Skip to main content

Autophagy Mechanisms for Brain Recovery. Keep It Clean, Keep It Alive

  • Chapter
  • First Online:
Neurobiological and Psychological Aspects of Brain Recovery

Abstract

Most neurological pathologies that afflict humans are associated with the abnormal accumulation and aggregation of specific proteins into the cytoplasm and with mitochondrial dysfunction. Neuronal health is sustained by the fine regulation of protein synthesis and organelle biogenesis and their degradation to ensure efficient turnover. Autophagy is a powerful process for removing such proteins and for maintaining mitochondrial homeostasis. Thus, the autophagic activation may play important roles in neuronal cell survival and neuronal function under both physiological and pathological conditions.

It is well accepted that the loss of basal autophagy or imbalance of autophagic flux leads to neuronal death. Autophagosomes accumulate abnormally in affected neurons of several neurodegenerative diseases such as AD, HD, PD, as well as brain and spinal cord trauma. Thus, knowledge of crosstalk between autophagy impairment and pathophysiological mechanisms is a prerequisite for successful therapeutic interventions in neurological disorders.

This chapter summarizes the most up-to-date studies of whether autophagy perturbations affect neuronal function contributing to neurodegeneration in chronic and acute brain pathologies.

Equal first authors: Annalisa Nobili, Livia La Barbera

Equal last authors: Marcello D’Amelio, Maria Teresa Viscomi

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3-MA:

3-methyladenine

AD:

Alzheimer’s disease

ASD:

Autism spectrum disorders

ATG:

Autophagy-related proteins

AVs:

Autophagic vacuoles

Aβ:

Amyloid-β

CCI:

Controlled cortical impact

CNS:

Central Nervous System

CSF:

Cerebrospinal fluid

ER:

Endoplasmic reticulum

FPI:

Fluid-percussion injury

FXS:

Fragile X syndrome

HCb:

Hemicerebellectomy

HD:

Huntington’s disease

KO:

Knockout

MCI:

Amnestic mild cognitive impairment

mTOR:

Mammalian target of rapamycin

mTORC1:

mTOR complex 1

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SCI:

Spinal cord injury

SNpc:

Substantia nigra pars compacta

SVZ:

Subventricular zone

TBI:

Traumatic brain injury

References

  • Alves GS, Carvalho AF, de Amorim de Carvalho L, Sudo FK, Siqueira-Neto JI, Oertel-Knochel V, Jurcoane A, Knochel C, Boecker H, Laks J, et al. Neuroimaging findings related to behavioral disturbances in Alzheimer’s disease: a systematic review. Curr Alzheimer Res. 2017;14:61–75.

    CAS  PubMed  Google Scholar 

  • Arotcarena M-L, Bourdenx M, Dutheil N, Thiolat M-L, Doudnikoff E, Dovero S, Ballabio A, Fernagut P-O, Meissner WG, Bezard E, et al. Transcription factor EB overexpression prevents neurodegeneration in experimental synucleinopathies. JCI Insight. 2019;4:e129719.

    PubMed  PubMed Central  Google Scholar 

  • Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol. 2014;206:655–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182:685–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badhiwala JH, Wilson JR, Fehlings MG. Global burden of traumatic brain and spinal cord injury. Lancet Neurol. 2019;18:24–5.

    PubMed  Google Scholar 

  • Bai X, Wey MC-Y, Fernandez E, Hart MJ, Gelfond J, Bokov AF, Rani S, Strong R. Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy. Pathobiol Aging Age Relat Dis. 2015;5:28743.

    PubMed  Google Scholar 

  • Biazik J, Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy. 2015;11:439–51.

    PubMed  PubMed Central  Google Scholar 

  • Bisicchia E, Latini L, Cavallucci V, Sasso V, Nicolin V, Molinari M, D’Amelio M, Viscomi MT. Autophagy inhibition favors survival of rubrospinal neurons after spinal cord hemisection. Mol Neurobiol. 2017;54:4896–907.

    CAS  PubMed  Google Scholar 

  • Bisicchia E, Mastrantonio R, Nobili A, Palazzo C, La Barbera L, Latini L, Millozzi F, Sasso V, Palacios D, D’Amelio M, Viscomi MT. Restoration of ER proteostasis attenuates remote apoptotic cell death after spinal cord injury by reducing autophagosome overload. Cell Death Dis. 2022;13:381.

    Google Scholar 

  • Block F, Dihné M, Loos M. Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol. 2005;75:342–65.

    CAS  PubMed  Google Scholar 

  • Bonam SR, Tranchant C, Muller S. Autophagy-lysosomal pathway as potential therapeutic target in Parkinson’s disease. Cell. 2021;10:3547.

    CAS  Google Scholar 

  • Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S, Ginsberg SD, Nixon RA. Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy. 2016;12:2467–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borsche M, König IR, Delcambre S, Petrucci S, Balck A, Brüggemann N, Zimprich A, Wasner K, Pereira SL, Avenali M, et al. Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain. 2020;143:3041–51.

    PubMed  PubMed Central  Google Scholar 

  • Bramlett HM, Dietrich WD. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma. 2015;32:1834–48.

    PubMed  PubMed Central  Google Scholar 

  • Brattås PL, Hersbach BA, Madsen S, Petri R, Jakobsson J, Pircs K. Impact of differential and time-dependent autophagy activation on therapeutic efficacy in a model of Huntington disease. Autophagy. 2021;17:1316–29.

    PubMed  Google Scholar 

  • Caccamo A, Magrì A, Medina DX, Wisely EV, López-Aranda MF, Silva AJ, Oddo S. mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell. 2013;12:370–80.

    CAS  PubMed  Google Scholar 

  • Cai Z, Zhao B, Li K, Zhang L, Li C, Quazi SH, Tan Y. Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J Neurosci Res. 2012;90:1105–18.

    CAS  PubMed  Google Scholar 

  • Cai Z, Chen G, He W, Xiao M, Yan L-J. Activation of mTOR: a culprit of Alzheimer’s disease? Neuropsychiatr Dis Treat. 2015;11:1015–30.

    PubMed  PubMed Central  Google Scholar 

  • Carrera E, Tononi G. Diaschisis: past, present, future. Brain J Neurol. 2014;137:2408–22.

    Google Scholar 

  • Cavallarin N, Vicario M, Negro A. The role of phosphorylation in synucleinopathies: focus on Parkinson’s disease. CNS Neurol Disord Drug Targets. 2010;9:471–81.

    CAS  PubMed  Google Scholar 

  • Chen H-C, Fong T-H, Lee A-W, Chiu W-T. Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury. Spine. 2012;37:470–5.

    CAS  PubMed  Google Scholar 

  • Chu CT. Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol. 2006;65:423–32.

    PubMed  Google Scholar 

  • Clark RSB, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy. 2008;4:88–90.

    CAS  PubMed  Google Scholar 

  • Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl). 1990;181:195–213.

    CAS  PubMed  Google Scholar 

  • Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14:399–415.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy. PLoS One. 2010;5:e9313.

    PubMed  PubMed Central  Google Scholar 

  • Cui C, Cui J, Jin F, Cui Y, Li R, Jiang X, Tian Y, Wang K, Jiang P, Gao J. Induction of the vitamin D receptor attenuates autophagy dysfunction-mediated cell death following traumatic brain injury. Cell Physiol Biochem. 2017;42:1888–96.

    CAS  PubMed  Google Scholar 

  • D’Amelio M, Rossini PM. Brain excitability and connectivity of neuronal assemblies in Alzheimer’s disease: from animal models to human findings. Prog Neurobiol. 2012;99:42–60.

    PubMed  Google Scholar 

  • Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284:13843–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries RLA, Przedborski S. Mitophagy and Parkinson’s disease: be eaten to stay healthy. Mol Cell Neurosci. 2013;55:37–43.

    PubMed  Google Scholar 

  • Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Björklund A. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci U S A. 2013;110:E1817–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dehay B, Bové J, Rodríguez-Muela N, Perier C, Recasens A, Boya P, Vila M. Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci. 2010;30:12535–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Malta C, Cinque L, Settembre C. Transcriptional regulation of autophagy: mechanisms and diseases. Front Cell Dev Biol. 2019;7:114.

    PubMed  PubMed Central  Google Scholar 

  • Ding K, Xu J, Wang H, Zhang L, Wu Y, Li T. Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem Int. 2015;91:46–54.

    CAS  PubMed  Google Scholar 

  • Du J, Liang Y, Xu F, Sun B, Wang Z. Trehalose rescues Alzheimer’s disease phenotypes in APP/PS1 transgenic mice. J Pharm Pharmacol. 2013;65:1753–6.

    CAS  PubMed  Google Scholar 

  • Du J, Li X, Lin X, Lu Y, Chen B. A rapamycin-enhanced autophagy reduces neural apoptosis by blocking Bax mitochondrial translation and cytochrome C release in acute spinal cord injury in rats. Med Case Rep. 2017;3:40.

    Google Scholar 

  • Efeyan A, Sabatini DM. mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol. 2010;22:169–76.

    CAS  PubMed  Google Scholar 

  • Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 2007;26:86–93.

    CAS  PubMed  Google Scholar 

  • Fang B, Li X-Q, Bao N-R, Tan W-F, Chen F-S, Pi X-L, Zhang Y, Ma H. Role of autophagy in the bimodal stage after spinal cord ischemia reperfusion injury in rats. Neuroscience. 2016;328:107–16.

    CAS  PubMed  Google Scholar 

  • Feng Y, Cui C, Liu X, Wu Q, Hu F, Zhang H, Ma Z, Wang L. Protective role of apocynin via suppression of neuronal autophagy and TLR4/NF-κB signalling pathway in a rat model of traumatic brain injury. Neurochem Res. 2017;42:3296–309.

    CAS  PubMed  Google Scholar 

  • Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, et al. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447:1121–5.

    CAS  PubMed  Google Scholar 

  • Forlenza OV, Radanovic M, Talib LL, Gattaz WF. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial. Br J Psychiatry J Ment Sci. 2019;215:668–74.

    Google Scholar 

  • Franco-Iborra S, Plaza-Zabala A, Montpeyo M, Sebastian D, Vila M, Martinez-Vicente M. Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy. 2021;17:672–89.

    CAS  PubMed  Google Scholar 

  • Friedman LG, Qureshi YH, Yu WH. Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2015;12:94–108.

    CAS  PubMed  Google Scholar 

  • Fujikake N, Shin M, Shimizu S. Association between autophagy and neurodegenerative diseases. Front Neurosci. 2018;12:255.

    PubMed  PubMed Central  Google Scholar 

  • Gan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan J-L. Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC–mTOR signaling pathways. J Cell Biol. 2006;175:121–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, Li L, Tang C, Zhou M, Han X, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018;20:233–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. 2018;28:3–13.

    CAS  PubMed  Google Scholar 

  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;141:656–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282:37298–302.

    CAS  PubMed  Google Scholar 

  • Hao H-H, Wang L, Guo Z-J, Bai L, Zhang R-P, Shuang W-B, Jia Y-J, Wang J, Li X-Y, Liu Q. Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats. Neurosci Bull. 2013;29:484–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.

    CAS  PubMed  Google Scholar 

  • He Q, Koprich JB, Wang Y, Yu W, Xiao B, Brotchie JM, Wang J. Treatment with trehalose prevents behavioral and neurochemical deficits produced in an AAV α-synuclein rat model of Parkinson’s disease. Mol Neurobiol. 2016;53:2258–68.

    CAS  PubMed  Google Scholar 

  • Hebron ML, Lonskaya I, Moussa CE-H. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson’s disease models. Hum Mol Genet. 2013;22:3315–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hebron ML, Lonskaya I, Olopade P, Selby ST, Pagan F, Moussa CE-H. Tyrosine kinase inhibition regulates early systemic immune changes and modulates the neuroimmune response in α-synucleinopathy. J Clin Cell Immunol. 2014;5:259.

    PubMed  PubMed Central  Google Scholar 

  • Hensley K, Poteshkina A, Johnson MF, Eslami P, Gabbita SP, Hristov AM, Venkova-Hristova KM, Harris-White ME. Autophagy modulation by lanthionine ketimine ethyl ester improves long-term outcome after central fluid percussion injury in the mouse. J Neurotrauma. 2016;33:1501–13.

    PubMed  Google Scholar 

  • Hinckelmann M-V, Zala D, Saudou F. Releasing the brake: restoring fast axonal transport in neurodegenerative disorders. Trends Cell Biol. 2013;23:634–43.

    CAS  PubMed  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou H, Zhang L, Zhang L, Tang P. Acute spinal cord injury in rats should target activated autophagy. J Neurosurg Spine. 2014;20:568–77.

    PubMed  Google Scholar 

  • Hou X, Watzlawik JO, Fiesel FC, Springer W. Autophagy in Parkinson’s disease. J Mol Biol. 2020;432:2651–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J, Yin N, Yang B, Zhang J, Ding J, Fan Y, Hu G. Ginkgolide B and bilobalide ameliorate neural cell apoptosis in α-synuclein aggregates. Biomed Pharmacother. 2017;96:792–7.

    CAS  PubMed  Google Scholar 

  • Hung Y-H, Chen LM-W, Yang J-Y, Yang WY. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat Commun. 2013;4:2111.

    PubMed  Google Scholar 

  • Hutchins MU, Veenhuis M, Klionsky DJ. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci. 1999;112(Pt 22):4079–87.

    CAS  PubMed  Google Scholar 

  • Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, Roberts JL, Kahle PJ, Clark RA, Li S. Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J Neurosci. 2011;31:157–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imam SZ, Trickler W, Kimura S, Binienda ZK, Paule MG, Slikker W, Li S, Clark RA, Ali SF. Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson’s disease model. PLoS One. 2013;8:e65129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail Z, Smith EE, Geda Y, Sultzer D, Brodaty H, Smith G, Agüera-Ortiz L, Sweet R, Miller D, Lyketsos CG, et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: provisional diagnostic criteria for mild behavioral impairment. Alzheimers Dement. 2016;12:195–202.

    PubMed  Google Scholar 

  • Jia G, Sowers JR. Autophagy: a housekeeper in cardiorenal metabolic health and disease. Biochim Biophys Acta BBA – Mol Basis Dis. 2015;1852:219–24.

    CAS  Google Scholar 

  • Jiang T, Yu J-T, Zhu X-C, Zhang Q-Q, Cao L, Wang H-F, Tan M-S, Gao Q, Qin H, Zhang Y-D, et al. Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance. Neuropharmacology. 2014;85:121–30.

    CAS  PubMed  Google Scholar 

  • Jiang H, Wang Y, Liang X, Xing X, Xu X, Zhou C. Toll-like receptor 4 knockdown attenuates brain damage and neuroinflammation after traumatic brain injury via inhibiting neuronal autophagy and astrocyte activation. Cell Mol Neurobiol. 2018;38:1009–19.

    CAS  PubMed  Google Scholar 

  • Juhász G, Érdi B, Sass M, Neufeld TP. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 2007;21:3061–6.

    PubMed  PubMed Central  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Itoi E. Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis. 2009a;33:143–8.

    CAS  PubMed  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Itoi E. The role of autophagy in spinal cord injury. Autophagy. 2009b;5:390–2.

    CAS  PubMed  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E. Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice. Spine. 2011;36:E1427.

    PubMed  Google Scholar 

  • Karabiyik C, Frake RA, Park SJ, Pavel M, Rubinsztein DC. Autophagy in ageing and ageing-related neurodegenerative diseases. Ageing Neurodegener Dis. 2021a;1:2.

    Google Scholar 

  • Karabiyik C, Vicinanza M, Rubinsztein DC. Chapter 2 – AMPK: the energy sensor that regulates autophagy and a potential therapeutic target for neurodegenerative diseases. In: Petroni G, Galluzzi L, editors. Non-canonical autophagy. Academic Press; 2021b. p. 9–39.

    Google Scholar 

  • Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep. 2014;4:4874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16:461–72.

    CAS  PubMed  Google Scholar 

  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151:263–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005;118:7–18.

    CAS  PubMed  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003;5:539–45.

    CAS  PubMed  Google Scholar 

  • Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, Detre JA, Wolk DA, Arnold SE. Effects of the insulin sensitizer metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord. 2017;31:107–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169:425–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A. 2007;104:14489–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest. 2015;125:1–4.

    PubMed  PubMed Central  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.

    CAS  PubMed  Google Scholar 

  • La Barbera L, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata EC, Cutuli D, Cauzzi E, Marino R, Viscomi MT, et al. Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer’s disease. Prog Neurobiol. 2021;202:102031.

    PubMed  Google Scholar 

  • Lachance V, Wang Q, Sweet E, Choi I, Cai C-Z, Zhuang X-X, Zhang Y, Jiang JL, Blitzer RD, Bozdagi-Gunal O, et al. Autophagy protein NRBF2 has reduced expression in Alzheimer’s brains and modulates memory and amyloid-beta homeostasis in mice. Mol Neurodegener. 2019;14:43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, et al. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab. 2008;28:540–50.

    CAS  PubMed  Google Scholar 

  • Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009;18:R48–59.

    CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.

    CAS  PubMed  Google Scholar 

  • Li X, Chen X, Zhao K, Bai L, Zhang H, Zhou X. Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: possible mediation through enhanced autophagy. Int J Neurosci. 2012;123:73–9.

    PubMed  Google Scholar 

  • Li X-G, Du J-H, Lu Y, Lin X-J. Neuroprotective effects of rapamycin on spinal cord injury in rats by increasing autophagy and Akt signaling. Neural Regen Res. 2019;14:721–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J-H, Jia J-P. Dysfunctional autophagy in Alzheimer’s disease: pathogenic roles and therapeutic implications. Neurosci Bull. 2014;30:308–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao H-Y, Wang Z-Q, Ran R, Zhou K-S, Ma C-W, Zhang H-H. Biological functions and therapeutic potential of autophagy in spinal cord injury. Front Cell Dev Biol. 2021;9:761273.

    PubMed  PubMed Central  Google Scholar 

  • Lin C, Chao H, Li Z, Xu X, Liu Y, Hou L, Liu N, Ji J. Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res. 2016;61:177–86.

    CAS  PubMed  Google Scholar 

  • Ling D, Salvaterra PM. A central role for autophagy in Alzheimer-type neurodegeneration. Autophagy. 2009;5:738–40.

    CAS  PubMed  Google Scholar 

  • Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C, Yankner BA, Scherzer CR, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2010;107:14164–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski MM, Wu J, Faden AI, Sarkar C. Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Signal. 2015;23:565–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CL, Chen S, Dietrich D, Hu BR. Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab. 2008;28:674–83.

    CAS  PubMed  Google Scholar 

  • Liu S, Sarkar C, Dinizo M, Faden AI, Koh EY, Lipinski MM, Wu J. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Bao Z, Xu X, Chao H, Lin C, Li Z, Liu Y, Wang X, You Y, Liu N, et al. Extracellular signal-regulated kinase/nuclear factor-Erythroid2-like2/Heme Oxygenase-1 pathway-mediated mitophagy alleviates traumatic brain injury-induced intestinal mucosa damage and epithelial barrier dysfunction. J Neurotrauma. 2017;34:2119–31.

    PubMed  Google Scholar 

  • Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol. 2004;36:2405–19.

    CAS  PubMed  Google Scholar 

  • Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, Ichise M, Manly J, Devanand DP, Bagiella E. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis. 2016;51:501–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Tao L. The function and mechanisms of autophagy in spinal cord injury. Adv Exp Med Biol. 2020;1207:649–54.

    CAS  PubMed  Google Scholar 

  • Luo C-L, Li B-X, Li Q-Q, Chen X-P, Sun Y-X, Bao H-J, Dai D-K, Shen Y-W, Xu H-F, Ni H, et al. Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience. 2011;184:54–63.

    CAS  PubMed  Google Scholar 

  • Lv X, Jiang H, Li B, Liang Q, Wang S, Zhao Q, Jiao J. The crucial role of Atg5 in cortical neurogenesis during early brain development. Sci Rep. 2014;4:6010.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J, Cedarbaum J, Brashear R, Miller DS. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 2011;7:532–9.

    PubMed  PubMed Central  Google Scholar 

  • Maas AIR, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7:728–41.

    PubMed  Google Scholar 

  • Mahul-Mellier A-L, Fauvet B, Gysbers A, Dikiy I, Oueslati A, Georgeon S, Lamontanara AJ, Bisquertt A, Eliezer D, Masliah E, et al. c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson’s disease. Hum Mol Genet. 2014;23:2858–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med. 2013;19:51–60.

    CAS  PubMed  Google Scholar 

  • Majumder S, Richardson A, Strong R, Oddo S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One. 2011;6:e25416.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J Neurosci. 2010;30:1166–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DDO, Ladha S, Ehrnhoefer DE, Hayden MR. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 2015;38:26–35.

    CAS  PubMed  Google Scholar 

  • Martina JA, Diab HI, Lishu L, Jeong-A L, Patange S, Raben N, Puertollano R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal. 2014;7:ra9.

    PubMed  PubMed Central  Google Scholar 

  • Martinez–Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010;13:567–76.

    PubMed  PubMed Central  Google Scholar 

  • Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.

    PubMed  Google Scholar 

  • Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T, Noshiro D, Sugita Y, Nomura N, Iwata S, Ohsumi Y, et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat Struct Mol Biol. 2020;27:1185–93.

    CAS  PubMed  Google Scholar 

  • McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci. 2011;13:287–300.

    PubMed  PubMed Central  Google Scholar 

  • Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017;93:1015–34.

    CAS  PubMed  Google Scholar 

  • Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy. 2009;5:649–62.

    CAS  PubMed  Google Scholar 

  • Michel PP, Hirsch EC, Hunot S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron. 2016;90:675–91.

    CAS  PubMed  Google Scholar 

  • Ming G-L, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70:687–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N. The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ. 2005;12(Suppl 2):1535–41.

    CAS  PubMed  Google Scholar 

  • Mizushima N. The ATG conjugation systems in autophagy. Curr Opin Cell Biol. 2020;63:1–10.

    CAS  PubMed  Google Scholar 

  • Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19–40.

    CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12:823–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature. 1998;395:395–8.

    CAS  PubMed  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct. 2002;27:421–9.

    PubMed  Google Scholar 

  • Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci. 2003;116:1679–88.

    CAS  PubMed  Google Scholar 

  • Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju Y-ES. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol. 2018;75:582–90.

    PubMed  Google Scholar 

  • Nakatogawa H, Mochida K. Reticulophagy and nucleophagy: new findings and unsolved issues. Autophagy. 2015;11:2377–8.

    PubMed  PubMed Central  Google Scholar 

  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10:458–67.

    CAS  PubMed  Google Scholar 

  • Narendra DP, Youle RJ. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 2011;14:1929–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson P, Saido TC. Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Aβ peptide. BioEssays. 2014;36:570–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC. Aβ secretion and plaque formation depend on autophagy. Cell Rep. 2013;5:61–9.

    CAS  PubMed  Google Scholar 

  • Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 2007;120:4081–91.

    CAS  PubMed  Google Scholar 

  • Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19:983–97.

    CAS  PubMed  Google Scholar 

  • Nixon RA, Yang D-S. Autophagy failure in Alzheimer’s disease--locating the primary defect. Neurobiol Dis. 2011;43:38–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64:113–22.

    PubMed  Google Scholar 

  • Noebels JL. A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia. 2011;52:39–46.

    PubMed  PubMed Central  Google Scholar 

  • Nobili A, D’Amelio M, Viscomi MT. Nilotinib: from animal-based studies to clinical investigation in Alzheimer’s disease patients. Neural Regen Res. 2023;18:803–804.

    Google Scholar 

  • Nobili A, La Barbera L, D’Amelio. Targeting autophagy as a therapeutic strategy to prevent dopamine neuron loss in early stages of Alzheimer’s disease. Autophagy. 2021;17:1278–1280.

    Google Scholar 

  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26:9220–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K, Clavaguera F, Sinnreich M, Kappos L, Goedert M, et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS One. 2013;8:e62459.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, Wilmarth BM, Howard H, Dunn C, Carlson A, et al. Nilotinib effects in Parkinson’s disease and dementia with Lewy bodies. J Parkinsons Dis. 2016;6:503–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, Yusuf N, Starr NJ, Anjum M, Arellano J, et al. Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 2019;77:309–17.

    PubMed Central  Google Scholar 

  • Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20:3852–66.

    CAS  PubMed  Google Scholar 

  • Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S. Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience. 2014;277:747–54.

    CAS  PubMed  Google Scholar 

  • Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118:2190–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016;4:22.

    PubMed  PubMed Central  Google Scholar 

  • Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y, Swartzlander DB, Palmieri M, di Ronza A, Lee VM-Y, et al. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med. 2014;6:1142–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Portbury SD, Hare DJ, Sgambelloni C, Perronnes K, Portbury AJ, Finkelstein DI, Adlard PA. Trehalose improves cognition in the transgenic Tg2576 mouse model of Alzheimer’s disease. J Alzheimers Dis. 2017;60:549–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 2007;128:931–46.

    CAS  PubMed  Google Scholar 

  • Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun. 2020;8:189.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar B. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002;11:1107–17.

    CAS  PubMed  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36:585–95.

    CAS  PubMed  Google Scholar 

  • Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol. 2010;12:747–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray SK. Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury. Neural Regen Res. 2020;15:1601–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rockel JS, Kapoor M. Autophagy: controlling cell fate in rheumatic diseases. Nat Rev Rheumatol. 2017;13:193.

    PubMed  Google Scholar 

  • Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, Solano RM, Gómez A, Perucho J, Cuervo AM, García de Yébenes J, Mena MA. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis. 2010;39:423–38.

    PubMed  Google Scholar 

  • Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98.

    CAS  PubMed  Google Scholar 

  • Rubinsztein DC, DiFiglia M, Heintz N, Nixon RA, Qin Z-H, Ravikumar B, Stefanis L, Tolkovsky A. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1:11–22.

    CAS  PubMed  Google Scholar 

  • Rui Y-N, Xu Z, Patel B, Chen Z, Chen D, Tito A, David G, Sun Y, Stimming EF, Bellen HJ, et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol. 2015;17:262–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh T, Fujita N, Yoshimori T, Akira S. Autophagy and innate immunity. Tanpakushitsu Kakusan Koso. 2008;53:2279–85.

    CAS  PubMed  Google Scholar 

  • Saitoh T, Naonobu F, Yoshimori T, Akira S. Regulation of inflammation by autophagy. Tanpakushitsu Kakusan Koso. 2009;54:1119–24.

    CAS  PubMed  Google Scholar 

  • Sakai K, Fukuda T, Iwadate K. Immunohistochemical analysis of the ubiquitin proteasome system and autophagy lysosome system induced after traumatic intracranial injury: association with time between the injury and death. Am J Forensic Med Pathol. 2014;35:38–44.

    PubMed  Google Scholar 

  • Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009;325:473–7.

    CAS  PubMed  Google Scholar 

  • Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans. 2013;41:1103–30.

    CAS  PubMed  Google Scholar 

  • Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein*. J Biol Chem. 2007;282:5641–52.

    CAS  PubMed  Google Scholar 

  • Sarkar S, Ravikumar B, Rubinsztein DC. Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Methods Enzymol. 2009;453:83–110.

    CAS  PubMed  Google Scholar 

  • Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10:2208–22.

    CAS  PubMed  Google Scholar 

  • Sarkar C, Jones JW, Hegdekar N, Thayer JA, Kumar A, Faden AI, Kane MA, Lipinski MM. PLA2G4A/cPLA2-mediated lysosomal membrane damage leads to inhibition of autophagy and neurodegeneration after brain trauma. Autophagy. 2020;16:466–85.

    CAS  PubMed  Google Scholar 

  • Sarkar S, Olsen AL, Sygnecka K, Lohr KM, Feany MB. α-synuclein impairs autophagosome maturation through abnormal actin stabilization. PLoS Genet. 2021;17:e1009359.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM. Alzheimer’s disease. Lancet. 2021;397:1577–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E. Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma. 2012;29:946–56.

    PubMed  Google Scholar 

  • Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31:1095–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ. 2013;20:21–30.

    CAS  PubMed  Google Scholar 

  • Shen M, Wang S, Wen X, Han X-R, Wang Y-J, Zhou X-M, Zhang M-H, Wu D-M, Lu J, Zheng Y-L. Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury. Biomed Pharmacother. 2017;95:885–93.

    CAS  PubMed  Google Scholar 

  • Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem. 2006;281:14474–85.

    CAS  PubMed  Google Scholar 

  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4:176–84.

    CAS  PubMed  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841.

    CAS  PubMed  Google Scholar 

  • Son SM, Jung ES, Shin HJ, Byun J, Mook-Jung I. Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling. Neurobiol Aging. 2012;33:1006.e11–23.

    PubMed  Google Scholar 

  • Sou Y, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008;19:4762–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci. 2009;29:13578–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One. 2010;5:e9979.

    PubMed  PubMed Central  Google Scholar 

  • Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol. 2014;16:495–501.

    CAS  PubMed  Google Scholar 

  • Sun D. The potential of endogenous neurogenesis for brain repair and regeneration following traumatic brain injury. Neural Regen Res. 2014;9:688–92.

    PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Kubota Y, Sekito T, Ohsumi Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells. 2007;12:209–18.

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE, Kester M, Loughran TP, Wang H-G. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy. 2011;7:61–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe F, Yone K, Kawabata N, Sakakima H, Matsuda F, Ishidou Y, Maeda S, Abematsu M, Komiya S, Setoguchi T. Accumulation of p62 in degenerated spinal cord under chronic mechanical compression. Autophagy. 2011;7:1462–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe A, Yamamura Y, Kasahara J, Morigaki R, Kaji R, Goto S. A novel tyrosine kinase inhibitor AMN107 (nilotinib) normalizes striatal motor behaviors in a mouse model of Parkinson’s disease. Front Cell Neurosci. 2014;8:50.

    PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med. 2004;10:148–54.

    CAS  PubMed  Google Scholar 

  • Tang G, Gudsnuk K, Kuo S-H, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014a;83:1131–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, He C, Du H, Zhang L. Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol. 2014b;49:276–87.

    CAS  PubMed  Google Scholar 

  • Tang C, Shan Y, Hu Y, Fang Z, Tong Y, Chen M, Wei X, Fu X, Xu X. FGF2 attenuates neural cell death via suppressing autophagy after rat mild traumatic brain injury. Stem Cells Int. 2017;2017:2923182.

    PubMed  PubMed Central  Google Scholar 

  • Tanida I, Tanida-Miyake E, Ueno T, Kominami E. The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3*. J Biol Chem. 2001;276:1701–6.

    CAS  PubMed  Google Scholar 

  • Tanji K, Miki Y, Maruyama A, Mimura J, Matsumiya T, Mori F, Imaizumi T, Itoh K, Wakabayashi K. Trehalose intake induces chaperone molecules along with autophagy in a mouse model of Lewy body disease. Biochem Biophys Res Commun. 2015;465:746–52.

    CAS  PubMed  Google Scholar 

  • Tellez-Nagel I, Johnson AB, Terry RD. Studies on brain biopsies of patients with Huntington’s chorea. J Neuropathol Exp Neurol. 1974;33:308–32.

    CAS  PubMed  Google Scholar 

  • Thomas B. Parkinson’s disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal. 2009;11:2077–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron. 1999;24:833–46.

    CAS  PubMed  Google Scholar 

  • Tomoda T, Kim JH, Zhan C, Hatten ME. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev. 2004;18:541–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torra A, Parent A, Cuadros T, Rodríguez-Galván B, Ruiz-Bronchal E, Ballabio A, Bortolozzi A, Vila M, Bové J. Overexpression of TFEB drives a pleiotropic neurotrophic effect and prevents Parkinson’s disease-related neurodegeneration. Mol Ther. 2018;26:1552–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner RS, Hebron ML, Lawler A, Mundel EE, Yusuf N, Starr JN, Anjum M, Pagan F, Torres-Yaghi Y, Shi W, et al. Nilotinib effects on safety, tolerability, and biomarkers in Alzheimer’s disease. Ann Neurol. 2020;88:183–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG, Bergantin LB, Abdel-Daim MM, Stankiewicz AM. Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci. 2018;10:4.

    Google Scholar 

  • Ur Rasheed MS, Tripathi MK, Mishra AK, Shukla S, Singh MP. Resveratrol protects from toxin-induced parkinsonism: plethora of proofs hitherto petty translational value. Mol Neurobiol. 2016;53:2751–60.

    CAS  PubMed  Google Scholar 

  • Vahsen BF, Ribas VT, Sundermeyer J, Boecker A, Dambeck V, Lenz C, Shomroni O, Caldi Gomes L, Tatenhorst L, Barski E, et al. Inhibition of the autophagic protein ULK1 attenuates axonal degeneration in vitro and in vivo, enhances translation, and modulates splicing. Cell Death Differ. 2020;27:2810–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viscomi MT, D’Amelio M. The “Janus-Faced Role” of autophagy in neuronal sickness: focus on neurodegeneration. Mol Neurobiol. 2012;46:513–21.

    CAS  PubMed  Google Scholar 

  • Viscomi MT, Molinari M. Remote neurodegeneration: multiple actors for one play. Mol Neurobiol. 2014;50:368–89.

    CAS  PubMed  Google Scholar 

  • Viscomi MT, D’Amelio M, Cavallucci V, Latini L, Bisicchia E, Nazio F, Fanelli F, Maccarrone M, Moreno S, Cecconi F, et al. Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy. 2012;8:222–35.

    CAS  PubMed  Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RLA, Kim J, May J, Tocilescu MA, Liu W, Ko HS, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107:378–83.

    CAS  PubMed  Google Scholar 

  • Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008;283:23542–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Fivecoat H, Ho L, Pan Y, Ling E, Pasinetti GM. The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochim Biophys Acta. 2010;1804:1690–4.

    CAS  PubMed  Google Scholar 

  • Wang Z-Y, Lin J-H, Muharram A, Liu W-G. Beclin-1-mediated autophagy protects spinal cord neurons against mechanical injury-induced apoptosis. Apoptosis. 2014;19:933–45.

    CAS  PubMed  Google Scholar 

  • Wang B, Iyengar R, Li-Harms X, Joo JH, Wright C, Lavado A, Horner L, Yang M, Guan J-L, Frase S, et al. The autophagy-inducing kinases, ULK1 and ULK2, regulate axon guidance in the developing mouse forebrain via a noncanonical pathway. Autophagy. 2018a;14:796–811.

    CAS  PubMed  Google Scholar 

  • Wang C, Wang H, Zhang D, Luo W, Liu R, Xu D, Diao L, Liao L, Liu Z. Phosphorylation of ULK1 affects autophagosome fusion and links chaperone-mediated autophagy to macroautophagy. Nat Commun. 2018b;9:3492.

    PubMed  PubMed Central  Google Scholar 

  • Wang P, Lin C, Wu S, Huang K, Wang Y, Bao X, Zhang F, Huang Z, Teng H. Inhibition of autophagy is involved in the protective effects of ginsenoside Rb1 on spinal cord injury. Cell Mol Neurobiol. 2018c;38:679–90.

    CAS  PubMed  Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. α-synuclein is degraded by both autophagy and the proteasome*. J Biol Chem. 2003;278:25009–13.

    CAS  PubMed  Google Scholar 

  • Wei X, Zhou Z, Li L, Gu J, Wang C, Xu F, Dong Q, Zhou X. Intrathecal injection of 3-methyladenine reduces neuronal damage and promotes functional recovery via autophagy attenuation after spinal cord ischemia/reperfusion injury in rats. Biol Pharm Bull. 2016;39:665–73.

    CAS  PubMed  Google Scholar 

  • Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008;4:295–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winslow AR, Chen C-W, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, et al. α-synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190:1023–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf MS, Bayır H, Kochanek PM, Clark RSB. The role of autophagy in acute brain injury: a state of flux? Neurobiol Dis. 2019;122:9–15.

    PubMed  Google Scholar 

  • Wolfe DM, Lee J-H, Kumar A, Lee S, Orenstein SJ, Nixon RA. Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur J Neurosci. 2013;37:1949–61.

    PubMed  PubMed Central  Google Scholar 

  • Wong YC, Holzbaur ELF. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci. 2014;34:1293–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Lipinski MM. Autophagy in neurotrauma: good, bad, or dysregulated. Cell. 2019;8:E693.

    Google Scholar 

  • Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals. 2011;19:163–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, Li M, Yuan Z. c-Abl–p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542–52.

    CAS  PubMed  Google Scholar 

  • Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Tripoli DL, Czerniewski L, Ballabio A, et al. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβ generation and amyloid plaque pathogenesis. J Neurosci. 2015;35:12137–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9:1102–9.

    CAS  PubMed  Google Scholar 

  • Xu J, Wang H, Lu X, Ding K, Zhang L, He J, Wei W, Wu Y. Posttraumatic administration of luteolin protects mice from traumatic brain injury: implication of autophagy and inflammation. Brain Res. 2014;1582:237–46.

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol. 2012;198:219–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Porch MW, Court-Vazquez B, Bennett MVL, Zukin RS. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice. Proc Natl Acad Sci. 2018a;115:E9707–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Yuan Y, Chu S, Li G, Chen N. E46K mutant α-synuclein is degraded by both proteasome and macroautophagy pathway. Molecules. 2018b;23:2839.

    PubMed  PubMed Central  Google Scholar 

  • Yazdankhah M, Farioli-Vecchioli S, Tonchev AB, Stoykova A, Cecconi F. The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis. 2014;5:e1403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Li E, Sun G, Yan HQ, Foley LM, Andrzejczuk LA, Attarwala IY, Hitchens TK, Kiselyov K, Dixon CE, et al. Effects of DHA on hippocampal autophagy and lysosome function after traumatic brain injury. Mol Neurobiol. 2018;55:2454–70.

    CAS  PubMed  Google Scholar 

  • Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100:15077–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zachari M, Ganley IG. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 2017;61:585–96.

    PubMed  PubMed Central  Google Scholar 

  • Zeng X-J, Li P, Ning Y-L, Zhao Y, Peng Y, Yang N, Zhao Z-A, Chen J-F, Zhou Y-G. Impaired autophagic flux is associated with the severity of trauma and the role of A2AR in brain cells after traumatic brain injury. Cell Death Dis. 2018;9:1–16.

    Google Scholar 

  • Zhang X, Heng X, Li T, Li L, Yang D, Zhang X, Du Y, Doody RS, Le W. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer’s disease transgenic mouse model. J Alzheimers Dis. 2011;24:739–49.

    CAS  PubMed  Google Scholar 

  • Zhang X, Chen S, Huang K, Le W. Why should autophagic flux be assessed? Acta Pharmacol Sin. 2013;34:595–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang H, Fan Y, Gao Y, Li X, Hu Z, Ding K, Wang Y, Wang X. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci Rep. 2017;7:46763.

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Xia Y, Wang Y, Shentu Y, Zeng K, Mahaman YAR, Huang F, Wu M, Ke D, Wang Q, et al. CK2 phosphorylating I2PP2A/SET mediates tau pathology and cognitive impairment. Front Mol Neurosci. 2018;11:146.

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Zhu D, Wang F, Zhu J-C, Zhai X, Yuan Y, Li C-X. Therapeutic effect of regulating autophagy in spinal cord injury: a network meta-analysis of direct and indirect comparisons. Neural Regen Res. 2019;15:1120–32.

    PubMed Central  Google Scholar 

  • Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J, Wang G, Ouyang L, Liu B. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson’s disease. Acta Pharm Sin B. 2021;11:3015–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YG, Zhang H. Autophagosome maturation: an epic journey from the ER to lysosomes. J Cell Biol. 2018;218:757–70.

    PubMed  Google Scholar 

  • Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, Wang F. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci. 2007;104:5842–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Zhang X, Wu K, Wang Y, Xu H. Progress on the role of autophagy in spinal cord injury. Zhongguo Gu Shang. 2015;28:695–8.

    PubMed  Google Scholar 

  • Zhou Y, Zhang H, Zheng B, Ye L, Zhu S, Johnson NR, Wang Z, Wei X, Chen D, Cao G, et al. Retinoic acid induced-autophagic flux inhibits ER-stress dependent apoptosis and prevents disruption of blood-spinal cord barrier after spinal cord injury. Int J Biol Sci. 2016;12:87–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Sansur CA, Xu H, Jia X. The temporal pattern, flux, and function of autophagy in spinal cord injury. Int J Mol Sci. 2017;18:E466.

    Google Scholar 

  • Zhou K, Zheng Z, Li Y, Han W, Zhang J, Mao Y, Chen H, Zhang W, Liu M, Xie L, et al. TFE3, a potential therapeutic target for spinal cord injury via augmenting autophagy flux and alleviating ER stress. Theranostics. 2020;10:9280–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X-C, Yu J-T, Jiang T, Tan L. Autophagy modulation for Alzheimer’s disease therapy. Mol Neurobiol. 2013;48:702–14.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Linea D1 2020-21 Università Cattolica del S. Cuore (to M.T.V.), by American Alzheimer’s Association (AARG-18-566270 to M.D.A), by the Italian Ministry of Health (Research Grant: RF-2018 -12365527 to M.D.A and M.T.V.) and by Fondazione Roma (Rome, Italy to M.D.A.). L.L.B. was supported by an under-40 grant from the Italian Association for Alzheimer’s Research (AIRALZH-AGYR2021) and by the grant “University Strategic Projects – Young Researcher Scientific Independence” from the University Campus Bio-Medico of Rome (Rome, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Viscomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nobili, A. et al. (2023). Autophagy Mechanisms for Brain Recovery. Keep It Clean, Keep It Alive. In: Petrosini, L. (eds) Neurobiological and Psychological Aspects of Brain Recovery. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-24930-3_2

Download citation

Publish with us

Policies and ethics