Skip to main content

Structure and Function of the Leukocyte Integrin αMβ2

  • Chapter
  • First Online:
Integrins in Health and Disease

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 13))

  • 353 Accesses

Abstract

The integrin αMβ2 (also known as CD11b/CD18, Mac-1, complement receptor 3) is expressed on the surface of leukocytes and mediates numerous responses of these cells critical to innate immunity. The αMβ2 receptor contributes to the recruitment, firm adhesion, and transendothelial migration of leukocytes at sites of vascular injury and facilitates tissue inflammation. Biochemical and cell-based studies have characterized the interactions of the αMβ2 integrin with diverse ligands including plasma protein fibrinogen, complement protein fragment iC3b, and the cell surface receptors platelet glycoprotein Ib (GPIb) and intercellular adhesion molecule 1 (ICAM-1). The αMβ2 integrin exists in an inactive conformation and when activated by a variety of stimulae undergoes a structural change to an active form capable of binding to ligands with high affinity. Concurrently, allosteric changes occur upon ligand binding that result in “outside-in” cell signaling. Here we describe the αMβ2 protein structures and biophysical measurements that underpin the current understanding of diverse ligand recognition through the metal ion-dependent adhesion site (MIDAS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adair BD, Xiong JP, Alonso JL, Hyman BT, Arnaout MA (2013) EM structure of the ectodomain of integrin CD11b/CD18 and localization of its ligand-binding site relative to the plasma membrane. PLoS One 8:e57951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimori T, Miyazaki N, Mihara E, Takizawa M, Taniguchi Y, Cabanas C, Sekiguchi K, Takagi J (2021) Structural mechanism of laminin recognition by integrin. Nat Commun 12:4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  PubMed  Google Scholar 

  • Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513:481–483

    Article  CAS  PubMed  Google Scholar 

  • Bajic G, Yatime L, Sim RB, Vorup-Jensen T, Andersen GR (2013) Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc Natl Acad Sci U S A 110:16426–16431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorklund M, Aitio O, Stefanidakis M, Suojanen J, Salo T, Sorsa T, Koivunen E (2006) Stabilization of the activated alphaMbeta2 integrin by a small molecule inhibits leukocyte migration and recruitment. Biochemistry 45:2862–2871

    Article  PubMed  Google Scholar 

  • Carman CV, Springer TA (2003) Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 15:547–556

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yu Y, Mi LZ, Walz T, Springer TA (2012) Molecular basis for complement recognition by integrin alphaXbeta2. Proc Natl Acad Sci U S A 109:4586–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chigaev A, Buranda T, Dwyer DC, Prossnitz ER, Sklar LA (2003) FRET detection of cellular alpha4-integrin conformational activation. Biophys J 85:3951–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui K, Ardell CL, Podolnikova NP, Yakubenko VP (2018) Distinct migratory properties of M1, M2, and resident macrophages are regulated by alphaDbeta2 and alphaMbeta2 integrin-mediated adhesion. Front Immunol 9:2650

    Article  PubMed  PubMed Central  Google Scholar 

  • DeNardo DG, Galkin A, Dupont J, Zhou L, Bendell J (2021) GB1275, a first-in-class CD11b modulator: rationale for immunotherapeutic combinations in solid tumors. J Immunother Cancer 9:e003005

    Article  PubMed  PubMed Central  Google Scholar 

  • Diamond MS, Staunton DE, Marlin SD, Springer TA (1991) Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65:961–971

    Article  CAS  PubMed  Google Scholar 

  • Ehlers R, Ustinov V, Chen Z, Zhang X, Rao R, Luscinskas FW, Lopez J, Plow E, Simon DI (2003) Targeting platelet-leukocyte interactions: identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein Ibalpha. J Exp Med 198:1077–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC (2000) Structural basis of collagen recognition by integrin alpha2beta1. Cell 101:47–56

    Article  CAS  PubMed  Google Scholar 

  • Erdei A, Lukacsi S, Macsik-Valent B, Nagy-Balo Z, Kurucz I, Bajtay Z (2019) Non-identical twins: different faces of CR3 and CR4 in myeloid and lymphoid cells of mice and men. Semin Cell Dev Biol 85:110–121

    Article  CAS  PubMed  Google Scholar 

  • Fagerholm SC, MacPherson M, James MJ, Sevier-Guy C, Lau CS (2013) The CD11b-integrin (ITGAM) and systemic lupus erythematosus. Lupus 22:657–663

    Article  CAS  PubMed  Google Scholar 

  • Faridi MH, Maiguel D, Barth CJ, Stoub D, Day R, Schurer S, Gupta V (2009) Identification of novel agonists of the integrin CD11b/CD18. Bioorg Med Chem Lett 19:6902–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faridi MH, Khan SQ, Zhao W, Lee HW, Altintas MM, Zhang K, Kumar V, Armstrong AR, Carmona-Rivera C, Dorschner JM, Schnaith AM, Li X, Ghodke-Puranik Y, Moore E, Purmalek M, Irizarry-Caro J, Zhang T, Day R, Stoub D, Hoffmann V, Khaliqdina SJ, Bhargava P, Santander AM, Torroella-Kouri M, Issac B, Cimbaluk DJ, Zloza A, Prabhakar R, Deep S, Jolly M, Koh KH, Reichner JS, Bradshaw EM, Chen J, Moita LF, Yuen PS, Li Tsai W, Singh B, Reiser J, Nath SK, Niewold TB, Vazquez-Padron RI, Kaplan MJ, Gupta V (2017) CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. J Clin Invest 127:1271–1283

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez FJ, Santos-Lopez J, Martinez-Barricarte R, Querol-Garcia J, Martin-Merinero H, Navas-Yuste S, Savko M, Shepard WE, Rodriguez de Cordoba S, Vega MC (2022) The crystal structure of iC3b-CR3 alphaI reveals a modular recognition of the main opsonin iC3b by the CR3 integrin receptor. Nat Commun 13:1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flick MJ, Du X, Witte DP, Jirouskova M, Soloviev DA, Busuttil SJ, Plow EF, Degen JL (2004) Leukocyte engagement of fibrin (ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 113:1596–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frommhold D, Kamphues A, Hepper I, Pruenster M, Lukic IK, Socher I, Zablotskaya V, Buschmann K, Lange-Sperandio B, Schymeinsky J, Ryschich E, Poeschl J, Kupatt C, Nawroth PP, Moser M, Walzog B, Bierhaus A, Sperandio M (2010) RAGE and ICAM-1 cooperate in mediating leukocyte recruitment during acute inflammation in vivo. Blood 116:841–849

    Article  CAS  PubMed  Google Scholar 

  • Haglund L, Tillgren V, Addis L, Wenglen C, Recklies A, Heinegard D (2011) Identification and characterization of the integrin alpha2beta1 binding motif in chondroadherin mediating cell attachment. J Biol Chem 286:3925–3934

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science (New York, NY) 352:712–716

    Article  CAS  Google Scholar 

  • Jalilian B, Einarsson HB, Vorup-Jensen T (2012) Glatiramer acetate in treatment of multiple sclerosis: a toolbox of random co-polymers for targeting inflammatory mechanisms of both the innate and adaptive immune system? Int J Mol Sci 13:14579–14605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen RK, Bajic G, Sen M, Springer TA, Vorup-Jensen T, Andersen GR (2021) Complement receptor 3 forms a compact high-affinity complex with iC3b. J Immunol 206:3032–3042

    Article  CAS  PubMed  Google Scholar 

  • Jensen RK, Pedersen H, Lorentzen J, Laursen NS, Vorup-Jensen T, Andersen GR (2022) Structure of the integrin receptor αMβ2 headpiece in complex with a function-modulating nanobody. J Biol Chem. In revision

    Google Scholar 

  • Jiang L, Chen SH, Chu CH, Wang SJ, Oyarzabal E, Wilson B, Sanders V, Xie K, Wang Q, Hong JS (2015) A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis. Glia 63:1057–1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadioglu A, De Filippo K, Bangert M, Fernandes VE, Richards L, Jones K, Andrew PW, Hogg N (2011) The integrins Mac-1 and alpha4beta1 perform crucial roles in neutrophil and T cell recruitment to lungs during Streptococcus pneumoniae infection. J Immunol 186:5907–5915

    Article  CAS  PubMed  Google Scholar 

  • Kotecha A, Wang Q, Dong X, Ilca SL, Ondiviela M, Zihe R, Seago J, Charleston B, Fry EE, Abrescia NGA, Springer TA, Huiskonen JT, Stuart DI (2017) Rules of engagement between alphavbeta6 integrin and foot-and-mouth disease virus. Nat Commun 8:15408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krams M, Lees KR, Hacke W, Grieve AP, Orgogozo JM, Ford GA, Investigators AS (2003) Acute stroke therapy by inhibition of neutrophils (ASTIN): an adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke 34:2543–2548

    Article  CAS  PubMed  Google Scholar 

  • Lamers C, Pluss CJ, Ricklin D (2021) The promiscuous profile of complement receptor 3 in ligand binding, immune modulation, and pathophysiology. Front Immunol 12:662164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JO, Rieu P, Arnaout MA, Liddington R (1995) Crystal structure of the a domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638

    Article  CAS  PubMed  Google Scholar 

  • Li R, Emsley J (2013) The organizing principle of the platelet glycoprotein Ib-IX-V complex. J Thromb Haemost 11:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Schmidt CQ, Koutsogiannaki S, Ricci P, Risitano AM, Lambris JD, Ricklin D (2015) Complement C3dg-mediated erythrophagocytosis: implications for paroxysmal nocturnal hemoglobinuria. Blood 126:891–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacPherson M, Lek HS, Prescott A, Fagerholm SC (2011) A systemic lupus erythematosus-associated R77H substitution in the CD11b chain of the Mac-1 integrin compromises leukocyte adhesion and phagocytosis. J Biol Chem 286:17303–17310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiguel D, Faridi MH, Wei C, Kuwano Y, Balla KM, Hernandez D, Barth CJ, Lugo G, Donnelly M, Nayer A, Moita LF, Schurer S, Traver D, Ruiz P, Vazquez-Padron RI, Ley K, Reiser J, Gupta V (2011) Small molecule-mediated activation of the integrin CD11b/CD18 reduces inflammatory disease. Sci Signal 4:ra57

    Article  PubMed  PubMed Central  Google Scholar 

  • McCleverty CJ, Liddington RC (2003) Engineered allosteric mutants of the integrin alphaMbeta2 I domain: structural and functional studies. Biochem J 372:121–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michishita M, Videm V, Arnaout MA (1993) A novel divalent cation-binding site in the a domain of the beta 2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 72:857–867

    Article  CAS  PubMed  Google Scholar 

  • Morgan J, Saleem M, Ng R, Armstrong C, Wong SS, Caulton SG, Fickling A, Williams HEL, Munday AD, Lopez JA, Searle MS, Emsley J (2019) Structural basis of the leukocyte integrin Mac-1 I-domain interactions with the platelet glycoprotein Ib. Blood Adv 3:1450–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen S, Kidmose RT, Petersen SV, Szilagyi A, Prohaszka Z, Andersen GR (2015) Structural basis for the function of complement component C4 within the classical and lectin pathways of complement. J Immunol 194:5488–5496

    Article  CAS  PubMed  Google Scholar 

  • Nath SK, Han S, Kim-Howard X, Kelly JA, Viswanathan P, Gilkeson GS, Chen W, Zhu C, McEver RP, Kimberly RP, Alarcon-Riquelme ME, Vyse TJ, Li QZ, Wakeland EK, Merrill JT, James JA, Kaufman KM, Guthridge JM, Harley JB (2008) A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 40:152–154

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Xie C, Shimaoka M, Cheng Y, Walz T, Springer TA (2006) Activation of leukocyte beta2 integrins by conversion from bent to extended conformations. Immunity 25:583–594

    Article  CAS  PubMed  Google Scholar 

  • Norris GT, Smirnov I, Filiano AJ, Shadowen HM, Cody KR, Thompson JA, Harris TH, Gaultier A, Overall CC, Kipnis J (2018) Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med 215:1789–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panni RZ, Herndon JM, Zuo C, Hegde S, Hogg GD, Knolhoff BL, Breden MA, Li X, Krisnawan VE, Khan SQ, Schwarz JK, Rogers BE, Fields RC, Hawkins WG, Gupta V, DeNardo DG (2019) Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med 11:eaau9240

    Article  PubMed  PubMed Central  Google Scholar 

  • Paracuellos P, Kalamajski S, Bonna A, Bihan D, Farndale RW, Hohenester E (2017) Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin. Matrix Biol 63:106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P (2006) Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med 203:2569–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes B, Furnrohr BG, Roberts AL, Tzircotis G, Schett G, Spector TD, Vyse TJ (2012) The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Ann Rheum Dis 71:2028–2034

    Article  CAS  PubMed  Google Scholar 

  • Roberts AL, Furnrohr BG, Vyse TJ, Rhodes B (2016) The complement receptor 3 (CD11b/CD18) agonist Leukadherin-1 suppresses human innate inflammatory signalling. Clin Exp Immunol 185:361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosetti F, Mayadas TN (2016) The many faces of Mac-1 in autoimmune disease. Immunol Rev 269:175–193

    Article  CAS  PubMed  Google Scholar 

  • Rosetti F, Chen Y, Sen M, Thayer E, Azcutia V, Herter JM, Luscinskas FW, Cullere X, Zhu C, Mayadas TN (2015) A lupus-associated Mac-1 variant has defects in integrin allostery and interaction with ligands under force. Cell Rep 10:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saggu G, Okubo K, Chen Y, Vattepu R, Tsuboi N, Rosetti F, Cullere X, Washburn N, Tahir S, Rosado AM, Holland SM, Anthony RM, Sen M, Zhu C, Mayadas TN (2018) Cis interaction between sialylated FcgammaRIIA and the alphaI-domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nat Commun 9:5058

    Article  PubMed  PubMed Central  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenkel AR, Mamdouh Z, Muller WA (2004) Locomotion of monocytes on endothelium is a critical step during extravasation. Nat Immunol 5:393–400

    Article  CAS  PubMed  Google Scholar 

  • Schmid MC, Khan SQ, Kaneda MM, Pathria P, Shepard R, Louis TL, Anand S, Woo G, Leem C, Faridi MH, Geraghty T, Rajagopalan A, Gupta S, Ahmed M, Vazquez-Padron RI, Cheresh DA, Gupta V, Varner JA (2018) Integrin CD11b activation drives anti-tumor innate immunity. Nat Commun 9:5379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher S, Dedden D, Nunez RV, Matoba K, Takagi J, Biertumpfel C, Mizuno N (2021) Structural insights into integrin alpha5beta1 opening by fibronectin ligand. Sci Adv 7:3008

    Article  Google Scholar 

  • Sen M, Springer TA (2016) Leukocyte integrin alphaLbeta2 headpiece structures: the alphaI domain, the pocket for the internal ligand, and concerted movements of its loops. Proc Natl Acad Sci U S A 113:2940–2945

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen M, Yuki K, Springer TA (2013) An internal ligand-bound, metastable state of a leukocyte integrin, alphaXbeta2. J Cell Biol 203:629–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimaoka M, Xiao T, Liu JH, Yang Y, Dong Y, Jun CD, McCormack A, Zhang R, Joachimiak A, Takagi J, Wang JH, Springer TA (2003) Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112:99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, Lopez JA (2000) Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 192:193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapulionis R, Oliveira CL, Gjelstrup MC, Pedersen JS, Hokland ME, Hoffmann SV, Poulsen K, Jacobsen C, Vorup-Jensen T (2008) Structural insight into the function of myelin basic protein as a ligand for integrin alpha M beta 2. J Immunol 180:3946–3956

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Trstenjak N, Milic D, Graewert MA, Rouha H, Svergun D, Djinovic-Carugo K, Nagy E, Badarau A (2020) Molecular mechanism of leukocidin GH-integrin CD11b/CD18 recognition and species specificity. Proc Natl Acad Sci U S A 117:317–327

    Article  CAS  PubMed  Google Scholar 

  • Uff S, Clemetson JM, Harrison T, Clemetson KJ, Emsley J (2002) Crystal structure of the platelet glycoprotein Ib(alpha) N-terminal domain reveals an unmasking mechanism for receptor activation. J Biol Chem 277:35657–35663

    Article  CAS  PubMed  Google Scholar 

  • Ustinov VA, Plow EF (2002) Delineation of the key amino acids involved in neutrophil inhibitory factor binding to the I-domain supports a mosaic model for the capacity of integrin alphaMbeta 2 to recognize multiple ligands. J Biol Chem 277:18769–18776

    Article  CAS  PubMed  Google Scholar 

  • Ustinov VA, Plow EF (2005) Identity of the amino acid residues involved in C3bi binding to the I-domain supports a mosaic model to explain the broad ligand repertoire of integrin alpha M beta 2. Biochemistry 44:4357–4364

    Article  CAS  PubMed  Google Scholar 

  • von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Kollnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209:819–835

    Article  Google Scholar 

  • Vorup-Jensen T, Jensen RK (2018) Structural immunology of complement receptors 3 and 4. Front Immunol 9:2716

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A (2008) Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 28:8138–8143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gao H, Shi C, Erhardt PW, Pavlovsky A, Soloviev DA, Bledzka K, Ustinov V, Zhu L, Qin J, Munday AD, Lopez J, Plow E, Simon DI (2017) Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbalpha. Nat Commun 8:15559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C, Zhu J, Chen X, Mi L, Nishida N, Springer TA (2010) Structure of an integrin with an alphaI domain, complement receptor type 4. EMBO J 29:666–679

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Wang J, Wang JH, Springer TA (2017) Distinct recognition of complement iC3b by integrins alphaXbeta2 and alphaMbeta2. Proc Natl Acad Sci U S A 114:3403–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalamanchili P, Lu C, Oxvig C, Springer TA (2000) Folding and function of I domain-deleted Mac-1 and lymphocyte function-associated antigen-1. J Biol Chem 275:21877–21882

    Article  CAS  PubMed  Google Scholar 

  • Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Emsley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andersen, G.R., Emsley, J. (2023). Structure and Function of the Leukocyte Integrin αMβ2. In: Gullberg, D., Eble, J.A. (eds) Integrins in Health and Disease. Biology of Extracellular Matrix, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-031-23781-2_11

Download citation

Publish with us

Policies and ethics