Skip to main content

A Self-supervised Approach for Detecting the Edges of Haustral Folds in Colonoscopy Video

  • Conference paper
  • First Online:
Data Engineering in Medical Imaging (DEMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14314))

Included in the following conference series:

  • 372 Accesses

Abstract

Providing 3D navigation in colonoscopy can help decrease diagnostic miss rates in cancer screening by building a coverage map of the colon as the endoscope navigates the anatomy. However, this task is made challenging by the lack of discriminative localisation landmarks throughout the colon. While standard navigation techniques rely on sparse point landmarks or dense pixel registration, we propose edges as a more natural visual landmark to characterise the haustral folds of the colon anatomy. We propose a self-supervised methodology to train an edge detection method for colonoscopy imaging, demonstrating that it can effectively detect anatomy related edges while ignoring light reflection artifacts abundant in colonoscopy. We also propose a metric to evaluate the temporal consistency of estimated edges in the absence of real groundtruth. We demonstrate our results on video sequences from the public dataset HyperKvazir. Our code and pseudo-groundtruth edge labels are available at https://github.com/jwyhhh123/HaustralFold_Edge_Detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The pretrained SegNet is available on https://github.com/foamliu/Autoencoder.

References

  1. Ali, S., et al.: A deep learning framework for quality assessment and restoration in video endoscopy. Med. Image Anal. 68, 101900 (2021)

    Article  Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. CoRR abs/ arXiv: 1511.00561 (2015)

  3. Barbed, O.L., Chadebecq, F., Morlana, J., Martínez-Montiel, J., Murillo, A.C.: Superpoint features in endoscopy. arXiv preprint arXiv:2203.04302 (2022)

  4. Batlle, V.M., Montiel, J.M., Tardós, J.D.: Photometric single-view dense 3d reconstruction in endoscopy. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4904–4910. IEEE (2022)

    Google Scholar 

  5. Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 283 (2020). https://doi.org/10.1038/s41597-020-00622-y

  6. Chen, R.J., Bobrow, T.L., Athey, T., Mahmood, F., Durr, N.J.: Slam endoscopy enhanced by adversarial depth prediction. arXiv preprint arXiv:1907.00283 (2019)

  7. Daher, R., Vasconcelos, F., Stoyanov, D.: A temporal learning approach to inpainting endoscopic specularities and its effect on image correspondence (2022). https://doi.org/10.48550/ARXIV.2203.17013

  8. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)

    Google Scholar 

  9. Garcia-Vega, A., et al.: Multi-scale structural-aware exposure correction for endoscopic imaging. arXiv preprint arXiv:2210.15033 (2022)

  10. He, J., Zhang, S., Yang, M., Shan, Y., Huang, T.: Bi-directional cascade network for perceptual edge detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3828–3837 (2019)

    Google Scholar 

  11. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. CoRR abs/ arXiv: 1612.01925 (2016)

  12. Lamarca, J., Parashar, S., Bartoli, A., Montiel, J.: Defslam: tracking and mapping of deforming scenes from monocular sequences. IEEE Trans. Rob. 37(1), 291–303 (2020)

    Article  Google Scholar 

  13. Ma, R., et al.: Real-Time 3D reconstruction of colonoscopic surfaces for determining missing regions. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 573–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_64

    Chapter  Google Scholar 

  14. Ma, R., et al.: Rnnslam: reconstructing the 3d colon to visualize missing regions during a colonoscopy. Med. Image Anal. 72, 102100 (2021)

    Article  Google Scholar 

  15. Mathew, S., Nadeem, S., Kaufman, A.: FoldIt: haustral folds detection and segmentation in colonoscopy videos. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 221–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_21

    Chapter  Google Scholar 

  16. Monkam, P., Wu, J., Lu, W., Shan, W., Chen, H., Zhai, Y.: Easyspec: automatic specular reflection detection and suppression from endoscopic images. IEEE Trans. Comput. Imaging 7, 1031–1043 (2021)

    Article  Google Scholar 

  17. Ozyoruk, K.B., et al.: Endoslam dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med. Image Anal. 71, 102058 (2021)

    Article  Google Scholar 

  18. Pickhardt, P.J., Taylor, A.J., Gopal, D.V.: Surface visualization at 3d endoluminal ct colonography: degree of coverage and implications for polyp detection. Gastroenterology 130(6), 1582–1587 (2006)

    Article  Google Scholar 

  19. Poma, X.S., Sappa, Á.D., Humanante, P., Akbarinia, A.: Dense extreme inception network for edge detection. CoRR abs/ arXiv: 2112.02250 (2021)

  20. Rau, A., Bhattarai, B., Agapito, L., Stoyanov, D.: Bimodal camera pose prediction for endoscopy. arXiv preprint arXiv:2204.04968 (2022)

  21. Rau, A., et al.: Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy. Int. J. Comput. Assist. Radiol. Surg. 14, 1167–1176 (2019)

    Article  Google Scholar 

  22. Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Tracking monocular camera pose and deformation for slam inside the human body. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5278–5285. IEEE (2022)

    Google Scholar 

  23. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)

    Google Scholar 

  24. Soria, X., Riba, E., Sappa, A.: Dense extreme inception network: towards a robust cnn model for edge detection. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1912–1921. IEEE Computer Society, Los Alamitos, CA, USA (Mar 2020). https://doi.org/10.1109/WACV45572.2020.9093290, https://doi.ieeecomputersociety.org/10.1109/WACV45572.2020.9093290

  25. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: Loftr: detector-free local feature matching with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8922–8931 (2021)

    Google Scholar 

  26. Tang, J., Ericson, L., Folkesson, J., Jensfelt, P.: Gcnv2: efficient correspondence prediction for real-time slam. IEEE Robotics Autom. Lett. 4(4), 3505–3512 (2019)

    Google Scholar 

  27. Varghese, S., et al.: Unsupervised temporal consistency metric for video segmentation in highly-automated driving. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1369–1378 (2020). https://doi.org/10.1109/CVPRW50498.2020.00176

Download references

Acknowledgments

This work was supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) at UCL (203145Z/16/Z) and the H2020 FET EndoMapper project (GA863146). This work was partially carried out during the MSc in Robotics and Computation graduate degree at the Computer Science Department, UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyue Jin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 296 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, W., Daher, R., Stoyanov, D., Vasconcelos, F. (2023). A Self-supervised Approach for Detecting the Edges of Haustral Folds in Colonoscopy Video. In: Bhattarai, B., et al. Data Engineering in Medical Imaging. DEMI 2023. Lecture Notes in Computer Science, vol 14314. Springer, Cham. https://doi.org/10.1007/978-3-031-44992-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44992-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44991-8

  • Online ISBN: 978-3-031-44992-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics