Skip to main content

Changes in Renin Angiotensin System (RAS) in Cancers and Lung Diseases: Application of Biosensors for Monitoring These Changes

  • Chapter
  • First Online:
The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases

Abstract

In humans, almost every organ has varying degrees of the functional renin-angiotensin system (RAS). Increased RAS activity has been shown in various tumors, including kidney, prostate, bladder, stomach, cervix, brain, pancreas, colon, lung, liver, skin, and hematopoietic cancers. Although there are controversial data, most experimental studies show that angiotensin receptor blockers (ARBs) have anti-proliferative effects in breast cancer, induce cell death in pancreatic cancer, and ameliorate liver metastases in colon cancer. Improve in survival rate in non-small cell lung cancer patients is another finding in this regard. In addition, angiotensin-converting enzyme (ACE) inhibitors (ACEI) may decrease the risk of developing esophageal cancer. In recent decade, biosensors have been widely used in biomarkers detection worldwide as the most reliable, fast, and precise analytical method. Many approaches have been developed, each with its distinct advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin converting enzyme

ACEI:

Angiotensin converting enzyme inhibitor

ADAM17:

ADAM Metallopeptidase Domain 17

AGT:

Angiotensinogen

AGTR1:

Angiotensin II receptor type 1

AngII:

Angiotensin II

ARB:

Angiotensin receptor blocker

ARDS:

Acute respiratory distress syndrome

ATR:

Angiotensin receptor

CYP11B2 :

Aldosterone synthase gene

DALY:

Disability-adjusted life year

EZH2:

Enhancer of zeste homolog 2

HAT1:

Histone Acetyltransferase 1

HDAC2:

Histone deacetylase 2

HTN:

Hypertension

I/D:

Insertion/Deletion Polymorphism

I/I:

Insertion/Insertion

KDM:

Lysine demethylase

miRNA:

MicroRNA

ORF1ab:

Two open reading frames a and b

PRR:

Pattern recognition receptor

RAAS:

Renin-angiotensin-aldosterone system

RAB1A:

Ras-related protein Rab-1A

RAS:

Renin-angiotensin system

REN:

RASS Gene Encoding Renin

rS:

Reference single nucleotide polymorphism identification

SNP:

Single Nucleotide Polymorphism

SPR:

Surface Plasmon Resonance

VEGF:

Vascular endothelial growth factor

References

  1. Mattiuzzi C, Lippi G (2019) Current Cancer Epidemiology. J Epidemiol Glob Health 9(4):217–222

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smith L, Bryan S, De P (2018) Canadian cancer statistics advisory committee. Canadian cancer statistics

    Google Scholar 

  3. Canada S (2020) Table 13-10-0394-01 Leading causes of death, total population, by age group. P 1

    Google Scholar 

  4. Brenner DR, Poirier A, Woods RR, Ellison LF, Billette JM, Demers AA et al (2022) Projected estimates of cancer in Canada in 2022. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne 194(17):E601–e7

    Google Scholar 

  5. de Oliveira C, Weir S, Rangrej J, Krahn MD, Mittmann N, Hoch JS et al (2018) The economic burden of cancer care in Canada: a population-based cost study. CMAJ Open 6(1):E1-e10

    Article  PubMed  PubMed Central  Google Scholar 

  6. Linz W, Schölkens BA, Ganten D (1989) Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens Part A, Theory Pract 11(7):1325–1350

    Article  CAS  Google Scholar 

  7. Afsar B, Afsar RE, Ertuglu LA, Kuwabara M, Ortiz A, Covic A et al (2021) Renin-angiotensin system and cancer: epidemiology, cell signaling, genetics and epigenetics. Clin Transl Oncol: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 23(4):682–696

    Article  CAS  Google Scholar 

  8. Luan Z, Liu B, Shi L (2019) Angiotensin II-induced micro RNA-21 culprit for non-small-cell lung adenocarcinoma. Drug Dev Res 80(8):1031–1039

    Article  CAS  PubMed  Google Scholar 

  9. Vinson GP, Barker S, Puddefoot JR (2012) The renin-angiotensin system in the breast and breast cancer. Endocr Relat Cancer 19(1):R1-19

    Article  CAS  PubMed  Google Scholar 

  10. De Paepe B (2009) Anti-angiogenic agents and cancer: current insights and future perspectives. Recent Pat Anti-Cancer Drug Discov 4(2):180–185

    Article  Google Scholar 

  11. Koh WP, Yuan JM, Sun CL, van den Berg D, Seow A, Lee HP et al (2003) Angiotensin I-converting enzyme (ACE) gene polymorphism and breast cancer risk among Chinese women in Singapore. Can Res 63(3):573–578

    CAS  Google Scholar 

  12. Sierra Díaz E, Sánchez Corona J, Rosales Gómez RC, Gutierrez Rubio SA, Vázquez Camacho JG, Solano Moreno H et al (2009) Angiotensin-converting enzyme insertion/deletion and angiotensin type 1 receptor A1166C polymorphisms as genetic risk factors in benign prostatic hyperplasia and prostate cancer. Journal of the renin-angiotensin-aldosterone system: JRAAS. 10(4):241–6

    Google Scholar 

  13. Mendizábal-Ruiz AP, Morales J, Castro Martinez X, Gutierrez Rubio SA, Valdez L, Vásquez-Camacho JG et al (2011) RAS polymorphisms in cancerous and benign breast tissue. J Renin-Angiotensin-aldosterone Syst: JRAAS 12(2):85–92

    Google Scholar 

  14. Yaren A, Turgut S, Kursunluoglu R, Oztop I, Turgut G, Degirmencioglu S et al (2007) Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene in patients with breast cancer and effects on prognostic factors. J Invest Med: the official publication of the American Federation for Clinical Research 55(5):255–261

    Article  CAS  Google Scholar 

  15. Nakai Y, Isayama H, Ijichi H, Sasaki T, Sasahira N, Hirano K et al (2010) Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br J Cancer 103(11):1644–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ino K, Shibata K, Kajiyama H, Yamamoto E, Nagasaka T, Nawa A et al (2006) Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. Br J Cancer 94(4):552–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arrieta O, Pineda-Olvera B, Guevara-Salazar P, Hernández-Pedro N, Morales-Espinosa D, Cerón-Lizarraga TL et al (2008) Expression of AT1 and AT2 angiotensin receptors in astrocytomas is associated with poor prognosis. Br J Cancer 99(1):160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arrieta O, Villarreal-Garza C, Vizcaíno G, Pineda B, Hernández-Pedro N, Guevara-Salazar P et al (2015) Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer. Tumour Biol: the journal of the International Society for Oncodevelopmental Biology and Medicine. 36(7):5627–5634

    Article  CAS  Google Scholar 

  19. Röcken C, Röhl FW, Diebler E, Lendeckel U, Pross M, Carl-McGrath S et al (2007) The angiotensin II/angiotensin II receptor system correlates with nodal spread in intestinal type gastric cancer. Cancer Epidemiol, Biomarkers Prev: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 16(6):1206–1212

    Article  Google Scholar 

  20. Shirotake S, Miyajima A, Kosaka T, Tanaka N, Maeda T, Kikuchi E et al (2011) Angiotensin II type 1 receptor expression and microvessel density in human bladder cancer. Urology 77(4):1009.e19–25

    Article  PubMed  Google Scholar 

  21. George AJ, Thomas WG, Hannan RD (2010) The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer 10(11):745–759

    Article  CAS  PubMed  Google Scholar 

  22. Balyasnikova IV, Danilov SM, Muzykantov VR, Fisher AB (1998) Modulation of angiotensin-converting enzyme in cultured human vascular endothelial cells. In Vitro Cell Dev Biol Anim 34(7):545–554

    Article  CAS  PubMed  Google Scholar 

  23. Danilov SM, Sadovnikova E, Scharenborg N, Balyasnikova IV, Svinareva DA, Semikina EL et al (2003) Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp Hematol 31(12):1301–1309

    Article  CAS  PubMed  Google Scholar 

  24. Lin C, Datta V, Okwan-Duodu D, Chen X, Fuchs S, Alsabeh R et al (2011) Angiotensin-converting enzyme is required for normal myelopoiesis. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology 25(4):1145–1155

    Article  CAS  PubMed  Google Scholar 

  25. Shen XZ, Billet S, Lin C, Okwan-Duodu D, Chen X, Lukacher AE et al (2011) The carboxypeptidase ACE shapes the MHC class I peptide repertoire. Nat Immunol 12(11):1078–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cortez-Retamozo V, Etzrodt M, Newton A, Ryan R, Pucci F, Sio SW et al (2013) Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38(2):296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Annicchiarico BE, Santonocito C, Siciliano M, Scapaticci M, Guarino D, Di Stasi C et al (2019) ACE I allele is associated with more severe portal hypertension in patients with liver cirrhosis: a pilot study. Dig Liver Dis 51(2):293–296

    Article  CAS  PubMed  Google Scholar 

  28. Li S, Wang Q, Tao Y, Liu C (2016) Swertiamarin attenuates experimental rat hepatic fibrosis by suppressing angiotensin II-angiotensin type 1 receptor-extracellular signal-regulated kinase signaling. J Pharmacol Exp Ther 359(2):247–255

    Article  CAS  PubMed  Google Scholar 

  29. Miranda AS, Simões ESAC (2017) Serum levels of angiotensin converting enzyme as a biomarker of liver fibrosis. World J Gastroenterol 23(48):8439–8442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lever AF, Hole DJ, Gillis CR, McCallum IR, McInnes GT, MacKinnon PL et al (1998) Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet (London, England). 352(9123):179–184

    Article  CAS  PubMed  Google Scholar 

  31. Ager EI, Neo J, Christophi C (2008) The renin-angiotensin system and malignancy. Carcinogenesis 29(9):1675–1684

    Article  CAS  PubMed  Google Scholar 

  32. Amaya K, Ohta T, Kitagawa H, Kayahara M, Takamura H, Fujimura T et al (2004) Angiotensin II activates MAP kinase and NF-kappaB through angiotensin II type I receptor in human pancreatic cancer cells. Int J Oncol 25(4):849–856

    CAS  PubMed  Google Scholar 

  33. Gong Q, Davis M, Chipitsyna G, Yeo CJ, Arafat HA (2010) Blocking angiotensin II Type 1 receptor triggers apoptotic cell death in human pancreatic cancer cells. Pancreas 39(5):581–594

    Article  CAS  PubMed  Google Scholar 

  34. Uemura H, Hasumi H, Kawahara T, Sugiura S, Miyoshi Y, Nakaigawa N et al (2005) Pilot study of angiotensin II receptor blocker in advanced hormone-refractory prostate cancer. Int J Clin Oncol 10(6):405–410

    Article  CAS  PubMed  Google Scholar 

  35. Wilop S, von Hobe S, Crysandt M, Esser A, Osieka R, Jost E (2009) Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J Cancer Res Clin Oncol 135(10):1429–1435

    Article  CAS  PubMed  Google Scholar 

  36. Yoshiji H, Noguchi R, Toyohara M, Ikenaka Y, Kitade M, Kaji K et al (2009) Combination of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of hepatocellular carcinoma. J Hepatol 51(2):315–321

    Article  CAS  PubMed  Google Scholar 

  37. Suganuma T, Ino K, Shibata K, Kajiyama H, Nagasaka T, Mizutani S et al (2005) Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res: an official journal of the American Association for Cancer Research 11(7):2686–2694

    Article  CAS  Google Scholar 

  38. Sun H, Li T, Zhuang R, Cai W, Zheng Y (2017) Do renin-angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients?: Evidence from a meta-analysis including 55 studies. Medicine 96(13):e6394

    Google Scholar 

  39. Derosa L, Izzedine H, Albiges L, Escudier B (2016) Hypertension and angiotensin system inhibitors in patients with metastatic renal cell carcinoma. Oncol Rev 10(2):298

    Google Scholar 

  40. Araújo WF, Naves MA, Ravanini JN, Schor N, Teixeira VP (2015) Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice. Urol Oncol 33(9):389.e1–7

    Article  PubMed  Google Scholar 

  41. Siljee S, Milne B, Brasch HD, Bockett N, Patel J, Davis PF et al (2021) Expression of components of the renin-angiotensin system by cancer stem cells in renal clear cell carcinoma. Biomolecules 11(4)

    Google Scholar 

  42. Mehranfard D, Perez G, Rodriguez A, Ladna JM, Neagra CT, Goldstein B et al (2021) Alterations in gene expression of renin-angiotensin system components and related proteins in colorectal cancer. J Renin-Angiotensin-Aldosterone Syst

    Google Scholar 

  43. Ziaja M, Urbanek KA, Kowalska K, Piastowska-Ciesielska AW (2021) Angiotensin II and angiotensin receptors 1 and 2—multifunctional system in cells biology, What Do We Know? Cells 10(2):381

    Google Scholar 

  44. Huang W-J, He W-Y, Li J-D, He R-Q, Huang Z-G, Zhou X-G et al (2021) Clinical significance and molecular mechanism of angiotensin-converting enzyme 2 in hepatocellular carcinoma tissues. Bioengineered 12(1):4054–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cui Y, Chen F, Gao J, Lei M, Wang D, Jin X et al (2021) Comprehensive landscape of the renin-angiotensin system in Pan-cancer: a potential downstream mediated mechanism of SARS-CoV-2. Int J Biol Sci 17(14):3795

    Google Scholar 

  46. Delforce SJ, Lumbers ER, de Meaultsart CC, Wang Y, Proietto A, Otton G et al (2017) Expression of renin–angiotensin system (RAS) components in endometrial cancer. Endocr Connections 6(1):9

    Google Scholar 

  47. Zhang Q, Yu S, Lam MMT, Poon TCW, Sun L, Jiao Y et al (2019) Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res 38(1):1–18

    Article  Google Scholar 

  48. Shivapathasundram G, Wickremesekera AC, Brasch HD, Van Schaijik B, Marsh RW, Tan ST et al (2019) Expression of components of the renin-angiotensin system by the putative stem cell population within WHO grade I meningioma. Front Surg 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  49. Uemura H, Hoshino K, Kubota Y (2011) Engagement of renin-angiotensin system in prostate cancer. Curr Cancer Drug Targets 11(4):442–450

    Article  CAS  PubMed  Google Scholar 

  50. Hashemzehi M, Beheshti F, Hassanian SM, Ferns GA, Khazaei M, Avan A (2020) Therapeutic potential of renin angiotensin system inhibitors in cancer cells metastasis. Pathol Res Pract 216(7):153010

    Google Scholar 

  51. Sobczuk P, Szczylik C, Porta C, Czarnecka AM (2017) Renin angiotensin system deregulation as renal cancer risk factor. Oncol Lett 14(5):5059–5068

    PubMed  PubMed Central  Google Scholar 

  52. Siljee S, Milne B, Brasch HD, Bockett N, Patel J, Davis PF et al (2021) Expression of components of the renin-angiotensin system by cancer stem cells in renal clear cell carcinoma. Biomolecules 11(4):537

    Google Scholar 

  53. Wickremesekera AC, Brasch HD, Lee VM, Davis PF, Parker A, Koeck H et al (2019) Cancer stem cell subpopulations in metastatic melanoma to the brain express components of the renin-angiotensin system. J Cancer Metastasis Treat 5:62

