Skip to main content

Physical Regulations of Cell Interactions and Metabolism in Tumor Microenvironments

  • Chapter
  • First Online:
Engineering and Physical Approaches to Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 308 Accesses

Abstract

Despite the advances in cancer therapeutics over the recent years, cancer remains the second leading cause of death in the United States, with metastasis accounting for over 90% of cancer-associated mortality. Elucidating the process of tumor progression in the primary tumor is important to the understanding of the sequence of events that gives rise to late stage/metastatic cancer. The primary tumor microenvironment (TME) is a dynamic, heterogeneous, and evolving “ecosystem” comprising numerous cell types and noncellular factors that each play a crucial role in driving tumor progression. The focus on tumor heterogeneity was previously centered around aberrant mutations in tumor cells and biochemical signaling between different TME cell types. However, it is now evident that biophysical cues imposed by the TME also play an important role in tumor progression as the physical traits of the tumor undergo drastic changes and exert abnormal physical restraints and forces that consequently hinder the efficacy of tumor therapeutics. Therefore, understanding the causes of biophysical abnormalities of tumors and the functional consequences will be beneficial for developing new therapeutic strategies. More specifically, we focused on the regulation of metabolism (i.e., metabolic reprogramming) as the primary consequence of the biophysical abnormalities in the TME. Metabolic reprogramming is one of the emerging hallmarks of cancer and is an important regulator of cell fate. In this chapter, we describe the interrelationship between tumor–stromal interactions and altered physical cues such as stiffness, solid stress, and shear stress, and how these ultimately regulate cell metabolism within the TME.

Authors Hydari Masuma Begum and Jeong Min Oh have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ansaryan S, Khayamian MA, Saghafi M, Shalileh S, Nikshoar MS, Abbasvandi F, Mahmoudi M, Bahrami F, Abdolahad M (2019) Stretch induces invasive phenotypes in breast cells due to activation of aerobic-glycolysis-related pathways. Adv Biosyst 3:e1800294

    Article  PubMed  Google Scholar 

  2. Bartolak-Suki E, Imsirovic J, Nishibori Y, Krishnan R, Suki B (2017) Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int J Mol Sci 18

    Google Scholar 

  3. Bartolak-Suki E, Imsirovic J, Parameswaran H, Wellman TJ, Martinez N, Allen PG, Frey U, Suki B (2015) Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function. Nat Mater 14:1049–1057

    Article  CAS  PubMed  Google Scholar 

  4. Bauer J, Emon MAB, Staudacher JJ, Thomas AL, Zessner-Spitzenberg J, Mancinelli G, Krett N, Saif MT, Jung B (2020) Increased stiffness of the tumor microenvironment in colon cancer stimulates cancer associated fibroblast-mediated prometastatic activin a signaling. Sci Rep 10:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Begum HM, Mariano C, Zhou H, Shen K (2021) E-cadherin regulates mitochondrial membrane potential in cancer cells. Cancers 13

    Google Scholar 

  6. Begum HM, Ta HP, Zhou H, Ando Y, Kang D, Nemes K, Mariano CF, Hao J, Yu M, Shen K (2019) Spatial regulation of mitochondrial heterogeneity by stromal confinement in micropatterned tumor models. Sci Rep 9:11187

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bertero T, Oldham WM, Grasset EM, Bourget I, Boulter E, Pisano S, Hofman P, Bellvert F, Meneguzzi G, Bulavin DV, Estrach S, Feral CC, Chan SY, Bozec A, Gaggioli C (2019) Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab 29(124–140):e10

    Google Scholar 

  8. Breton-Romero R, Acin-Perez R, Rodriguez-Pascual F, Martinez-Molledo M, Brandes RP, Rial E, Enriquez JA, Lamas S (2014) Laminar shear stress regulates mitochondrial dynamics, bioenergetics responses and PRX3 activation in endothelial cells. Biochim Biophys Acta 1843:2403–2413

    Article  CAS  PubMed  Google Scholar 

  9. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chakraborty M, Chu K, Shrestha A, Revelo XS, Zhang X, Gold MJ, Khan S, Lee M, Huang C, Akbari M, Barrow F, Chan YT, Lei H, Kotoulas NK, Jovel J, Pastrello C, Kotlyar M, Goh C, Michelakis E, Clemente-Casares X, Ohashi PS, Engleman EG, Winer S, Jurisica I, Tsai S, Winer DA (2021) Mechanical stiffness controls dendritic cell metabolism and function. Cell Rep 34:108609

    Article  CAS  PubMed  Google Scholar 

  11. Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12:958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen S, Lv X, Hu B, Zhao L, Li S, Li Z, Qing X, Liu H, Xu J, Shao Z (2018) Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis. Apoptosis 23:299–313

    Article  CAS  PubMed  Google Scholar 

  13. Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK, Burdick JA, Mauck RL (2016) N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat Mater 15:1297–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Delarue M, Montel F, Vignjevic D, Prost J, Joanny JF, Cappello G (2014) Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys J 107:1821–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dewane G, Salvi AM, Demali KA (2021) Fueling the cytoskeleton – links between cell metabolism and actin remodeling. J Cell Sci 134

    Google Scholar 

  16. Doddaballapur A, Michalik KM, Manavski Y, Lucas T, Houtkooper RH, You X, Chen W, Zeiher AM, Potente M, Dimmeler S, Boon RA (2015) Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol 35:137–145

    Article  CAS  PubMed  Google Scholar 

  17. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y (2020) Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 5:28

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feng X, Liu P, Zhou X, Li MT, Li FL, Wang Z, Meng Z, Sun YP, Yu Y, Xiong Y, Yuan HX, Guan KL (2016) Thromboxane A2 activates YAP/TAZ protein to induce vascular smooth muscle cell proliferation and migration. J Biol Chem 291:18947–18958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG (2020) Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 20:107–124

    Article  CAS  PubMed  Google Scholar 

  20. Ge H, Tian M, Pei Q, Tan F, Pei H (2021) Extracellular matrix stiffness: new areas affecting cell metabolism. Front Oncol 11:631991

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  CAS  PubMed  Google Scholar 

  22. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  23. Handorf AM, Zhou Y, Halanski MA, Li W-J (2015) Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure — an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  CAS  PubMed  Google Scholar 

  25. Helmlinger G, Netti PA, Lichtenbeld CH, Melder RJ, Jain RK (1997) Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol 15

    Google Scholar 

  26. Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y (2021) Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 6:153

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hupfer A, Brichkina A, Koeniger A, Keber C, Denkert C, Pfefferle P, Helmprobst F, Pagenstecher A, Visekruna A, Lauth M (2021) Matrix stiffness drives stromal autophagy and promotes formation of a protumorigenic niche. Proc Natl Acad Sci U S A 118

    Google Scholar 

  28. Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48:7022–7032

    CAS  PubMed  Google Scholar 

  29. Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16:321–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jayatilaka H, Umanzor FG, Shah V, Meirson T, Russo G, Starich B, Tyle P, Lee JSH, Khatau S, Gil-Henn H, Wirtz D (2018) Tumor cell density regulates matrix metalloproteinases for enhanced migration. Oncotarget 9

    Google Scholar 

  31. Jiao D, Cai Z, Choksi S, Ma D, Choe M, Kwon HJ, Baik JY, Rowan BG, Liu C, Liu ZG (2018) Necroptosis of tumor cells leads to tumor necrosis and promotes tumor metastasis. Cell Res 28:868–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Junttila MR, DE Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354

    Article  CAS  PubMed  Google Scholar 

  33. Kalli M, Voutouri C, Minia A, Pliaka V, Fotis C, Alexopoulos LG, Stylianopoulos T (2019) Mechanical compression regulates brain cancer cell migration through MEK1/Erk1 pathway activation and GDF15 expression. Front Oncol 9:992

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim BG, Sung JS, Jang Y, Cha YJ, Kang S, Han HH, Lee JH, Cho NH (2019) Compression-induced expression of glycolysis genes in CAFs correlates with EMT and angiogenesis gene expression in breast cancer. Commun Biol 2:313

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kreke MR, Sharp LA, Lee YW, Goldstein AS (2008) Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng Part A 14:529–537

    Article  CAS  PubMed  Google Scholar 

  36. Lei X, Lei Y, Li J-K, Du W-X, Li R-G, Yang J, Li J, Li F, Tan H-B (2020) Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett 470:126–133

    Article  CAS  PubMed  Google Scholar 

  37. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li S, Chen Y, Zhang Y, Jiang X, Jiang Y, Qin X, Yang H, Wu C, Liu Y (2019a) Shear stress promotes anoikis resistance of cancer cells via caveolin-1-dependent extrinsic and intrinsic apoptotic pathways. J Cell Physiol 234:3730–3743

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Sun X, Carmeliet P (2019b) Hallmarks of endothelial cell metabolism in health and disease. Cell Metab 30:414–433

    Article  CAS  PubMed  Google Scholar 

  40. Liao XD, Wang XH, Jin HJ, Chen LY, Chen Q (2004) Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts. Cell Res 14

    Google Scholar 

  41. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lim C-G, Jang J, Kim C (2018) Cellular machinery for sensing mechanical force. BMB Rep 51:623–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu K, Wiendels M, Yuan H, Ruan C, Kouwer PHJ (2022) Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioactive Mater 9:316–331

    Article  CAS  Google Scholar 

  44. Liu QP, Luo Q, Deng B, Ju Y, Song GB (2020) Stiffer matrix accelerates migration of hepatocellular carcinoma cells through enhanced aerobic glycolysis via the MAPK-YAP signaling. Cancers (Basel) 12

    Google Scholar 

  45. Lyra-Leite DM, Andres AM, Petersen AP, Ariyasinghe NR, Cho N, Lee JA, Gottlieb RA, McCain ML (2017) Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment. Am J Physiol Heart Circ Physiol 313:H757–H767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mah EJ, Lefebvre A, Mcgahey GE, Yee AF, Digman MA (2018) Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility. Sci Rep 8:17094

    Article  PubMed  PubMed Central  Google Scholar 

  47. Micalet A, Moeendarbary E, Cheema U (2021) 3D in vitro models for investigating the role of stiffness in cancer invasion. ACS Biomater Sci Eng

    Google Scholar 

  48. Mieulet V, Garnier C, Kieffer Y, Guilbert T, Nemati F, Marangoni E, Renault G, Chamming’s F, Vincent-Salomon A, Mechta-Grigoriou F (2021) Stiffness increases with myofibroblast content and collagen density in mesenchymal high grade serous ovarian cancer. Sci Rep 11:4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mina SG, Huang P, Murray BT, Mahler GJ (2017) The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction. Biomicrofluidics 11:044104–044104

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mitchell MJ, King MR (2013) Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors. New J Phys:15

    Google Scholar 

  51. Mohammadi H, Sahai E (2018) Mechanisms and impact of altered tumour mechanics. Nat Cell Biol 20:766–774

    Article  CAS  PubMed  Google Scholar 

  52. Mueller MM, Fusenig NE (2004) Friends or foes — bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  CAS  PubMed  Google Scholar 

  53. Nia HT, Datta M, Seano G, Zhang S, Ho WW, Roberge S, Huang P, Munn LL, Jain RK (2020a) In vivo compression and imaging in mouse brain to measure the effects of solid stress. Nat Protoc 15:2321–2340

    Article  CAS  PubMed  Google Scholar 

  54. Nia HT, Munn LL, Jain RK (2020b) Physical traits of cancer. Science 370

    Google Scholar 

  55. Northcott JM, Dean IS, Mouw JK, Weaver VM (2018a) Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol 6

    Google Scholar 

  56. Novak CM, Horst EN, Lin E, Mehta G (2020) Compressive stimulation enhances ovarian cancer proliferation, invasion, chemoresistance, and mechanotransduction via CDC42 in a 3D bioreactor. Cancers (Basel) 12

    Google Scholar 

  57. Padera TP, Stoll BR, Tooredman JB, Capen D, Tomaso ED, Jain RK (2004) Cancer cells compress intratumour vessels. Nature 427:695–695

    Article  CAS  PubMed  Google Scholar 

  58. Panciera T, Azzolin L, Cordenonsi M, Piccolo S (2017) Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 18:758–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Papa S, Choy PM, Bubici C (2019) The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 38:2223–2240

    Article  CAS  PubMed  Google Scholar 

  60. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perentes JY, Mckee TD, Ley CD, Mathiew H, Dawson M, Padera TP, Munn LL, Jain RK, Boucher Y (2009) In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat Methods 6:143–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Piotrowski-Daspit AS, Tien J, Nelson CM (2016) Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via snail, vimentin, and E-cadherin. Integr Biol 8:319–331

    Article  CAS  Google Scholar 

  63. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schaaf MB, Garg AD, Agostinis P (2018) Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 9:115

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shen K, Luk S, Hicks DF, Elman JS, Bohr S, Iwamoto Y, Murray R, Pena K, Wang F, Seker E, Weissleder R, Yarmush ML, Toner M, Sgroi D, Parekkadan B (2014) Resolving cancer-stroma interfacial signalling and interventions with micropatterned tumour-stromal assays. Nat Commun 5:5662

    Article  CAS  PubMed  Google Scholar 

  66. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci 108:15342–15347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, Smith BL, Ferrone CR, Hornicek FJ, Boucher Y, Munn LL, Jain RK (2012) Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci 109:15101–15108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12:210–219

    Article  CAS  PubMed  Google Scholar 

  69. Tarragó-Celada J, Cascante M (2021) Targeting the metabolic adaptation of metastatic cancer. Cancers 13:1641

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tharp KM, Higuchi-Sanabria R, Timblin GA, Ford B, Garzon-Coral C, Schneider C, Muncie JM, Stashko C, Daniele JR, Moore AS, Frankino PA, Homentcovschi S, Manoli SS, Shao H, Richards AL, Chen KH, Hoeve JT, Ku GM, Hellerstein M, Nomura DK, Saijo K, Gestwicki J, Dunn AR, Krogan NJ, Swaney DL, Dillin A, Weaver VM (2021) Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metab 33:1322–1341 e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tilghman RW, Blais EM, Cowan CR, Sherman NE, Grigera PR, Jeffery ED, Fox JW, Blackman BR, Tschumperlin DJ, Papin JA, Parsons JT (2012) Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis. PLoS One 7:e37231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, Munn LL (2012) Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci U S A 109:911–916

    Article  CAS  PubMed  Google Scholar 

  73. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Valkenburg KC, DE Groot AE, Pienta KJ (2018) Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 15:366–381

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vella A, Eko EM, Del Río Hernández A (2018) The emergence of solid stress as a potent biomechanical marker of tumour progression. Emerging Topics in Life Sciences 2:739–749

    Article  CAS  PubMed  Google Scholar 

  76. Voutouri C, Polydorou C, Papageorgis P, Gkretsi V, Stylianopoulos T (2016) Hyaluronan-derived swelling of solid Tumors, the contribution of collagen and cancer cells, and implications for cancer therapy. Neoplasia (New York, NY) 18:732–741

    Article  CAS  Google Scholar 

  77. Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, Casey DC, Charlson FJ, Chen AZ, Coates MM, Coggeshall M, Dandona L, Dicker DJ, Erskine HE, Ferrari AJ, Fitzmaurice C, Foreman K, Forouzanfar MH, Fraser MS, Fullman N, Gething PW, Goldberg EM, Graetz N, Haagsma JA, Hay SI, Huynh C, Johnson CO, Kassebaum NJ, Kinfu Y, Kulikoff XR, Kutz M, Kyu HH, Larson HJ, Leung J, Liang X, Lim SS, Lind M, Lozano R, Marquez N, Mensah GA, Mikesell J, Mokdad AH, Mooney MD, Nguyen G, Nsoesie E, Pigott DM, Pinho C, Roth GA, Salomon JA, Sandar L, Silpakit N, Sligar A, Sorensen RJD, Stanaway J, Steiner C, Teeple S, Thomas BA, Troeger C, Vanderzanden A, Vollset SE, Wanga V, Whiteford HA, Wolock T, Zoeckler L, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, Abreu DMX, Abu-Raddad LJ, Abyu GY, Achoki T, Adelekan AL, Ademi Z, Adou AK, Adsuar JC, Afanvi KA, Afshin A, Agardh EE, Agarwal A, Agrawal A, Kiadaliri AA, Ajala ON, Akanda AS, Akinyemi RO, Akinyemiju TF, Akseer N, Lami FHA, Alabed S, Al-Aly Z, Alam K, Alam NKM, Alasfoor D, Aldhahri SF, Aldridge RW, Alegretti MA, Aleman AV, Alemu ZA, Alexander LT et al (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1459–1544

    Article  Google Scholar 

  78. Wu LH, Chang HC, Ting PC, Wang DL (2018) Laminar shear stress promotes mitochondrial homeostasis in endothelial cells. J Cell Physiol 233:5058–5069

    Article  CAS  PubMed  Google Scholar 

  79. Wullkopf L, West A-KV, Leijnse N, Cox TR, Madsen CD, Oddershede LB, Erler JT (2018) Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol Biol Cell 29:2378–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamamoto K, Nogimori Y, Imamura H, Ando J (2020) Shear stress activates mitochondrial oxidative phosphorylation by reducing plasma membrane cholesterol in vascular endothelial cells. Proc Natl Acad Sci U S A 117:33660–33667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang J, Reinhart-King CA (2020) Targeting tissue stiffness in metastasis: mechanomedicine improves cancer therapy. Cancer Cell 37:754–755

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyue Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Begum, H.M., Oh, J.M., Kang, D.S., Yu, M., Shen, K. (2023). Physical Regulations of Cell Interactions and Metabolism in Tumor Microenvironments. In: Wong, I.Y., Dawson, M.R. (eds) Engineering and Physical Approaches to Cancer. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-031-22802-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22802-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22801-8

  • Online ISBN: 978-3-031-22802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics