Skip to main content

Renin-Angiotensin System and Cancer: From Laboratory to Clinics

  • Chapter
  • First Online:
The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 25))

  • 300 Accesses

Abstract

Renin-Angiotensin System (RAS) is a vital system regulating blood pressure and maintaining sodium homeostasis in the human body. It consists of Angiotensin I (Ang I), Angiotensin II (Ang II), Angiotensin-converting enzyme (ACE), Angiotensin II type 1 receptor (AT1R), and angiotensin II type 2 receptor (AT2R), which functions in both normal and pathological conditions including cancer. Besides, the effectors of RASĀ are also included, such as Angiotensin-(1-7). This review focuses on the pre-clinical studies and clinical trials assessing the roles of RAS in regulating tumor progression as well as the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

Ang II:

Angiotensin II

AT1R:

Angiotensin II type 1 receptor

AT2R:

Angiotensin II type 2 receptor

Ang (1-7):

Angiotensin 1-7

MASR:

MAS Receptor

ACE-2:

Angiotensin-converting enzyme 2

VEGF:

Vascular endothelial growth factor

EMT:

Epithelial mesenchymal transition

MMPs:

Matrix metalloproteinases

ECM:

Extracellular matrix

ACE-Is:

ACE inhibitors

ARBs:

AT1R blockers

EC:

Endometrial cancer

PC:

Prostate cancer

PTK:

Protein tyrosine kinase

ROS:

Reactive oxygen species

AMPK:

AMP-activated protein kinase

mTOR:

Mammalian target of rapamycin

EGFR:

Epidermal growth factor receptor

MAPK/STAT:

Mitogen-activated protein kinase/signal transducer and activator of transcription

PI3K/AKT:

Phosphoinositide 3-kinase/Akt

RCC:

Renal cell carcinoma

HCC:

Hepatocellular carcinoma

CRC:

Colorectal cancer

NSCLC:

Non-small cell lung cancer

References

  1. Patel S, Rauf A, Khan H, Abu-Izneid T (2017) Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 94:317ā€“325

    Google ScholarĀ 

  2. Takimoto-Ohnishi E, Murakami K (2019) Renin-angiotensin system research: from molecules to the whole body. J Physiol Sci 69:581ā€“587

    Google ScholarĀ 

  3. Juillerat-Jeanneret L, Celerier J, Chapuis Bernasconi C et al (2004) Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br J Cancer 90:1059ā€“1068

    Google ScholarĀ 

  4. Medina D, Arnold AC (2019) Angiotensin-(1-7): translational avenues in cardiovascular control. Am J Hypertens 32:1133ā€“1142

    Google ScholarĀ 

  5. Hsueh WA, Wyne K (2011) Renin-angiotensin-aldosterone system in diabetes and hypertension. J Clin Hypertens (Greenwich) 13:224ā€“237

    Google ScholarĀ 

  6. Marcheselli S, Micieli G (2008) Renin-angiotensin system and stroke. Neurol Sci 29(Suppl 2):S277ā€“S278

    Google ScholarĀ 

  7. Shrikrishna D, Astin R, Kemp PR, Hopkinson NS (2012) Renin-angiotensin system blockade: a novel therapeutic approach in chronic obstructive pulmonary disease. Clin Sci (Lond) 123:487ā€“498

    Google ScholarĀ 

  8. Afsar B, Afsar RE, Ertuglu LA et al (2021) Renin-angiotensin system and cancer: epidemiology, cell signaling, genetics and epigenetics. Clin Transl Oncol 23:682ā€“696

    Google ScholarĀ 

  9. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57ā€“70

    Google ScholarĀ 

  10. Beitia M, Solano-Iturri JD, Errarte P et al (2019) Altered expression of renin-angiotensin system receptors throughout colorectal adenoma-adenocarcinoma sequence. Int J Med Sci 16:813ā€“821

    Google ScholarĀ 

  11. Uemura H, Hoshino K, Kubota Y (2011) Engagement of renin-angiotensin system in prostate cancer. Curr Cancer Drug Targets 11:442ā€“450

    Google ScholarĀ 

  12. Siljee S, Milne B, Brasch HD et al (2021) Expression of components of the renin-angiotensin system by cancer stem cells in renal clear cell carcinoma. Biomolecules 11

    Google ScholarĀ 

  13. Perdomo-Pantoja A, MejĆ­a-PĆ©rez SI, GĆ³mez-Flores-Ramos L et al (2018) Renin angiotensin system and its role in biomarkers and treatment in gliomas. J Neurooncol 138:1ā€“15

    Google ScholarĀ 

  14. Siddique A, Kowdley KV (2011) Insulin resistance and other metabolic risk factors in the pathogenesis of hepatocellular carcinoma. Clin Liver Dis 15:281ā€“296, viiā€“x

    Google ScholarĀ 

  15. Price JA, Kovach SJ, Johnson T et al (2002) Insulin-like growth factor I is a comitogen for hepatocyte growth factor in a rat model of hepatocellular carcinoma. Hepatology 36:1089ā€“1097

    Google ScholarĀ 

  16. Boissan M, Beurel E, Wendum D et al (2005) Overexpression of insulin receptor substrate-2 in human and murine hepatocellular carcinoma. Am J Pathol 167:869ā€“877

    Google ScholarĀ 

  17. Zhang HF, Gao X, Wang X et al (2021) The mechanisms of renin-angiotensin system in hepatocellular carcinoma: from the perspective of liver fibrosis, HCC cell proliferation, metastasis and angiogenesis, and corresponding protection measures. Biomed Pharmacother 141:111868

    Google ScholarĀ 

  18. Zhao Y, Chen X, Cai L et al (2010) Angiotensin II/angiotensin II type I receptor (AT1R) signaling promotes MCF-7 breast cancer cells survival via PI3-kinase/Akt pathway. J Cell Physiol 225:168ā€“173

    Google ScholarĀ 

  19. Du N, Feng J, Hu LJ et al (2012) Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling. Oncol Rep 27:1893ā€“1903

    Google ScholarĀ 

  20. Ino K, Uehara C, Kikkawa F et al (2003) Enhancement of aminopeptidase A expression during angiotensin II-induced choriocarcinoma cell proliferation through AT1 receptor involving protein kinase C- and mitogen-activated protein kinase-dependent signaling pathway. J Clin Endocrinol Metab 88:3973ā€“3982

    Google ScholarĀ 

  21. Kohlstedt K, Brandes RP, MĆ¼ller-Esterl W et al (2004) Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ Res 94:60ā€“67

    Google ScholarĀ 

  22. Alvarenga EC, Fonseca MC, Carvalho CC et al (2016) Angiotensin converting enzyme regulates cell proliferation and migration. PLoS One 11:e0165371

    Google ScholarĀ 

  23. GuimarĆ£es PB, Alvarenga ƉC, Siqueira PD et al (2011) Angiotensin II binding to angiotensin I-converting enzyme triggers calcium signaling. Hypertension 57:965ā€“972

    Google ScholarĀ 

  24. Rodrigues MA, Gomes DA, Nathanson MH, Leite MF (2009) Nuclear calcium signaling: a cell within a cell. Braz J Med Biol Res 42:17ā€“20

    Google ScholarĀ 

  25. Suganuma T, Ino K, Shibata K et al (2005) Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res 11:2686ā€“2694

    Google ScholarĀ 

  26. Humpel C, Lippoldt A, Strƶmberg I et al (1994) Human angiotensinogen is highly expressed in astrocytes in human cortical grafts. Glia 10:186ā€“192

    Google ScholarĀ 

  27. Ariza A, Fernandez LA, Inagami T et al (1988) Renin in glioblastoma multiforme and its role in neovascularization. Am J Clin Pathol 90:437ā€“441

    Google ScholarĀ 

  28. Juillerat-Jeanneret L, Lohm S, Hamou MF, Pinet F (2000) Regulation of aminopeptidase A in human brain tumor vasculature: evidence for a role of transforming growth factor-beta. Lab Invest 80:973ā€“980

    Google ScholarĀ 

  29. CĆ©lĆ©rier J, Cruz A, LamandĆ© N et al (2002) Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Hypertension 39:224ā€“228

    Google ScholarĀ 

  30. Ferrara N (1999) Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol 237:1ā€“30

    Google ScholarĀ 

  31. Zhang Q, Lu S, Li T et al (2019) ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res 38:173

    Google ScholarĀ 

  32. Zhong H, Chiles K, Feldser D et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541ā€“1545

    Google ScholarĀ 

  33. Maity A, Pore N, Lee J et al (2000) Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3ā€²-kinase and distinct from that induced by hypoxia. Cancer Res 60:5879ā€“5886

    Google ScholarĀ 

  34. Fukumura D, Gohongi T, Kadambi A et al (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98:2604-2609

    Google ScholarĀ 

  35. Kim I, Kim HG, So JN et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3ā€²-Kinase/Akt signal transduction pathway. Circ Res 86:24ā€“29

    Google ScholarĀ 

  36. Kim I, Kim JH, Moon SO et al (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3ā€²-kinase/Akt signal transduction pathway. Oncogene 19:4549ā€“4552

    Google ScholarĀ 

  37. Ando H, Nagasaka T, Nomura M et al (2002) Premenstrual disappearance of aminopeptidase A in endometrial stromal cells around endometrial spiral arteries/arterioles during the decidual change. J Clin Endocrinol Metab 87:2303ā€“2309

    Google ScholarĀ 

  38. Ito M, Itakura A, Ohno Y et al (2002) Possible activation of the renin-angiotensin system in the feto-placental unit in preeclampsia. J Clin Endocrinol Metab 87:1871ā€“1878

    Google ScholarĀ 

  39. Ando H, Furugori K, Shibata D et al (2003) Dual renin-angiotensin blockade therapy in patients at high risk of early ovarian hyperstimulation syndrome receiving IVF and elective embryo cryopreservation: a case series. Hum Reprod 18:1219ā€“1222

    Google ScholarĀ 

  40. Yamamoto S, Konishi I, Mandai M et al (1997) Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer 76:1221ā€“1227

    Google ScholarĀ 

  41. Kikkawa F, Mizuno M, Shibata K et al (2004) Activation of invasiveness of cervical carcinoma cells by angiotensin II. Am J Obstet Gynecol 190:1258ā€“1263

    Google ScholarĀ 

  42. Suganuma T, Ino K, Shibata K et al (2004) Regulation of aminopeptidase A expression in cervical carcinoma: role of tumor-stromal interaction and vascular endothelial growth factor. Lab Invest 84:639ā€“648

    Google ScholarĀ 

  43. Watanabe Y, Shibata K, Kikkawa F et al (2003) Adipocyte-derived leucine aminopeptidase suppresses angiogenesis in human endometrial carcinoma via renin-angiotensin system. Clin Cancer Res 9:6497ā€“6503

    Google ScholarĀ 

  44. Ino K, Shibata K, Kajiyama H et al (2006) Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. Br J Cancer 94:552ā€“560

    Google ScholarĀ 

  45. Egami K, Murohara T, Shimada T et al (2003) Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 112:67ā€“75

    Google ScholarĀ 

  46. Yang S, Yang C, Yu F et al (2018) Endoplasmic reticulum resident oxidase ERO1-Lalpha promotes hepatocellular carcinoma metastasis and angiogenesis through the S1PR1/STAT3/VEGF-A pathway. Cell Death Dis 9:1105

    Google ScholarĀ 

  47. Wang J, Liu Q, Xiao H et al (2019) Suppressive effects of Momordin Ic on HepG2 cell migration and invasion by regulating MMP-9 and adhesion molecules: involvement of p38 and JNK pathways. Toxicol In Vitro 56:75ā€“83

    Google ScholarĀ 

  48. Fan F, Tian C, Tao L et al (2016) Candesartan attenuates angiogenesis in hepatocellular carcinoma via downregulating AT1R/VEGF pathway. Biomed Pharmacother 83:704ā€“711

    Google ScholarĀ 

  49. Cao H, Xu E, Liu H et al (2015) Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract 211:557ā€“569

    Google ScholarĀ 

  50. Pinter M, Jain RK (2017) Targeting the renin-angiotensin system to improve cancer treatment: implications for immunotherapy. Sci Transl Med 9

    Google ScholarĀ 

  51. Yoshida T, Kinoshita H, Fukui K et al (2017) Prognostic impact of renin-angiotensin inhibitors in patients with bladder cancer undergoing radical cystectomy. Ann Surg Oncol 24:823ā€“831

    Google ScholarĀ 

  52. AraĆŗjo WF, Naves MA, Ravanini JN et al (2015) Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice. Urol Oncol 33:389.e1ā€“389.e7

    Google ScholarĀ 

  53. Feng Y, Zu LL, Zhang L (2018) MicroRNA-26b inhibits the tumor growth of human liver cancer through the PI3K/Akt and NF-ĪŗB/MMP-9/VEGF pathways. Oncol Rep 39:2288ā€“2296

    Google ScholarĀ 

  54. Saber S, Mahmoud AAA, Goda R et al (2018) Perindopril, fosinopril and losartan inhibited the progression of diethylnitrosamine-induced hepatocellular carcinoma in mice via the inactivation of nuclear transcription factor kappa-B. Toxicol Lett 295:32ā€“40

    Google ScholarĀ 

  55. Yu C, Tang W, Wang Y et al (2016) Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett 376:268ā€“277

    Google ScholarĀ 

  56. Qian YR, Guo Y, Wan HY et al (2013) Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. Oncol Rep 29:2408ā€“2414

    Google ScholarĀ 

  57. Sankpal UT, Maliakal P, Bose D et al (2012) Expression of specificity protein transcription factors in pancreatic cancer and their association in prognosis and therapy. Curr Med Chem 19:3779ā€“3786

    Google ScholarĀ 

  58. Ishikane S, Hosoda H, Nojiri T et al (2018) Angiotensin II promotes pulmonary metastasis of melanoma through the activation of adhesion molecules in vascular endothelial cells. Biochem Pharmacol 154:136ā€“147

    Google ScholarĀ 

  59. Wang Y, Xu H, Fu W et al (2019) 20(S)-Protopanaxadiol inhibits angiotensin II-induced epithelial-mesenchymal transition by downregulating SIRT1. Front Pharmacol 10:475

    Google ScholarĀ 

  60. Neo JH, Ager EI, Angus PW et al (2010) Changes in the renin angiotensin system during the development of colorectal cancer liver metastases. BMC Cancer 10:134

    Google ScholarĀ 

  61. Childers WK (2015) Interactions of the renin-angiotensin system in colorectal cancer and metastasis. Int J Colorectal Dis 30:749ā€“752

    Google ScholarĀ 

  62. Qi Y, Li H, Shenoy V et al (2012) Moderate cardiac-selective overexpression of angiotensin II type 2 receptor protects cardiac functions from ischaemic injury. Exp Physiol 97:89ā€“101

    Google ScholarĀ 

  63. Sun L, Wang W, Xiao W et al (2012) Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway. Biochem Biophys Res Commun 424:663ā€“668

    Google ScholarĀ 

  64. Wang X, Lu J, Khaidakov M et al (2012) Delineation of the effects of angiotensin type 1 and 2 receptors on HL-1 cardiomyocyte apoptosis. Apoptosis 17:908ā€“915

    Google ScholarĀ 

  65. Li H, Qi Y, Li C et al (2009) Angiotensin type 2 receptor-mediated apoptosis of human prostate cancer cells. Mol Cancer Ther 8:3255ā€“3265

    Google ScholarĀ 

  66. Du H, Liang Z, Zhang Y et al (2013) Effects of angiotensin II type 2 receptor overexpression on the growth of hepatocellular carcinoma cells in vitro and in vivo. PLoS One 8:e83754

    Google ScholarĀ 

  67. Kawabata A, Baoum A, Ohta N et al (2012) Intratracheal administration of a nanoparticle-based therapy with the angiotensin II type 2 receptor gene attenuates lung cancer growth. Cancer Res 72:2057ā€“2067

    Google ScholarĀ 

  68. Arrieta O, Guevara P, Escobar E et al (2005) Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br J Cancer 92:1247ā€“1252

    Google ScholarĀ 

  69. Tejera N, GĆ³mez-Garre D, LĆ”zaro A et al (2004) Persistent proteinuria up-regulates angiotensin II type 2 receptor and induces apoptosis in proximal tubular cells. Am J Pathol 164:1817ā€“1826

    Google ScholarĀ 

  70. Pei N, Jie F, Luo J et al (2014) Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells. PLoS One 9:e92253

    Google ScholarĀ 

  71. Pei N, Mao Y, Wan P et al (2017) Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer. J Exp Clin Cancer Res 36:77

    Google ScholarĀ 

  72. Cambados N, Walther T, Nahmod K et al (2017) Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells. Oncotarget 8:88475ā€“88487

    Google ScholarĀ 

  73. Ateeq B, Tomlins SA, Chinnaiyan AM (2009) AGTR1 as a therapeutic target in ER-positive and ERBB2-negative breast cancer cases. Cell Cycle 8:3794ā€“3795

    Google ScholarĀ 

  74. Rhodes DR, Ateeq B, Cao Q et al (2009) AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc Natl Acad Sci U S A 106:10284ā€“10289

    Google ScholarĀ 

  75. Oh E, Kim JY, Cho Y et al (2016) Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis. Biochim Biophys Acta 1863:1071ā€“1081

    Google ScholarĀ 

  76. Yang F, Huang XR, Chung AC et al (2010) Essential role for Smad3 in angiotensin II-induced tubular epithelial-mesenchymal transition. J Pathol 221:390ā€“401

    Google ScholarĀ 

  77. Carvajal G, RodrĆ­guez-Vita J, Rodrigues-DĆ­ez R et al (2008) Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int 74:585ā€“595

    Google ScholarĀ 

  78. Miyajima A, Kosaka T, Asano T et al (2002) Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Cancer Res 62:4176ā€“4179

    Google ScholarĀ 

  79. Ni L, Feng Y, Wan H et al (2012) Angiotensin-(1-7) inhibits the migration and invasion of A549 human lung adenocarcinoma cells through inactivation of the PI3K/Akt and MAPK signaling pathways. Oncol Rep 27:783ā€“790

    Google ScholarĀ 

  80. Zhao Y, Wang H, Li X et al (2014) Ang II-AT1R increases cell migration through PI3K/AKT and NF-ĪŗB pathways in breast cancer. J Cell Physiol 229:1855ā€“1862

    Google ScholarĀ 

  81. Rodrigues-Ferreira S, Abdelkarim M, Dillenburg-Pilla P et al (2012) Angiotensin II facilitates breast cancer cell migration and metastasis. PLoS One 7:e35667

    Google ScholarĀ 

  82. Pei N, Wan R, Chen X et al (2016) Angiotensin-(1-7) decreases cell growth and angiogenesis of human nasopharyngeal carcinoma xenografts. Mol Cancer Ther 15:37ā€“47

    Google ScholarĀ 

  83. Fogarty DJ, SĆ”nchez-GĆ³mez MV, Matute C (2002) Multiple angiotensin receptor subtypes in normal and tumor astrocytes in vitro. Glia 39:304ā€“313

    Google ScholarĀ 

  84. Burns WC, Velkoska E, Dean R et al (2010) Angiotensin II mediates epithelial-to-mesenchymal transformation in tubular cells by ANG 1-7/MAS-1-dependent pathways. Am J Physiol Renal Physiol 299:F585ā€“F593

    Google ScholarĀ 

  85. Khanna P, Soh HJ, Chen CH et al (2021) ACE2 abrogates tumor resistance to VEGFR inhibitors suggesting angiotensin-(1-7) as a therapy for clear cell renal cell carcinoma. Sci Transl Med 13

    Google ScholarĀ 

  86. Attoub S, Gaben AM, Al-Salam S et al (2008) Captopril as a potential inhibitor of lung tumor growth and metastasis. Ann N Y Acad Sci 1138:65ā€“72

    Google ScholarĀ 

  87. Hii SI, Nicol DL, Gotley DC et al (1998) Captopril inhibits tumour growth in a xenograft model of human renal cell carcinoma. Br J Cancer 77:880ā€“883

    Google ScholarĀ 

  88. Wysocki PJ, Kwiatkowska EP, Kazimierczak U et al (2006) Captopril, an angiotensin-converting enzyme inhibitor, promotes growth of immunogenic tumors in mice. Clin Cancer Res 12:4095ā€“4102

    Google ScholarĀ 

  89. Silvestre JS, Bergaya S, Tamarat R et al (2001) Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway. Circ Res 89:678ā€“683

    Google ScholarĀ 

  90. Ebrahimian TG, Tamarat R, Clergue M et al (2005) Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arterioscler Thromb Vasc Biol 25:65ā€“70

    Google ScholarĀ 

  91. Rasha F, Ramalingam L, Gollahon L et al (2019) Mechanisms linking the renin-angiotensin system, obesity, and breast cancer. Endocr Relat Cancer 26:R653ā€“R672

    Google ScholarĀ 

  92. Yoshiji H, Kuriyama S, Kawata M et al (2001) The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: possible role of the vascular endothelial growth factor. Clin Cancer Res 7:1073ā€“1078

    Google ScholarĀ 

  93. Sipahi I, Debanne SM, Rowland DY et al (2010) Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol 11:627ā€“636

    Google ScholarĀ 

  94. Xie Y, Xu P, Wang M et al (2020) Antihypertensive medications are associated with the risk of kidney and bladder cancer: a systematic review and meta-analysis. Aging (Albany NY) 12:1545ā€“1562

    Google ScholarĀ 

  95. Renziehausen A, Wang H, Rao B et al (2019) The renin angiotensin system (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention. Oncogene 38:2320ā€“2336

    Google ScholarĀ 

  96. Arnold SA, Rivera LB, Carbon JG et al (2012) Losartan slows pancreatic tumor progression and extends survival of SPARC-null mice by abrogating aberrant TGFĪ² activation. PLoS One 7:e31384

    Google ScholarĀ 

  97. Friis S, SĆørensen HT, Mellemkjaer L et al (2001) Angiotensin-converting enzyme inhibitors and the risk of cancer: a population-based cohort study in Denmark. Cancer 92:2462ā€“2470

    Google ScholarĀ 

  98. Htoo PT, StĆ¼rmer T, Jonsson-Funk M et al (2019) Renin-angiotensin-aldosterone system-based antihypertensive agents and the risk of colorectal cancer among Medicare beneficiaries. Epidemiology 30:867ā€“875

    Google ScholarĀ 

  99. Mandilaras V, Bouganim N, Yin H et al (2017) The use of drugs acting on the renin-angiotensin system and the incidence of pancreatic cancer. Br J Cancer 116:103ā€“108

    Google ScholarĀ 

  100. Liu H, Naxerova K, Pinter M et al (2017) Use of Angiotensin system inhibitors is associated with immune activation and longer survival in nonmetastatic pancreatic ductal adenocarcinoma. Clin Cancer Res 23:5959ā€“5969

    Google ScholarĀ 

  101. Sun H, Li T, Zhuang R et al (2017) Do renin-angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients? Evidence from a meta-analysis including 55 studies. Medicine (Baltimore) 96:e6394

    Google ScholarĀ 

  102. Nakai Y, Isayama H, Ijichi H et al (2010) Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br J Cancer 103:1644ā€“1648

    Google ScholarĀ 

  103. Aydiner A, Ciftci R, Sen F (2015) Renin-Angiotensin system blockers may prolong survival of metastatic non-small cell lung cancer patients receiving erlotinib. Medicine (Baltimore) 94:e887

    Google ScholarĀ 

  104. Rƶcken C, Rƶhl FW, Diebler E et al (2007) The angiotensin II/angiotensin II receptor system correlates with nodal spread in intestinal type gastric cancer. Cancer Epidemiol Biomarkers Prev 16:1206ā€“1212

    Google ScholarĀ 

  105. Keizman D, Huang P, Eisenberger MA et al (2011) Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: a retrospective examination. Eur J Cancer 47:1955ā€“1961

    Google ScholarĀ 

  106. McKay RR, Rodriguez GE, Lin X et al (2015) Angiotensin system inhibitors and survival outcomes in patients with metastatic renal cell carcinoma. Clin Cancer Res 21:2471ā€“2479

    Google ScholarĀ 

  107. Izzedine H, Derosa L, Le Teuff G et al (2015) Hypertension and angiotensin system inhibitors: impact on outcome in sunitinib-treated patients for metastatic renal cell carcinoma. Ann Oncol 26:1128ā€“1133

    Google ScholarĀ 

  108. Wilop S, von Hobe S, Crysandt M et al (2009) Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J Cancer Res Clin Oncol 135:1429ā€“1435

    Google ScholarĀ 

  109. Miao L, Chen W, Zhou L et al (2016) Impact of angiotensin I-converting enzyme inhibitors and angiotensin II Type-1 receptor blockers on survival of patients with NSCLC. Sci Rep 6:21359

    Google ScholarĀ 

  110. Menter AR, Carroll NM, Sakoda LC et al (2017) Effect of angiotensin system inhibitors on survival in patients receiving chemotherapy for advanced non-small-cell lung cancer. Clin Lung Cancer 18:189ā€“197.e3

    Google ScholarĀ 

  111. Wei J, Zhou Z, Xu Z et al (2019) Retrospective clinical study of renin-angiotensin system blockers in lung cancer patients with hypertension. PeerJ 7:e8188

    Google ScholarĀ 

  112. O'Rawe M, Wickremesekera AC, Pandey R et al (2022) Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: results of a phase I clinical trial. J Clin Neurosci 95:48ā€“54

    Google ScholarĀ 

  113. Zaher H, Rasheed H, El-Komy MM et al (2016) Propranolol versus captopril in the treatment of infantile hemangioma (IH): a randomized controlled trial. J Am Acad Dermatol 74:499ā€“505

    Google ScholarĀ 

  114. Makar GA, Holmes JH, Yang YX (2014) Angiotensin-converting enzyme inhibitor therapy and colorectal cancer risk. J Natl Cancer Inst 106:djt374

    Google ScholarĀ 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (81973341 to Q.Q.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Su, J., Zou, Q., Li, S., Qi, Q. (2023). Renin-Angiotensin System and Cancer: From Laboratory to Clinics. In: Bhullar, S.K., Tappia, P.S., Dhalla, N.S. (eds) The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases. Advances in Biochemistry in Health and Disease, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-23621-1_16

Download citation

Publish with us

Policies and ethics