    CAS  Google Scholar 

  54. Siljee S, Pilkington T, Brasch HD, Bockett N, Patel J, Paterson E et al (2020) Cancer stem cells in head and neck metastatic malignant melanoma express components of the renin-angiotensin system. Life 10(11):268

    Google Scholar 

  55. Leung P, Sernia C (2003) The renin-angiotensin system and male reproduction: new functions for old hormones. J Mol Endocrinol 30(3):263–270

    Article  CAS  PubMed  Google Scholar 

  56. Haznedaroglu IC, Beyazit Y (2010) Pathobiological aspects of the local bone marrow renin-angiotensin system: a review. J Renin-Angiotensin-Aldosterone Syst 11(4):205–13

    Google Scholar 

  57. Zhang G-H, Miao F-A, Xu J-G, Zhang Y (2020) Angiotensin II enhances the proliferation of Natural Killer/T-cell lymphoma cells via activating PI3K/Akt signaling pathway. Biosci Rep 40(10)

    Google Scholar 

  58. Turk S, Turk C, Akbar MW, Kucukkaraduman B, Isbilen M, Demirkol Canli S et al (2020) Renin angiotensin system genes are biomarkers for personalized treatment of acute myeloid leukemia with Doxorubicin as well as etoposide. PloS One 15(11):e0242497

    Google Scholar 

  59. Magnuson W, Morris Z, Mohindra P, Geye H, Harari P (2014) Potential influence of ace inhibitors and angiotensin receptor blockers on outcome in patients with oropharynx cancer treated with radiation therapy. Int J Radiat Oncol Biol Phys 90(1):S516–S517

    Article  Google Scholar 

  60. Sun H, Li T, Zhuang R, Cai W, Zheng Y (2017) Do renin–angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients?: Evidence from a meta-analysis including 55 studies. Medicine 96(13)

    Google Scholar 

  61. Chen Y-H, Huang C-H, Lu H-I, Chen C-H, Huang W-T, Hsieh M-J, et al. Prognostic impact of renin-angiotensin system blockade in esophageal squamous cell carcinoma. J Renin-Angiotensin-Aldosterone Syst 16(4):1185–92

    Google Scholar 

  62. Sadoughi F, Dana PM, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B (2022) Severe acute respiratory syndrome and thyroid: A molecular point of view. Clin Nutr ESPEN

    Google Scholar 

  63. Skelton WP, Jain RK, Curran C, Pond GR, Naqvi SMH, Kim Y et al (2021) Impact of angiotensin blockade on response to PD1/L1 inhibitors for patients with metastatic urothelial carcinoma (mUC). American Society of Clinical Oncology

    Google Scholar 

  64. Zhao Y, Xu K, Liu P (2018) Post-transcriptional control of angiotensin II type 1 receptor regulates osteosarcoma cell death. Cell Physiol Biochem 45(4):1581–1589

    Article  CAS  PubMed  Google Scholar 

  65. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V et al (2018) Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 98(3):1627–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walther T, Khanna P, Bhatt RS. Combining VEGF receptor inhibitors and angiotensin-(1–7) to target renal cell carcinoma. Mol Cell Oncol 8(4):1918529

    Google Scholar 

  67. Zemlin AE, Wiese OJ (2020) Coronavirus disease 2019 (COVID-19) and the renin-angiotensin system: a closer look at angiotensin-converting enzyme 2 (ACE2). Ann Clin Biochem 57(5):339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Renziehausen A, Wang H, Rao B, Weir L, Nigro CL, Lattanzio L et al (2019) The renin angiotensin system (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention. Oncogene 38(13):2320–2336

    Article  CAS  PubMed  Google Scholar 

  69. Itinteang T, Dunne JC, Chibnall AM, Brasch HD, Davis PF, Tan ST (2016) Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma express components of the renin–angiotensin system. J Clin Pathol 69(10):942–945

    Article  CAS  PubMed  Google Scholar 

  70. Delanghe JR, Speeckaert MM, De Buyzere ML (2020) COVID-19 infections are also affected by human ACE1 D/I polymorphism. Clin Chem Lab Med 58(7):1125–1126

    Article  CAS  PubMed  Google Scholar 

  71. Delanghe JR, Speeckaert MM, De Buyzere ML (2020) The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clinica chimica acta; international journal of clinical chemistry 505:192–3

    Google Scholar 

  72. Pati A, Mahto H, Padhi S, Panda AK (2020) ACE deletion allele is associated with susceptibility to SARS-CoV-2 infection and mortality rate: An epidemiological study in the Asian population. Clinica chimica acta; international journal of clinical chemistry 510:455–8

    Google Scholar 

  73. Yamamoto N, Ariumi Y, Nishida N, Yamamoto R, Bauer G, Gojobori T et al (2020) SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype. Gene 758:144944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yildirim Z, Sahin OS, Yazar S, Bozok CV (2021) Genetic and epigenetic factors associated with increased severity of Covid-19. Cell Biol Int 45(6):1158–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aung AK, Aitken T, Teh BM, Yu C, Ofori-Asenso R, Chin KL et al (2020) Angiotensin converting enzyme genotypes and mortality from COVID-19: an ecological study. J Infect 81(6):961–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fan Z, Wu G, Yue M, Ye J, Chen Y, Xu B et al (2019) Hypertension and hypertensive left ventricular hypertrophy are associated with ACE2 genetic polymorphism. Life Sci 225:39–45

    Article  CAS  PubMed  Google Scholar 

  77. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X et al (2020) Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discovery. 6:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Darbani B (2020) The expression and polymorphism of entry machinery for COVID-19 in human: juxtaposing population groups, gender, and different tissues. Int J Environ Res Public Health 17(10)

    Google Scholar 

  79. Mohammad A, Marafie SK, Alshawaf E, Abu-Farha M, Abubaker J, Al-Mulla F (2020) Structural analysis of ACE2 variant N720D demonstrates a higher binding affinity to TMPRSS2. Life Sci 259:118219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hussain M, Jabeen N, Raza F, Shabbir S, Baig AA, Amanullah A et al (2020) Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol 92(9):1580–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Q, Cao Z, Rahman P (2020) Genetic variability of human angiotensin-converting enzyme 2 (hACE2) among various ethnic populations. Mol Genet Genomic Med 8(8):e1344

    Google Scholar 

  82. Benetti E, Tita R, Spiga O, Ciolfi A, Birolo G, Bruselles A et al (2020) ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. European J Hum Genet: EJHG 28(11):1602–1614

    Article  CAS  Google Scholar 

  83. Novelli A, Biancolella M, Borgiani P, Cocciadiferro D, Colona VL, D'Apice MR et al (2020) Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients. Hum Genom 14(1):29

    Google Scholar 

  84. Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L et al (2020) New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Medicine 18(1):216

    Google Scholar 

  85. Darbani B (2020) The expression and polymorphism of entry machinery for COVID-19 in human: juxtaposing population groups, gender, and different tissues. Int J Environ research and public health 17(10):3433

    Google Scholar 

  86. Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L et al (2020) New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med 18(1):1–8

    Article  Google Scholar 

  87. Li Q, Cao Z, Rahman P (2020) Genetic variability of human angiotensin‐converting enzyme 2 (hACE2) among various ethnic populations. Mol Genet Genomic Med 8(8):e1344

    Google Scholar 

  88. Benetti E, Tita R, Spiga O, Ciolfi A, Birolo G, Bruselles A et al (2020) ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet 28(11):1602–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stawiski EW, Diwanji D, Suryamohan K, Gupta R, Fellouse FA, Sathirapongsasuti JF et al (2020) Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. BioRxiv

    Google Scholar 

  90. Novelli A, Biancolella M, Borgiani P, Cocciadiferro D, Colona VL, D’Apice MR et al (2020) Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients. Hum Genomics 14(1):1–6

    Article  Google Scholar 

  91. Ali F, Elserafy M, Alkordi MH, Amin M (2020) ACE2 coding variants in different populations and their potential impact on SARS-CoV-2 binding affinity. Biochem Biophys Rep 24:100798

    PubMed  PubMed Central  Google Scholar 

  92. Guo X, Chen Z, Xia Y, Lin W, Li H (2020) Investigation of the genetic variation in ACE2 on the structural recognition by the novel coronavirus (SARS-CoV-2). J Transl Med 18(1):1–9

    Article  Google Scholar 

  93. Khalid Z, Naveed H (2022) Identification of destabilizing SNPs in SARS-CoV2-ACE2 protein and spike glycoprotein: implications for virus entry mechanisms. J Biomol Struct Dyn 40(3):1205–1215

    Article  CAS  PubMed  Google Scholar 

  94. Menachery VD, Eisfeld AJ, Schäfer A, Josset L, Sims AC, Proll S et al (2014) Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. mBio 5(3):e01174–14

    Google Scholar 

  95. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT et al (2020) ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis 222(4):556–563

    Article  CAS  PubMed  Google Scholar 

  96. Sen R, Garbati M, Bryant K, Lu Y (2021) Epigenetic mechanisms influencing COVID-19. Genome 64(4):372–385

    Article  CAS  PubMed  Google Scholar 

  97. Clarke NE, Belyaev ND, Lambert DW, Turner AJ (2014) Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress. Clin Sci (London, England: 1979) 126(7):507–16

    Google Scholar 

  98. Sawalha AH, Zhao M, Coit P, Lu Q (2020) Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol (Orlando, Fla) 215:108410

    Article  CAS  Google Scholar 

  99. Corley MJ, Ndhlovu LC (2020) DNA methylation analysis of the COVID-19 host cell receptor, angiotensin I converting enzyme 2 gene (ACE2) in the respiratory system reveal age and gender differences

    Google Scholar 

  100. Cardenas A, Rifas-Shiman SL, Sordillo JE, DeMeo DL, Baccarelli AA, Hivert MF et al (2021) DNA methylation architecture of the ACE2 gene in nasal cells of children. Sci Rep 11(1):7107

    Google Scholar 

  101. Liu Q, Du J, Yu X, Xu J, Huang F, Li X et al (2017) miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discovery. 3:17021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li H, Zi P, Shi H, Gao M, Sun R (2018) Role of signaling pathway of long non-coding RNA growth arrest-specific transcript 5/microRNA-200c-3p/angiotensin converting enzyme 2 in the apoptosis of human lung epithelial cell A549 in acute respiratory distress syndrome. Zhonghua Yi Xue Za Zhi 98(41):3354–3359

    CAS  PubMed  Google Scholar 

  103. Trojanowicz B, Imdahl T, Ulrich C, Fiedler R, Girndt M (2019) Circulating miR-421 targeting leucocytic angiotensin converting enzyme 2 is elevated in patients with chronic kidney disease. Nephron 141(1):61–74

    Article  CAS  PubMed  Google Scholar 

  104. Fang Y, Gao F, Hao J, Liu Z (2017) microRNA-1246 mediates lipopolysaccharide-induced pulmonary endothelial cell apoptosis and acute lung injury by targeting angiotensin-converting enzyme 2. Am J Transl Res 9(3):1287–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Saçar Demirci MD, Adan A (2020) Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. PeerJ 8:e9369

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lambert DW, Lambert LA, Clarke NE, Hooper NM, Porter KE, Turner AJ (2014) Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421. Clin Sci (London, England: 1979) 127(4):243–9

    Google Scholar 

  107. Zhang R, Su H, Ma X, Xu X, Liang L, Ma G et al (2019) MiRNA let-7b promotes the development of hypoxic pulmonary hypertension by targeting ACE2. Am J Physiol-Lung Cell Mol Physiol 316(3):L547–L557

    Article  CAS  PubMed  Google Scholar 

  108. Rizzo P, Vieceli Dalla Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R (2020) COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol 115(3):31

    Google Scholar 

  109. Mahrooz A, Muscogiuri G, Buzzetti R, Maddaloni E (2021) The complex combination of COVID-19 and diabetes: pleiotropic changes in glucose metabolism. Endocrine 72(2):317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sawalha AH, Zhao M, Coit P, Lu Q (2020) Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol 215:108410

    Google Scholar 

  111. Cardenas A, Rifas-Shiman SL, Sordillo JE, DeMeo DL, Baccarelli AA, Hivert M-F et al (2021) DNA methylation architecture of the ACE2 gene in nasal cells of children. Sci Rep 11(1):1–9

    Article  CAS  Google Scholar 

  112. Pruimboom L (2020) Methylation pathways and SARS-CoV-2 lung infiltration and cell membrane-virus fusion are both subject to epigenetics. Front Cell Infect Microbiol 10:290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zoghbi HY, Beaudet AL (2016) Epigenetics and human disease. Cold Spring Harb Perspect Biol 8(2):a019497

    Google Scholar 

  114. Corrado C, Fontana S (2020) Hypoxia and HIF signaling: one axis with divergent effects. Int J Mol Sci 21(16):5611

    Google Scholar 

  115. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE et al (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417(6891):822–828

    Article  CAS  PubMed  Google Scholar 

  116. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 94(7):e00127-e220

    Article  PubMed  PubMed Central  Google Scholar 

  118. McCray PB Jr, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L et al (2007) Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 81(2):813–821

    Article  CAS  PubMed  Google Scholar 

  119. Yang X-L, Hu B, Wang B, Wang M-N, Zhang Q, Zhang W et al (2015) Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J Virol 90(6):3253–3256

    Article  PubMed  Google Scholar 

  120. Gurusaravanan Kutti Sridharan RK, Chandiramani VH, Mohan BP, Vegunta R, Vegunta R, Rokkam VR (2020) COVID-19 and avoiding ibuprofen. How good is the evidence? Am J Ther

    Google Scholar 

  121. Yehualashet AS, Belachew TF (2020) ACEIs and ARBs and their correlation with COVID-19: a review. Infect Drug Resist 13:3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Haleem A, Javaid M, Singh RP, Suman R, Rab S (2021) Biosensors applications in medical field: a brief review. Sens Int 2:100100

    Article  Google Scholar 

  123. Mehrotra P (2016) Biosensors and their applications–a review. J Oral Biol Craniofac Res 6(2):153–159

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 68(6):394–424

    Google Scholar 

  125. Hasan M, Ahommed M, Daizy M, Bacchu M, Ali M, Al-Mamun M et al (2021) Recent development in electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron: X 8:100075

    CAS  Google Scholar 

  126. Bohunicky B, Mousa SA (2010) Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 4:1–10

    PubMed  PubMed Central  Google Scholar 

  127. Yang G, Xiao Z, Tang C, Deng Y, Huang H, He Z (2019) Recent advances in biosensor for detection of lung cancer biomarkers. Biosens Bioelectron 141:111416

    Article  CAS  PubMed  Google Scholar 

  128. Jainish P, Prittesh P (2017) Biosensors and biomarkers: promising tools for cancer diagnosis. Int J Biosen Bioelectron 3(4):00072

    Google Scholar 

  129. Alharthi SD, Bijukumar D, Prasad S, Khan AM, Mathew MT (2021) Evolution in biosensors for cancers biomarkers detection: a review. J Bio- and Tribo-Corros 7(2):42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Sepehri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sepehri, Z. et al. (2023). Changes in Renin Angiotensin System (RAS) in Cancers and Lung Diseases: Application of Biosensors for Monitoring These Changes. In: Bhullar, S.K., Tappia, P.S., Dhalla, N.S. (eds) The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases. Advances in Biochemistry in Health and Disease, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-23621-1_8

Download citation

Publish with us

Policies and ethics