. J Cardiovasc Comput Tomogr. 2018;12:67–73.

    Article  PubMed  Google Scholar 

  286. Takahashi Y, Watanabe R, Sato Y, Ozawa N, Kojima M, Watanabe-Kominato K, et al. Novel phytopeptide osmotin mimics preventive effects of adiponectin on vascular inflammation and atherosclerosis. Metabolism. 2018;83:128–38.

    Article  CAS  PubMed  Google Scholar 

  287. Ahmad A, Ali T, Kim MW, Khan A, Jo MH, Rehman SU, et al. Adiponectin homolog novel osmotin protects obesity/diabetes-induced NAFLD by upregulating AdipoRs/PPARalpha signaling in ob/ob and db/db transgenic mouse models. Metabolism. 2019;90:31–43.

    Article  CAS  PubMed  Google Scholar 

  288. Deng G, Long Y, Yu YR, Li MR. Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS Pathway. Int J Obes. 2010;34:165–71.

    Article  CAS  Google Scholar 

  289. Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem. 2010;285:6153–60.

    Article  CAS  PubMed  Google Scholar 

  290. Polito R, Nigro E, Messina A, Monaco ML, Monda V, Scudiero O, et al. Adiponectin and orexin-A as a potential immunity link between adipose tissue and central nervous system. Front Physiol. 2018;9:982.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Wilk S, Scheibenbogen C, Bauer S, Jenke A, Rother M, Guerreiro M, et al. Adiponectin is a negative regulator of antigen-activated T cells. Eur J Immunol. 2011;41:2323–32.

    Article  CAS  PubMed  Google Scholar 

  292. Wilk S, Jenke A, Stehr J, Yang CA, Bauer S, Goldner K, et al. Adiponectin modulates NK-cell function. Eur J Immunol. 2013;43:1024–33.

    Article  CAS  PubMed  Google Scholar 

  293. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the funcions of macrophages. Blood. 2000;96:1723–32.

    Article  CAS  PubMed  Google Scholar 

  294. Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression inhuman macrophages. Circulation. 2004;109:2046–9.

    Article  CAS  PubMed  Google Scholar 

  295. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423:762–9.

    Article  CAS  PubMed  Google Scholar 

  296. Koch CE, Lowe C, Legler K, Benzler J, Boucsein M, Böttiger G, et al. Central adiponectin acutely improves glucose tolerance in male mice. Endocrinology. 2014;155:1806–16.

    Article  PubMed  Google Scholar 

  297. Coope A, Milanski M, Araújo EP, Tambascia M, Saad MJ, Geloneze B, et al. AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett. 2008;582:1471–6.

    Article  CAS  PubMed  Google Scholar 

  298. Quaresma PG, Reencober N, Zanotto TM, Santos AC, Weissmann L, de Matos AH, et al. Pioglitazone treatment increases food intake and decreases energy expenditure partially via hypothalamic adiponectin/AdipoR1/AMPK pathway. Int J Obes. 2016;40:138–46.

    Article  CAS  Google Scholar 

  299. Goldfine AB, Conlin PR, Halperin F, Koska J, Permana P, Schwenke D, et al. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia. 2013;56:714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Barzilay JI, Jablonski KA, Fonseca V, Shoelson SE, Goldfine AB, Strauch C, et al. The impact of salsalate treatment on serum levels of advanced glycation end products in type 2 diabetes. Diabetes Care. 2014;37:1083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Kim G, Lee YH, Yun MR, Lee JY, Shin EG, Lee BW, et al. Effects of lobeglitazone, a novel thiazolidinedione, on adipose tissue remodeling and brown and beige adipose tissue development in db/db mice. Int J Obes. 2018;42:542–51.

    Article  CAS  Google Scholar 

  302. Li J, Xue YM, Zhu B, Pan YH, Zhang Y, Wang C, Li Y. Rosiglitazone elicits an adiponectin-mediated insulin-sensitizing action at the adipose tissue-liver axis in Otsuka Long-Evans Tokushima fatty rats. J Diabetes Res. 2018;2018:4627842.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Bril F, Kalavalapalli S, Clark VC, Lomonaco R, Soldevila-Pico C, Liu IC, et al. Response to pioglitazone in patients with nonalcoholic steatohepatitis with vs without type 2 diabetes. Clin Gastroenterol Hepatol. 2018;16:558–66.e2.

    Article  CAS  PubMed  Google Scholar 

  304. Giacalone G, Tsapis N, Mousnier L, Chacun H, Fattal E. PLA-PEG Nanoparticles improve the anti-inflammatory effect of rosiglitazone on macrophages by enhancing drug uptake compared to free rosiglitazone. Materials. 2018;11:1845.

    Article  PubMed  PubMed Central  Google Scholar 

  305. Ida S, Murata K, Betou K, Kobayashi C, Ishihara Y, Imataka K. Effect of trelagliptin on vascular endothelial functions and serum adiponectin level in patients with type 2 diabetes: a preliminary single-arm prospective pilot study. Cardiovasc Diabetol. 2016;15:153.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, et al. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E146–50.

    Article  CAS  PubMed  Google Scholar 

  307. Hensen J, Howard CP, Walter V, Thuren T. Impact of interleukin-1beta antibody (canakinumab) on glycaemic indicators in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab. 2013;39:524–31.

    Article  CAS  PubMed  Google Scholar 

  308. Huang J, Yang Y, Hu R, Chen L. Anti-interleukin-1 therapy has mild hypoglycaemic effect in type 2 diabetes. Diabetes Obes Metab. 2018;20:1024–8.

    Article  CAS  PubMed  Google Scholar 

  309. Shen HH, Peterson SJ, Bellner L, Choudhary A, Levy L, Gancz L, et al. Cold-pressed nigella sativa oil standardized to 3% thymoquinone potentiates omega-3 protection against obesity-induced oxidative stress, inflammation, and markers of insulin resistance accompanied with conversion of white to beige fat in mice. Antioxidants. 2020;9:489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Hunsche C, Hernandez O, Gheorghe A, Díaz LE, Marcos A, De la Fuente M. Immune dysfunction and increased oxidative stress state in diet-induced obese mice are reverted by nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids. Eur J Nutr. 2018;57:1123–35.

    Article  CAS  PubMed  Google Scholar 

  311. Tousoulis D, Plastiras A, Siasos G, Oikonomou E, Verveniotis A, Kokkou E, et al. Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis. 2014;232:10–6.

    Article  CAS  PubMed  Google Scholar 

  312. Rylander C, Sandanger TM, Engeset D, Lund E. Consumption of lean fish reduces the risk of type 2 diabetes mellitus: a prospective population based cohort study of Norwegian women. PLoS One. 2014;9:e89845.

    Article  PubMed  PubMed Central  Google Scholar 

  313. Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, et al. T cell-derived IL-22 amplifies IL-1-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014;63:1966–77.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  1. Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev. 2015;16:127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Böni-Schnetzler M, Häuselmann SP, Dalmas E, Meier DT, Thienel C, Traub S, et al. Beta cell-specific deletion of the IL 1 receptor antagonist impairs beta cell proliferation and insulin secretion. Cell Rep. 2018;22:1774–86.

    Article  PubMed  Google Scholar 

  3. Eljaafari A, Robert M, Chehimi M, Chanon S, Durand C, Vial G, et al. Adipose tissue–derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation. Diabetes. 2015;64:2477–88.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrante AW Jr. The immune cells in adipose tissue. Diabetes Obes Metab. 2013;15:34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grant RW, Dixit VD. Adipose tissue as an immunological organ. Obesity. 2015;23:512–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ip B, Cilfone N, Belkina AC, DeFuria J, Jagannathan-Bogdan M, Zhu M, et al. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNF-α production. Obesity. 2016;24:102–12.

    Article  CAS  PubMed  Google Scholar 

  7. Olson NC, Doyle MF, de Boer IH, Huber SA, Jenny NS, Kronma RA, et al. Associations of circulating lymphocyte subpopulations with type 2 diabetes: cross-sectional results from the multi-ethnic study of atherosclerosis (MESA). PLoS One. 2015;10:e0139962. https://doi.org/10.1371/journal.pone.0139962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pirola L, Ferraz JC. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World J Biol Chem. 2017;8:120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu J, Wu D, Zhang L, Lin C, Liao J, Xie R, et al. NK cells induce hepatic ER stress to promote insulin resistance in obesity through osteopontin production. J Leukoc Biol. 2020;107:589–96.

    Article  CAS  PubMed  Google Scholar 

  10. Sung KC, Lee MY, Kim YH, Huh JH, Kim JY, Wild SH, et al. Obesity and incidence of diabetes: effect of absence of metabolic syndrome, insulin resistance, inflammation and fatty liver. Atherosclerosis. 2018;275:50–7.

    Article  CAS  PubMed  Google Scholar 

  11. Viel S, Besson L, Charrier E, Marçais A, Disse E, Bienvenu J, et al. Alteration of natural killer cell phenotype and function in obese individuals. Clin Immunol. 2017;177:12–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lu Y, Ma J, Zhao J, Song Z, Zhou C, Liu X, et al. The Role of MKP-5 in Adipocyte-macrophage interactions during obesity. Obes Facts. 2020;13:86–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Margaryan S, Kriegova E, Fillerova R, Smotkova Kraiczova V, Manukyan G. Hypomethylation of IL1RN and NFKB1 genes is linked to the dysbalance in IL1beta/IL-1Ra axis in female patients with type 2 diabetes mellitus. PLoS One. 2020;15:e0233737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koppaka S, Kehlenbrink S, Carey M, Li W, Sanchez E, Lee DE, et al. Reduced adipose tissue macrophage content is associated with improved insulin sensitivity in thiazolidinedione-treated diabetic humans. Diabetes. 2013;62:1843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Adipokine

A cytokine or hormone that is secreted by adipose tissue

Chemokines

Are signaling proteins secreted by cells, whose main function is to act as a chemoattractant to guide the migration of near cells. They are implicated in various diseases, such as cancer, autoimmune disorders, and diabetes

Cytokine

Small proteins secreted and released by cells, they have a specific effect on the interactions and communications between cells

Diet-induced obesity (DIO)

Obesity mouse model induced by high-fat diet

FA

A carboxylic acid with aliphatic chains of 4–28 carbons, which can be esterified with glycerol to form triacylglycerols, the main stored form of lipids

HFD

High-fat diet

IgG, IgM

Are members of immunoglobulin (Ig) superfamily, they are ubiquitously present in several cells and tissues of vertebrates and share structural homology with cell adhesion molecules and some cytokines

Innate immune cells

Are white blood cells that mediate innate immunity and include basophils, dendritic cells, eosinophils, mast cells, monocytes, macrophages, neutrophils, and natural killer cells

Mitogen-Activated Protein Kinase (MAPK)

A mammalian Ser/Thr protein kinase

NF-κB

Nuclear factor-κB is a ubiquitous transcription factor involved in the control of processes, such as immune and inflammatory responses, developmental, cellular growth, and apoptosis. The NF-κB pathway has been considered as proinflammatory signaling pathway, based on the role of NF-κB in the expression of proinflammatory genes including cytokines, chemokines, and adhesion molecules

Omental adipose tissue

The fat depot found within the peritoneum, in close association with stomach and other internal organs

PPAR-γ

Peroxisome proliferator-activated receptor gamma is an essential transcription regulator of the adipocyte differentiation and is required for mature adipocyte function

Salicylates

A group of derivatives of salicylic acid, including aspirin and acetylsalicylic acid, which are widely used as analgesics, and anti-inflammatory medicaments

Thiazolinediones

Antidiabetic drugs used therapeutically, which are known to be high-affinity ligand activators of PPARs

White adipose tissue (WAT)

The predominant fat storage tissue in animals, consisting mostly of adipocytes but also other cell types as mast cells and macrophages

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Macedo, R., de los Ángeles Fortis, M. (2023). The Immune System and Inflammation in Type 2 Diabetes. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics