Skip to main content

Colonoscopy Landmark Detection Using Vision Transformers

  • Conference paper
  • First Online:
Imaging Systems for GI Endoscopy, and Graphs in Biomedical Image Analysis (ISGIE 2022, GRAIL 2022)

Abstract

Colonoscopy is a routine outpatient procedure used to examine the colon and rectum for any abnormalities including polyps, diverticula and narrowing of colon structures. A significant amount of the clinician’s time is spent in post-processing snapshots taken during the colonoscopy procedure, for maintaining medical records or further investigation. Automating this step can save time and improve the efficiency of the process. In our work, we have collected a dataset of 120 colonoscopy videos and 2416 snapshots taken during the procedure, that have been annotated by experts. Further, we have developed a novel, vision-transformer based landmark detection algorithm that identifies key anatomical landmarks (the appendiceal orifice, ileocecal valve/cecum landmark and rectum retroflexion) from snapshots taken during colonoscopy. Our algorithm uses an adaptive gamma correction during preprocessing to maintain a consistent brightness for all images.We then use a vision transformer as the feature extraction backbone and a fully connected network based classifier head to categorize a given frame into four classes: the three landmarks or a non-landmark frame. We compare the vision transformer (ViT-B/16) backbone with ResNet-101 and ConvNext-B backbones that have been trained similarly. We report an accuracy of 82% with the vision transformer backbone on a test dataset of snapshots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adewole, So., et al.: Deep learning methods for anatomical landmark detection in video capsule endoscopy images. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FTC 2020. AISC, vol. 1288, pp. 426–434. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63128-4_32

  2. Cao, Y., Liu, D., Tavanapong, W., Wong, J., Oh, J., De Groen, P.C.: Automatic classification of images with appendiceal orifice in colonoscopy videos. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2349–2352. IEEE (2006)

    Google Scholar 

  3. Che, K., et al.: Deep learning-based biological anatomical landmark detection in colonoscopy videos. arXiv preprint arXiv:2108.02948 (2021)

  4. Chen, J., et al.: Cause of death among patients with colorectal cancer: a population-based study in the united states. Aging (Albany NY) 12(22), 22927 (2020)

    Google Scholar 

  5. Chen, X., Hsieh, C.J., Gong, B.: When vision transformers outperform resnets without pretraining or strong data augmentations. arXiv preprint arXiv:2106.01548 (2021)

  6. Chowdhury, A.S., Yao, J., VanUitert, R., Linguraru, M.G., Summers, R.M.: Detection of anatomical landmarks in human colon from computed tomographic colonography images. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

    Google Scholar 

  7. Cooper, J.A., Ryan, R., Parsons, N., Stinton, C., Marshall, T., Taylor-Phillips, S.: The use of electronic healthcare records for colorectal cancer screening referral decisions and risk prediction model development. BMC Gastroenterol. 20(1), 1–16 (2020)

    Article  Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Doubeni, C.A., et al.: Effectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: a large community-based study. Gut 67(2), 291–298 (2018). https://doi.org/10.1136/gutjnl-2016-312712, https://gut.bmj.com/content/67/2/291

  10. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

  11. Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 229–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_27

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Issa, I.A., Noureddine, M.: Colorectal cancer screening: an updated review of the available options. World J. Gastroenterol. 23(28), 5086 (2017)

    Article  Google Scholar 

  14. Jheng, Y.C., et al.: A novel machine learning-based algorithm to identify and classify lesions and anatomical landmarks in colonoscopy images. Surg. Endoscopy 1–11 (2021)

    Google Scholar 

  15. Kim, T., Oh, J., Kim, N., Cho, S., Yun, S.Y.: Comparing kullback-leibler divergence and mean squared error loss in knowledge distillation. arXiv preprint arXiv:2105.08919 (2021)

  16. Lebedev, A., Khryashchev, V., Kazina, E., Zhuravleva, A., Kashin, S., Zavyalov, D.: Automatic identification of appendiceal orifice on colonoscopy images using deep neural network. In: 2020 IEEE East-West Design & Test Symposium (EWDTS), pp. 1–5. IEEE (2020)

    Google Scholar 

  17. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. arXiv preprint arXiv:2201.03545 (2022)

  18. Mamonov, A.V., Figueiredo, I.N., Figueiredo, P.N., Tsai, Y.H.R.: Automated polyp detection in colon capsule endoscopy. IEEE Trans. Med. Imaging 33(7), 1488–1502 (2014)

    Article  Google Scholar 

  19. McDonald, C.J., Callaghan, F.M., Weissman, A., Goodwin, R.M., Mundkur, M., Kuhn, T.: Use of internist’s free time by ambulatory care electronic medical record systems. JAMA Internal Med. 174(11), 1860–1863 (2014)

    Article  Google Scholar 

  20. McInnes, L., Healy, J., Melville, J.: Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  21. Morelli, M.S., Miller, J.S., Imperiale, T.F.: Colonoscopy performance in a large private practice: a comparison to quality benchmarks. J. Clin. Gastroenterol. 44(2), 152–153 (2010)

    Article  Google Scholar 

  22. Morrison, K., Gilby, B., Lipchak, C., Mattioli, A., Kovashka, A.: Exploring corruption robustness: inductive biases in vision transformers and mlp-mixers. arXiv preprint arXiv:2106.13122 (2021)

  23. Park, S.Y., Sargent, D., Spofford, I., Vosburgh, K.G., Yousif, A., et al.: A colon video analysis framework for polyp detection. IEEE Trans. Biomed. Eng. 59(5), 1408–1418 (2012)

    Article  Google Scholar 

  24. Qadir, H.A., Shin, Y., Solhusvik, J., Bergsland, J., Aabakken, L., Balasingham, I.: Toward real-time polyp detection using fully CNNS for 2d gaussian shapes prediction. Med. Image Anal. 68, 101897 (2021)

    Article  Google Scholar 

  25. Rahman, S., Rahman, M.M., Abdullah-Al-Wadud, M., Al-Quaderi, G.D., Shoyaib, M.: An adaptive gamma correction for image enhancement. EURASIP J. Image Video Process. 2016(1), 1–13 (2016). https://doi.org/10.1186/s13640-016-0138-1

    Article  Google Scholar 

  26. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA: A Cancer J. Clin. 72, 7–33 (2022)

    Google Scholar 

  27. Siegel, R.L., et al.: Colorectal cancer statistics, 2020. CA: A Cancer J. Clin. 70(3), 145–164 (2020)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  30. Zhou, S.K., et al.: A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. In: Proceedings of the IEEE (2021)

    Google Scholar 

  31. Zhou, S.K., Xu, Z.: Landmark detection and multiorgan segmentation: representations and supervised approaches. In: Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 205–229. Elsevier (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Tamhane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tamhane, A., Mida, T., Posner, E., Bouhnik, M. (2022). Colonoscopy Landmark Detection Using Vision Transformers. In: Manfredi, L., et al. Imaging Systems for GI Endoscopy, and Graphs in Biomedical Image Analysis. ISGIE GRAIL 2022 2022. Lecture Notes in Computer Science, vol 13754. Springer, Cham. https://doi.org/10.1007/978-3-031-21083-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21083-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21082-2

  • Online ISBN: 978-3-031-21083-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics