Skip to main content

Advertisement

Log in

Renin-angiotensin system and cancer: epidemiology, cell signaling, genetics and epigenetics

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Day by day, the health and economical burden of cancer increases globally. Indeed it can be considered that there is ‘’cancer pandemic’’. Blocking the renin-angiotensin system (RAS) by angiotensin-converting enzyme (ACE) inhibitors (ACEI) or angiotensin-receptor blockers (ARB) are widely used measures to treat hypertension and heart failure. It has been recently suggested the activation and blocking of RAS has been associated with various types of cancer in epidemiological and experimental studies. Various studies have shown that RAS blockage is protective in some cancers. However, although fewer, contradictory data also showed that RAS blockage is either not related or adversely related to cancer. Although the reasons for these findings are not exactly known, different types of receptors and effectors in RAS may account for these findings. In the current review, we summarize the different RAS receptors and cancer development with regard to epidemiology, and pathogenesis including cell signaling pathways, apoptosis, genetic and epigenetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ager EI, Neo J, Christophi C. The renin-angiotensin system and malignancy. Carcinogenesis. 2008;29(9):1675–84. https://doi.org/10.1093/carcin/bgn171.

    Article  CAS  PubMed  Google Scholar 

  2. Hanif K, Bid HK, Konwar R. Reinventing the ACE inhibitors: some old and new implications of ACE inhibition. Hypertens Res. 2010;33(1):11–21. https://doi.org/10.1038/hr.2009.184.

    Article  CAS  PubMed  Google Scholar 

  3. Haznedaroglu IC, Malkan UY. Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies. Eur Rev Med Pharmacol Sci. 2016;20(19):4089–111.

    CAS  PubMed  Google Scholar 

  4. Gopi V, Subramanian V, Manivasagam S, Vellaichamy E. Angiotensin II down-regulates natriuretic peptide receptor-A expression and guanylyl cyclase activity in H9c2 (2–1) cardiac myoblast cells: Role of ROS and NF-kappaB. Mol Cell Biochem. 2015;409(1–2):67–79. https://doi.org/10.1007/s11010-015-2513-0.

    Article  CAS  PubMed  Google Scholar 

  5. Sipahi I, Debanne SM, Rowland DY, Simon DI, Fang JC. Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol. 2010;11(7):627–36. https://doi.org/10.1016/s1470-2045(10)70106-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luan Z, Liu B, Shi L. Angiotensin II-induced micro RNA-21 culprit for non-small-cell lung adenocarcinoma. Drug Dev Res. 2019;80(8):1031–9. https://doi.org/10.1002/ddr.21597.

    Article  CAS  PubMed  Google Scholar 

  7. Rhodes DR, Ateeq B, Cao Q, Tomlins SA, Mehra R, Laxman B, Kalyana-Sundaram S, Lonigro RJ, Helgeson BE, Bhojani MS, Rehemtulla A, Kleer CG, Hayes DF, Lucas PC, Varambally S, Chinnaiyan AM. AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc Natl Acad Sci USA. 2009;106(25):10284–9. https://doi.org/10.1073/pnas.0900351106.

    Article  PubMed  Google Scholar 

  8. Fujimoto Y, Sasaki T, Tsuchida A, Chayama K. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett. 2001;495(3):197–200. https://doi.org/10.1016/s0014-5793(01)02377-8.

    Article  CAS  PubMed  Google Scholar 

  9. Gong Q, Davis M, Chipitsyna G, Yeo CJ, Arafat HA. Blocking angiotensin II Type 1 receptor triggers apoptotic cell death in human pancreatic cancer cells. Pancreas. 2010;39(5):581–94. https://doi.org/10.1097/MPA.0b013e3181c314cd.

    Article  CAS  PubMed  Google Scholar 

  10. Neo JH, Malcontenti-Wilson C, Muralidharan V, Christophi C. Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J Gastroenterol Hepatol. 2007;22(4):577–84. https://doi.org/10.1111/j.1440-1746.2006.04797.x.

    Article  CAS  PubMed  Google Scholar 

  11. Wilop S, von Hobe S, Crysandt M, Esser A, Osieka R, Jost E. Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J Cancer Res Clin Oncol. 2009;135(10):1429–35. https://doi.org/10.1007/s00432-009-0587-3.

    Article  CAS  PubMed  Google Scholar 

  12. Sjoberg T, Garcia Rodriguez LA, Lindblad M. Angiotensin-converting enzyme inhibitors and risk of esophageal and gastric cancer: a nested case-control study. Clin Gastroenterol Hepatol. 2007;5(10):1160–1166.e1161. https://doi.org/10.1016/j.cgh.2007.08.005.

    Article  PubMed  Google Scholar 

  13. Chang CH, Lin JW, Wu LC, Lai MS. Angiotensin receptor blockade and risk of cancer in type 2 diabetes mellitus: a nationwide case-control study. J Clin Oncol. 2011;29(22):3001–7. https://doi.org/10.1200/jco.2011.35.1908.

    Article  CAS  PubMed  Google Scholar 

  14. Huang CC, Chan WL, Chen YC, Chen TJ, Lin SJ, Chen JW, Leu HB. Angiotensin II receptor blockers and risk of cancer in patients with systemic hypertension. Am J Cardiol. 2011;107(7):1028–33. https://doi.org/10.1016/j.amjcard.2010.11.026.

    Article  CAS  PubMed  Google Scholar 

  15. Pasternak B, Svanstrom H, Callreus T, Melbye M, Hviid A. Use of angiotensin receptor blockers and the risk of cancer. Circulation. 2011;123(16):1729–36. https://doi.org/10.1161/circulationaha.110.007336.

    Article  CAS  PubMed  Google Scholar 

  16. Rao GA, Mann JR, Shoaibi A, Pai SG, Bottai M, Sutton SS, Haddock KS, Bennett CL, Hebert JR. Angiotensin receptor blockers: are they related to lung cancer? J Hypertens. 2013;31(8):1669–755. https://doi.org/10.1097/HJH.0b013e3283621ea3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang KL, Liu CJ, Chao TF, Huang CM, Wu CH, Chen TJ, Chiang CE. Long-term use of angiotensin II receptor blockers and risk of cancer: a population-based cohort analysis. Int J Cardiol. 2013;167(5):2162–6. https://doi.org/10.1016/j.ijcard.2012.05.096.

    Article  PubMed  Google Scholar 

  18. McKay RR, Rodriguez GE, Lin X, Kaymakcalan MD, Hamnvik OP, Sabbisetti VS, Bhatt RS, Simantov R, Choueiri TK. Angiotensin system inhibitors and survival outcomes in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2015;21(11):2471–9. https://doi.org/10.1158/1078-0432.Ccr-14-2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Friis S, Sorensen HT, Mellemkjaer L, McLaughlin JK, Nielsen GL, Blot WJ, Olsen JH. Angiotensin-converting enzyme inhibitors and the risk of cancer: a population-based cohort study in Denmark. Cancer. 2001;92(9):2462–70. https://doi.org/10.1002/1097-0142(20011101)92:9<2462:aid-cncr1596>3.0.co;2-l.

    Article  CAS  PubMed  Google Scholar 

  20. ARB Trialists Collaboration. Effects of telmisartan, irbesartan, valsartan, candesartan, and losartan on cancers in 15 trials enrolling 138,769 individuals. J Hypertens. 2011;29(4):623–35. https://doi.org/10.1097/HJH.0b013e328344a7de.

    Article  CAS  Google Scholar 

  21. Hicks BM, Filion KB, Yin H, Sakr L, Udell JA, Azoulay L. Angiotensin converting enzyme inhibitors and risk of lung cancer: population based cohort study. BMJ (Clin Res Ed). 2018;363:k4209. https://doi.org/10.1136/bmj.k4209.

    Article  Google Scholar 

  22. Sorgel F, Kinzig M, Abdel-Tawab M, Bidmon C, Schreiber A, Ermel S, Wohlfart J, Besa A, Scherf-Clavel O, Holzgrabe U. The contamination of valsartan and other sartans, part 1: New findings. J Pharm Biomed Anal. 2019;172:395–405. https://doi.org/10.1016/j.jpba.2019.05.022.

    Article  CAS  PubMed  Google Scholar 

  23. Pottegard A, Kristensen KB, Ernst MT, Johansen NB, Quartarolo P, Hallas J. Use of N-nitrosodimethylamine (NDMA) contaminated valsartan products and risk of cancer: Danish nationwide cohort study. BMJ (Clin Res Ed). 2018;362:k3851. https://doi.org/10.1136/bmj.k3851.

    Article  Google Scholar 

  24. Tchernev G, Temelkova I. Additional 4 cases of valsartan/irbesartan-induced melanomas? J Biol Regul Homeost Agents. 2019;33(3):911–2.

    CAS  PubMed  Google Scholar 

  25. Rocken C, Lendeckel U, Dierkes J, Westphal S, Carl-McGrath S, Peters B, Kruger S, Malfertheiner P, Roessner A, Ebert MP. The number of lymph node metastases in gastric cancer correlates with the angiotensin I-converting enzyme gene insertion/deletion polymorphism. Clin Cancer Res. 2005;11(7):2526–30. https://doi.org/10.1158/1078-0432.Ccr-04-1922.

    Article  PubMed  Google Scholar 

  26. Medeiros R, Vasconcelos A, Costa S, Pinto D, Lobo F, Morais A, Oliveira J, Lopes C. Linkage of angiotensin I-converting enzyme gene insertion/deletion polymorphism to the progression of human prostate cancer. J Pathol. 2004;202(3):330–5. https://doi.org/10.1002/path.1529.

    Article  CAS  PubMed  Google Scholar 

  27. George AJ, Thomas WG, Hannan RD. The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer. 2010;10(11):745–59. https://doi.org/10.1038/nrc2945.

    Article  CAS  PubMed  Google Scholar 

  28. Deshayes F, Nahmias C. Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab TEM. 2005;16(7):293–9. https://doi.org/10.1016/j.tem.2005.07.009.

    Article  CAS  PubMed  Google Scholar 

  29. Chua CC, Hamdy RC, Chua BH. Upregulation of vascular endothelial growth factor by angiotensin II in rat heart endothelial cells. Biochem Biophys Acta. 1998;1401(2):187–94. https://doi.org/10.1016/s0167-4889(97)00129-8.

    Article  CAS  PubMed  Google Scholar 

  30. Yang X, Zhu MJ, Sreejayan N, Ren J, Du M. Angiotensin II promotes smooth muscle cell proliferation and migration through release of heparin-binding epidermal growth factor and activation of EGF-receptor pathway. Mol Cells. 2005;20(2):263–70.

    Article  CAS  Google Scholar 

  31. Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res. 1991;68(2):450–6. https://doi.org/10.1161/01.res.68.2.450.

    Article  CAS  PubMed  Google Scholar 

  32. Buharalioglu CK, Song CY, Yaghini FA, Ghafoor HU, Motiwala M, Adris T, Estes AM, Malik KU. Angiotensin II-induced process of angiogenesis is mediated by spleen tyrosine kinase via VEGF receptor-1 phosphorylation. Am J Physiol Heart Circ Physiol. 2011;301(3):H1043–1055. https://doi.org/10.1152/ajpheart.01018.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li SH, Lu HI, Chang AY, Huang WT, Lin WC, Lee CC, Tien WY, Lan YC, Tsai HT, Chen CH. Angiotensin II type I receptor (AT1R) is an independent prognosticator of esophageal squamous cell carcinoma and promotes cells proliferation via mTOR activation. Oncotarget. 2016;7(41):67150–65. https://doi.org/10.18632/oncotarget.11567.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Uemura H, Ishiguro H, Nagashima Y, Sasaki T, Nakaigawa N, Hasumi H, Kato S, Kubota Y. Antiproliferative activity of angiotensin II receptor blocker through cross-talk between stromal and epithelial prostate cancer cells. Mol Cancer Ther. 2005;4(11):1699–709. https://doi.org/10.1158/1535-7163.Mct-04-0295.

    Article  CAS  PubMed  Google Scholar 

  35. Uemura H, Ishiguro H, Nakaigawa N, Nagashima Y, Miyoshi Y, Fujinami K, Sakaguchi A, Kubota Y. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factor. Mol Cancer Ther. 2003;2(11):1139–47.

    CAS  PubMed  Google Scholar 

  36. Alhusban A, Al-Azayzih A, Goc A, Gao F, Fagan SC, Somanath PR. Clinically relevant doses of candesartan inhibit growth of prostate tumor xenografts in vivo through modulation of tumor angiogenesis. J Pharmacol Exp Ther. 2014;350(3):635–45. https://doi.org/10.1124/jpet.114.216382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ishiguro H, Ishiguro Y, Kubota Y, Uemura H. Regulation of prostate cancer cell growth and PSA expression by angiotensin II receptor blocker with peroxisome proliferator-activated receptor gamma ligand like action. Prostate. 2007;67(9):924–32. https://doi.org/10.1002/pros.20571.

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi S, Uemura H, Seeni A, Tang M, Komiya M, Long N, Ishiguro H, Kubota Y, Shirai T. Therapeutic targeting of angiotensin II receptor type 1 to regulate androgen receptor in prostate cancer. Prostate. 2012;72(14):1559–722. https://doi.org/10.1002/pros.22505.

    Article  CAS  PubMed  Google Scholar 

  39. Ichihara A, Yatabe MS. The (pro)renin receptor in health and disease. Nat Rev Nephrol. 2019;15(11):693–712. https://doi.org/10.1038/s41581-019-0160-5.

    Article  PubMed  Google Scholar 

  40. Mohammad AH, Assadian S, Couture F, Lefebvre KJ, El-Assaad W, Barres V, Ouellet V, Boulay PL, Yang J, Latour M, Furic L, Muller W, Sonenberg N, Mes-Masson AM, Saad F, Day R, Teodoro JG. V-ATPase-associated prorenin receptor is upregulated in prostate cancer after PTEN loss. Oncotarget. 2019;10(48):4923–36. https://doi.org/10.18632/oncotarget.27075.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kaneko K, Ohba K, Hirose T, Totsune K, Furuyama K, Takahashi K. Expression of (Pro)renin receptor during rapamycin-induced erythropoiesis in K562 erythroleukemia cells and its possible dual actions on erythropoiesis. Tohoku J Exp Med. 2017;241(1):35–433. https://doi.org/10.1620/tjem.241.35.

    Article  CAS  PubMed  Google Scholar 

  42. Arundhathi A, Chuang WH, Chen JK, Wang SE, Shyr YM, Chen JY, Liao WN, Chen HW, Teng YM, Pai CC, Wang CH. Prorenin receptor acts as a potential molecular target for pancreatic ductal adenocarcinoma diagnosis. Oncotarget. 2016;7(34):55437–48. https://doi.org/10.18632/oncotarget.10583.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Datzmann T, Fuchs S, Andree D, Hohenstein B, Schmitt J, Schindler C. Systematic review and meta-analysis of randomised controlled clinical trial evidence refutes relationship between pharmacotherapy with angiotensin-receptor blockers and an increased risk of cancer. Eur J Intern Med. 2019;64:1–9. https://doi.org/10.1016/j.ejim.2019.04.019.

    Article  CAS  PubMed  Google Scholar 

  44. Pei N, Mao Y, Wan P, Chen X, Li A, Chen H, Li J, Wan R, Zhang Y, Du H, Chen B, Jiang G, Xia M, Sumners C, Hu G, Gu D, Li H. Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer. J Exp Clin Cancer Res CR. 2017;36(1):77. https://doi.org/10.1186/s13046-017-0542-0.

    Article  CAS  PubMed  Google Scholar 

  45. Machado RD, Santos RA, Andrade SP. Opposing actions of angiotensins on angiogenesis. Life Sci. 2000;66(1):67–766. https://doi.org/10.1016/s0024-3205(99)00562-7.

    Article  CAS  PubMed  Google Scholar 

  46. Benndorf R, Boger RH, Ergun S, Steenpass A, Wieland T. Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ Res. 2003;93(5):438–47. https://doi.org/10.1161/01.Res.0000088358.99466.04.

    Article  CAS  PubMed  Google Scholar 

  47. Yu C, Tang W, Wang Y, Shen Q, Wang B, Cai C, Meng X, Zou F. Downregulation of ACE2/Ang-(1–7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett. 2016;376(2):268–77. https://doi.org/10.1016/j.canlet.2016.04.006.

    Article  CAS  PubMed  Google Scholar 

  48. Luo Y, Tanabe E, Kitayoshi M, Nishiguchi Y, Fujiwara R, Matsushima S, Sasaki T, Sasahira T, Chihara Y, Nakae D, Fujii K, Ohmori H, Kuniyasu H. Expression of MAS1 in breast cancer. Cancer Sci. 2015;106(9):1240–8. https://doi.org/10.1111/cas.12719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma X, Pang Z, Zhou J, He L, Hao Q, Li W, Zhang K, Wang S, Zhang W, Xue X, Zhang W, Zhang Y, Zhang C, Li M. Acetylation and amination protect angiotensin 1–7 from physiological hydrolyzation and therefore increases its antitumor effects on lung cancer. Mol Pharm. 2018;15(6):2338–477. https://doi.org/10.1021/acs.molpharmaceut.8b00181.

    Article  CAS  PubMed  Google Scholar 

  50. Dominska K, Okla P, Kowalska K, Habrowska-Gorczynska DE, Urbanek KA, Ochedalski T, Piastowska-Ciesielska AW. Angiotensin 1–7 modulates molecular and cellular processes central to the pathogenesis of prostate cancer. Sci Rep. 2018;8(1):15772. https://doi.org/10.1038/s41598-018-34049-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin YT, Wang HC, Chuang HC, Hsu YC, Yang MY, Chien CY. Pre-treatment with angiotensin-(1–7) inhibits tumor growth via autophagy by downregulating PI3K/Akt/mTOR signaling in human nasopharyngeal carcinoma xenografts. J Mol Med (Berlin, Germany). 2018;96(12):1407–18. https://doi.org/10.1007/s00109-018-1704-z.

    Article  CAS  PubMed Central  Google Scholar 

  52. Chen YH, Lu HI, Lo CM, Huang CC, Hsiao CC, Li SH. The clinical impact of angiotensin-(1–7)/mitochondrial assembly receptor axis in esophageal squamous cell carcinoma patients receiving curative esophagectomy. J Formosan Med Assoc Taiwan yi zhi. 2020;119(1 Pt 2):310–8. https://doi.org/10.1016/j.jfma.2019.05.022.

    Article  CAS  PubMed  Google Scholar 

  53. Simoes e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM, ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–92. https://doi.org/10.1111/bph.12159.

    Article  CAS  Google Scholar 

  54. Xu J, Fan J, Wu F, Huang Q, Guo M, Lv Z, Han J, Duan L, Hu G, Chen L, Liao T, Ma W, Tao X, Jin Y. The ACE2/Angiotensin-(1–7)/Mas receptor axis: pleiotropic roles in cancer. Front Physiol. 2017;8:276. https://doi.org/10.3389/fphys.2017.00276.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bernardi S, Zennaro C, Palmisano S, Velkoska E, Sabato N, Toffoli B, Giacomel G, Buri L, Zanconati F, Bellini G, Burrell LM, De Manzini N, Fabris B. Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma. J Renin Angiotensin Aldosterone Sys JRAAS. 2012;13(1):202–9. https://doi.org/10.1177/1470320311426023.

    Article  CAS  Google Scholar 

  56. Neo JH, Ager EI, Angus PW, Zhu J, Herath CB, Christophi C. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases. BMC Cancer. 2010;10:134. https://doi.org/10.1186/1471-2407-10-134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hardie DG, Alessi DR. LKB1 and AMPK and the cancer-metabolism link - ten years after. BMC Biol. 2013;11:36. https://doi.org/10.1186/1741-7007-11-36.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yang KK, Sui Y, Zhou HR, Zhao HL. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats. Tumour Biol. 2017;39(5):1010428317699116. https://doi.org/10.1177/1010428317699116.

    Article  CAS  PubMed  Google Scholar 

  59. Rodrigues-Ferreira S, Nahmias C. An ATIPical family of angiotensin II AT2 receptor-interacting proteins. Trends Endocrinol Metab TEM. 2010;21(11):684–90. https://doi.org/10.1016/j.tem.2010.08.009.

    Article  CAS  PubMed  Google Scholar 

  60. Nouet S, Amzallag N, Li JM, Louis S, Seitz I, Cui TX, Alleaume AM, Di Benedetto M, Boden C, Masson M, Strosberg AD, Horiuchi M, Couraud PO, Nahmias C. Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein. ATIP J Biol Chem. 2004;279(28):28989–977. https://doi.org/10.1074/jbc.M403880200.

    Article  CAS  PubMed  Google Scholar 

  61. Rodrigues-Ferreira S, Di Tommaso A, Dimitrov A, Cazaubon S, Gruel N, Colasson H, Nicolas A, Chaverot N, Molinie V, Reyal F, Sigal-Zafrani B, Terris B, Delattre O, Radvanyi F, Perez F, Vincent-Salomon A, Nahmias C. 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein under expressed in invasive breast carcinoma of poor prognosis. PLoS ONE. 2009;4(10):e7239. https://doi.org/10.1371/journal.pone.0007239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doi C, Egashira N, Kawabata A, Maurya DK, Ohta N, Uppalapati D, Ayuzawa R, Pickel L, Isayama Y, Troyer D, Takekoshi S, Tamura M. Angiotensin II type 2 receptor signaling significantly attenuates growth of murine pancreatic carcinoma grafts in syngeneic mice. BMC cancer. 2010;10:67. https://doi.org/10.1186/1471-2407-10-67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pickel L, Matsuzuka T, Doi C, Ayuzawa R, Maurya DK, Xie SX, Berkland C, Tamura M. Over-expression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells. Cancer Biol Therapy. 2010;9(4):277–85. https://doi.org/10.4161/cbt.9.4.10643.

    Article  CAS  Google Scholar 

  64. Wang J, Nishiyama A, Matsuyama M, Wang Z, Yuan Y. The (pro)renin receptor: a novel biomarker and potential therapeutic target for various cancers. Cell Commun Signal CCS. 2020;18(1):39. https://doi.org/10.1186/s12964-020-0531-3.

    Article  CAS  PubMed  Google Scholar 

  65. Cambados N, Walther T, Nahmod K, Tocci JM, Rubinstein N, Bohme I, Simian M, Sampayo R, Del Valle SM, Kordon EC, Schere-Levy C. Angiotensin-(1–7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells. Oncotarget. 2017;8(51):88475–87. https://doi.org/10.18632/oncotarget.19290.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Du N, Feng J, Hu LJ, Sun X, Sun HB, Zhao Y, Yang YP, Ren H. Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling. Oncol Rep. 2012;27(6):1893–903. https://doi.org/10.3892/or.2012.1720.

    Article  CAS  PubMed  Google Scholar 

  67. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-kappaB addiction and its role in cancer: 'one size does not fit all'. Oncogene. 2011;30(14):1615–30. https://doi.org/10.1038/onc.2010.566.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao Y, Wang H, Li X, Cao M, Lu H, Meng Q, Pang H, Li H, Nadolny C, Dong X, Cai L. Ang II-AT1R increases cell migration through PI3K/AKT and NF-kappaB pathways in breast cancer. J Cell Physiol. 2014;229(11):1855–62. https://doi.org/10.1002/jcp.24639.

    Article  CAS  PubMed  Google Scholar 

  69. Bakhtiari E, Hosseini A, Boroushaki MT, Mousavi SH. Angiotensin II receptor antagonist olmesartan and NF-kappaB inhibitor as cytotoxic and apoptotic agents in MCF-7 human cell line. J Chemother (Florence, Italy). 2016;28(4):314–20. https://doi.org/10.1179/1973947815y.0000000055.

    Article  CAS  Google Scholar 

  70. Saber S, Mahmoud AAA, Goda R, Helal NS, El-Ahwany E, Abdelghany RH. Perindopril, fosinopril and losartan inhibited the progression of diethylnitrosamine-induced hepatocellular carcinoma in mice via the inactivation of nuclear transcription factor kappa-B. Toxicol Lett. 2018;295:32–40. https://doi.org/10.1016/j.toxlet.2018.05.036.

    Article  CAS  PubMed  Google Scholar 

  71. Gallagher PE, Tallant EA. Inhibition of human lung cancer cell growth by angiotensin-(1–7). Carcinogenesis. 2004;25(11):2045–52. https://doi.org/10.1093/carcin/bgh236.

    Article  CAS  PubMed  Google Scholar 

  72. Cook KL, Metheny-Barlow LJ, Tallant EA, Gallagher PE. Angiotensin-(1–7) reduces fibrosis in orthotopic breast tumors. Can Res. 2010;70(21):8319–28. https://doi.org/10.1158/0008-5472.Can-10-1136.

    Article  CAS  Google Scholar 

  73. Chehl N, Gong Q, Chipitsyna G, Aziz T, Yeo CJ, Arafat HA. Angiotensin II regulates the expression of monocyte chemoattractant protein-1 in pancreatic cancer cells. J Gastrointest Surg. 2009;13(12):2189–200. https://doi.org/10.1007/s11605-009-1055-8.

    Article  PubMed  Google Scholar 

  74. Ino K, Uehara C, Kikkawa F, Kajiyama H, Shibata K, Suzuki T, Khin EE, Ito M, Takeuchi M, Itakura A, Mizutani S. Enhancement of aminopeptidase A expression during angiotensin II-induced choriocarcinoma cell proliferation through AT1 receptor involving protein kinase C- and mitogen-activated protein kinase-dependent signaling pathway. J Clin Endocrinol Metab. 2003;88(8):3973–82. https://doi.org/10.1210/jc.2002-021582.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang S, Wang Y. Telmisartan inhibits NSCLC A549 cell proliferation and migration by regulating the PI3K/AKT signaling pathway. Oncol Lett. 2018;15(4):5859–64. https://doi.org/10.3892/ol.2018.8002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kou B, Vatish M, Singer DR. Effects of angiotensin II on human endothelial cells survival signalling pathways and its angiogenic response. Vascul Pharmacol. 2007;47(4):199–208. https://doi.org/10.1016/j.vph.2007.06.011.

    Article  CAS  PubMed  Google Scholar 

  77. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82–97. https://doi.org/10.1152/ajpcell.00287.2006.

    Article  CAS  PubMed  Google Scholar 

  78. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation. 1996;94(7):1506–12. https://doi.org/10.1161/01.cir.94.7.1506.

    Article  CAS  PubMed  Google Scholar 

  79. Pierzchalski P, Reiss K, Cheng W, Cirielli C, Kajstura J, Nitahara JA, Rizk M, Capogrossi MC, Anversa P. p53 Induces myocyte apoptosis via the activation of the renin-angiotensin system. Exp Cell Res. 1997;234(1):57–655. https://doi.org/10.1006/excr.1997.3604.

    Article  CAS  PubMed  Google Scholar 

  80. Kossmehl P, Kurth E, Faramarzi S, Habighorst B, Shakibaei M, Wehland M, Kreutz R, Infanger M, Danser AHJ, Grosse J, Paul M, Grimm D. Mechanisms of apoptosis after ischemia and reperfusion: role of the renin-angiotensin system. Apoptosis. 2006;11(3):347–58. https://doi.org/10.1007/s10495-006-4350-9.

    Article  CAS  PubMed  Google Scholar 

  81. Ziori H, Kyriakidis M, Zioris H, Gorgoulis V, Kostomitsopoulos N, Kittas C, Karayannakos P. The effects of enalapril on p53 expression in left ventricular cardiomyocytes after aortic stenosis. In Vivo (Athens, Greece). 2006;20(4):459–65.

    CAS  Google Scholar 

  82. Bratlie SO, Casselbrant A, Edebo A, Fändriks LJSJOG. Support for involvement of the renin–angiotensin system in dysplastic Barrett’s esophagus. Scand J Gastroenterol. 2017;52(3):338–43.

    Article  CAS  Google Scholar 

  83. De la Iglesia IS, Lopez-Jorge CE, Gomez-Casares MT, Lemes Castellano A, Martin Cabrera P, Lopez Brito J, Suarez Cabrera A, Molero Labarta T. Induction of apoptosis in leukemic cell lines treated with captopril, trandolapril and losartan: a new role in the treatment of leukaemia for these agents. Leuk Res. 2009;33(6):810–6. https://doi.org/10.1016/j.leukres.2008.09.029.

    Article  CAS  Google Scholar 

  84. Delforce SJ, Lumbers ER, Corbisier de Meaultsart C, Wang Y, Proietto A, Otton G, Scurry J, Verrills NM, Scott RJ, Pringle KG. Expression of renin-angiotensin system (RAS) components in endometrial cancer. Endocr Connect. 2017;6(1):9–19. https://doi.org/10.1530/ec-16-0082.

    Article  CAS  PubMed  Google Scholar 

  85. Ambros V. MicroRNAs and developmental timing. Curr Opin Genet Dev. 2011;21(4):511–7. https://doi.org/10.1016/j.gde.2011.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A, Zhao Y, Hirst M, Armisen J, Miska EA, Chin SF, Provenzano E, Turashvili G, Green A, Ellis I, Aparicio S, Caldas C. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature. 2013;497(7449):378–82. https://doi.org/10.1038/nature12108.

    Article  CAS  PubMed  Google Scholar 

  87. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. https://doi.org/10.1038/nature03702.

    Article  CAS  PubMed  Google Scholar 

  88. Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81(2):405–13. https://doi.org/10.1086/519979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006;103(18):7024–9. https://doi.org/10.1073/pnas.0602266103.

    Article  CAS  PubMed  Google Scholar 

  90. Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H, Gemma A, Kudoh S, Croce CM, Harris CC. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA. 2009;106(29):12085–90. https://doi.org/10.1073/pnas.0905234106.

    Article  PubMed  Google Scholar 

  91. Li B, Ren S, Li X, Wang Y, Garfield D, Zhou S, Chen X, Su C, Chen M, Kuang P, Gao G, He Y, Fan L, Fei K, Zhou C, Schmit-Bindert G. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands). 2014;83(2):146–53. https://doi.org/10.1016/j.lungcan.2013.11.003.

    Article  Google Scholar 

  92. Gandellini P, Folini M, Longoni N, Pennati M, Binda M, Colecchia M, Salvioni R, Supino R, Moretti R, Limonta P, Valdagni R, Daidone MG, Zaffaroni N. miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Can Res. 2009;69(6):2287–95. https://doi.org/10.1158/0008-5472.Can-08-2894.

    Article  CAS  Google Scholar 

  93. Yue Z, Yun-Shan Z, Feng-Xia X. miR-205 mediates the inhibition of cervical cancer cell proliferation using olmesartan. J Renin Angiotensin Aldosterone Syst JRAAS. 2016;17(3):1470320316663327. https://doi.org/10.1177/1470320316663327.

    Article  CAS  PubMed  Google Scholar 

  94. Yang LX, Liu G, Zhu GF, Liu H, Guo RW, Qi F, Zou JH. MicroRNA-155 inhibits angiotensin II-induced vascular smooth muscle cell proliferation. J Renin Angiotensin Aldosterone Syst JRAAS. 2014;15(2):109–16. https://doi.org/10.1177/1470320313503693.

    Article  CAS  PubMed  Google Scholar 

  95. Dai Y, Qiu Z, Diao Z, Shen L, Xue P, Sun H, Hu Y. MicroRNA-155 inhibits proliferation and migration of human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin D1. Placenta. 2012;33(10):824–9. https://doi.org/10.1016/j.placenta.2012.07.012.

    Article  CAS  PubMed  Google Scholar 

  96. Lu C, Huang X, Zhang X, Roensch K, Cao Q, Nakayama KI, Blazar BR, Zeng Y, Zhou X. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood. 2011;117(16):4293–303. https://doi.org/10.1182/blood-2010-12-322503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104(4):476–87. https://doi.org/10.1161/circresaha.108.185363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau X, Mechta-Grigoriou F. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med. 2011;17(12):1627–35. https://doi.org/10.1038/nm.2512.

    Article  CAS  PubMed  Google Scholar 

  99. Zheng YG, Wu J, Chen Z, Goodman M. Chemical regulation of epigenetic modifications: opportunities for new cancer therapy. Med Res Rev. 2008;28(5):645–87. https://doi.org/10.1002/med.20120.

    Article  CAS  PubMed  Google Scholar 

  100. Dolomatov S, Zuko W, Novikov N, Markaryan A, Eremeeva E. Expressıon of the renin-angiotensin system components in oncologic diseases. Acta clinica Croata. 2019;58(2):354–64. https://doi.org/10.20471/acc.2019.58.02.21.

    Article  Google Scholar 

  101. Belyea BC, Xu F, Pentz ES, Medrano S, Li M, Hu Y, Turner S, Legallo R, Jones CA, Tario JD, Liang P, Gross KW, Sequeira-Lopez ML, Gomez RA. Identification of renin progenitors in the mouse bone marrow that give rise to B-cell leukaemia. Nat Commun. 2014;5:3273. https://doi.org/10.1038/ncomms4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Silva Bde O, Lima KF, Goncalves LR, Silveira MB, Moraes KC. MicroRNA profiling of the effect of the heptapeptide angiotensin-(1–7) in A549 lung tumor cells reveals a role for miRNA149-3p in cellular migration processes. PLoS ONE. 2016;11(9):e0162094. https://doi.org/10.1371/journal.pone.0162094.

    Article  CAS  PubMed  Google Scholar 

  103. Bangalore S, Kumar S, Kjeldsen SE, Makani H, Grossman E, Wetterslev J, Gupta AK, Sever PS, Gluud C, Messerli FH. Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324,168 participants from randomised trials. Lancet Oncol. 2011;12(1):65–82. https://doi.org/10.1016/S1470-2045(10)70260-6.

    Article  CAS  PubMed  Google Scholar 

  104. Ruiter R, Visser LE, Van Duijn CM, Stricker BH. The ACE insertion/deletion polymorphism and risk of cancer, a review and meta-analysis of the literature. Curr Cancer Drug Targets. 2011;11(4):421–30. https://doi.org/10.2174/156800911795538147.

    Article  CAS  PubMed  Google Scholar 

  105. Sipahi I, Chou J, Mishra P, Debanne SM, Simon DI, Fang JC. Meta-analysis of randomized controlled trials on effect of angiotensin-converting enzyme inhibitors on cancer risk. Am J Cardiol. 2011;108(2):294–301. https://doi.org/10.1016/j.amjcard.2011.03.038.

    Article  CAS  PubMed  Google Scholar 

  106. Xi B, Zeng T, Liu L, Liang Y, Liu W, Hu Y, Li J. Association between polymorphisms of the renin-angiotensin system genes and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011;130(2):561–8. https://doi.org/10.1007/s10549-011-1602-3.

    Article  CAS  PubMed  Google Scholar 

  107. Mc Menamin UC, Murray LJ, Cantwell MM, Hughes CM. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in cancer progression and survival: a systematic review. Cancer Causes Control. 2012;23(2):221–30. https://doi.org/10.1007/s10552-011-9881-x.

    Article  PubMed  Google Scholar 

  108. Lin J, Chen J, Liu C. AGT M235T variant is not associated with risk of cancer. J Renin Angiotensin Aldosterone Syst JRAAS. 2015;16(2):448–52. https://doi.org/10.1177/1470320313496859.

    Article  CAS  PubMed  Google Scholar 

  109. Dai YN, Wang JH, Zhu JZ, Lin JQ, Yu CH, Li YM. Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers therapy and colorectal cancer: a systematic review and meta-analysis. Cancer Causes Control. 2015;26(9):1245–55. https://doi.org/10.1007/s10552-015-0617-1.

    Article  PubMed  Google Scholar 

  110. Yang H, Cai C, Ye L, Rao Y, Wang Q, Hu D, Huang X. The relationship between angiotensin-converting enzyme gene insertion/deletion polymorphism and digestive cancer risk: ınsights from a meta-analysis. J Renin Angiotensin Aldosterone Syst JRAAS. 2015;16(4):1306–13. https://doi.org/10.1177/1470320315585908.

    Article  CAS  PubMed  Google Scholar 

  111. Mao Y, Xu X, Wang X, Zheng X, Xie L. Is angiotensin-converting enzyme inhibitors/angiotensin receptor blockers therapy protective against prostate cancer? Oncotarget. 2016;7(6):6765–73. https://doi.org/10.18632/oncotarget.6837.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Shen J, Huang YM, Wang M, Hong XZ, Song XN, Zou X, Pan YH, Ling W, Zhu MH, Zhang XX, Sui Y, Zhao HL. Renin-angiotensin system blockade for the risk of cancer and death. J Renin Angiotensin Aldosterone Syst JRAAS. 2016. https://doi.org/10.1177/1470320316656679.

    Article  PubMed  Google Scholar 

  113. Sun H, Li T, Zhuang R, Cai W, Zheng Y. Do renin-angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients?: evidence from a meta-analysis including 55 studies. Medicine (Baltimore). 2017;96(13):e6394. https://doi.org/10.1097/MD.0000000000006394.

    Article  CAS  Google Scholar 

  114. Li XY, Sun JF, Hu SQ. The renin-angiotensin system blockers as adjunctive therapy for cancer: a meta-analysis of survival outcome. Eur Rev For Med Pharmacol Sci. 2017;21(6):1375–83.

    Google Scholar 

  115. Abdeahad H, Avan A, Khazaei M, Soleimanpour S, Ferns GA, Fiuji H, Ryzhikov M, Bahrami A, Hassanian SM. Angiotensin-converting enzyme gene polymorphism and digestive system cancer risk: A meta-analysis based on 9656 subjects. J Cell Biochem. 2019;120(12):19388–95. https://doi.org/10.1002/jcb.28955.

    Article  CAS  PubMed  Google Scholar 

  116. Cheng Z, Liu Z. Renin-angiotensin system gene polymorphisms and colorectal cancer risk: a meta-analysis. J Renin Angiotensin Aldosterone Syst JRAAS. 2019;20(4):1470320319881932. https://doi.org/10.1177/1470320319881932.

    Article  PubMed  Google Scholar 

  117. Xiao Y, Dong Z, Zhu J, You J, Fan J. Association between ACE A240T polymorphism and cancer risk: a meta-analysis. J Int Med Res. 2019;47(12):5917–25. https://doi.org/10.1177/0300060519882559.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhou Q, Chen DS, Xin L, Zhou LQ, Zhang HT, Liu L, Yuan YW, Li SH. The renin-angiotensin system blockers and survival in digestive system malignancies: a systematic review and meta-analysis. Medicine (Baltimore). 2020;99(7):e19075. https://doi.org/10.1097/MD.0000000000019075.

    Article  Google Scholar 

Download references

Acknowledgements

MK gratefully acknowledge the use of the services and facilities of the Koc University Research Center for Translational Medicine (KUTTAM), funded by the Presidency of Turkey, Presidency of Strategy and Budget. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Presidency of Strategy and Budget.

Funding

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Afsar.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

As this is review, no informed consent is needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsar, B., Afsar, R.E., Ertuglu, L.A. et al. Renin-angiotensin system and cancer: epidemiology, cell signaling, genetics and epigenetics. Clin Transl Oncol 23, 682–696 (2021). https://doi.org/10.1007/s12094-020-02488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02488-3

Keywords

Navigation