Skip to main content

Card-Based ZKP Protocol for Nurimisaki

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2022)

Abstract

Proving to someone else the knowledge of a secret without revealing any of its information is an interesting feature in cryptography. The best solution to solve this problem is a Zero-Knowledge Proof (ZKP) protocol.

Nurimisaki is a Nikoli puzzle. The goal of this game is to draw a kind of abstract painting (“Nuri”) that represents the sea with some capes (“Misaki”) of an island (represented by white cells). For this, the player has to fulfill cells of a grid in black (representing the sea) in order to draw some capes while respecting some simple rules. One of the specificity of the rules of this game is that the cells called “Misaki” can only have one white neighbour and all white cells need to be connected. In 2020, this puzzle has been proven to be NP-complete.

Using a deck of cards, we propose a physical ZKP protocol to prove that a player knows a solution of a Nurimisaki grid without revealing any information about the solution.

We thank the anonymous referees, whose comments have helped us to improve the presentation of the paper. This work was supported in part by JSPS KAKENHI Grant Numbers JP18H05289 and JP21K11881. This study was partially supported by the French ANR project ANR-18-CE39-0019 (MobiS5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that we described the protocol for Misaki cell not at the border of the grid. If a Misaki cell is at a border (but not a corner) then the 4-neighbours becomes the 3-neighbours and the protocol is the same (there will be only three piles instead of four). For Misaki cells at a corner, P and V consider the 2-neighbours (thus only two piles).

References

  1. Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In Demaine, E.D., Grandoni, F. (eds.) Fun with Algorithms, volume 49 of LIPIcs, pp. 8:1–8:20 (2016)

    Google Scholar 

  2. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8

    Chapter  Google Scholar 

  3. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6_12

    Chapter  Google Scholar 

  4. den Boer, B.: More efficient match-making and satisfiability: The five card trick. In: Quisquater, J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Berlin, Heidelberg (1989). https://doi.org/10.1007/3-540-46885-4_23

    Chapter  Google Scholar 

  5. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14

    Chapter  Google Scholar 

  6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC 1985, pp. 291–304, New York. ACM (1985)

    Google Scholar 

  7. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput. Syst. 44(2), 245–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Isuzugawa, R., Miyahara, D., Mizuki, T.: Zero-knowledge proof protocol for cryptarithmetic using dihedral cards. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 51–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_4

    Chapter  Google Scholar 

  9. Iwamoto, C., Ide, T.: Computational complexity of Nurimisaki and Sashigane. IEICE Trans. Fundam. 103(10), 1183–1192 (2020)

    Article  Google Scholar 

  10. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In M. Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms, volume 157 of LIPIcs, pp. 17:1–17:23, Dagstuhl. Schloss Dagstuhl (2021)

    Google Scholar 

  11. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical zero-knowledge proofs for puzzles with a “single loop’’ condition. Theor. Comput. Sci. 888, 41–55 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Miyahara, et al.: Card-based ZKP protocols for Takuzu and Juosan. In Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms, volume 157 of LIPIcs, pp. 20:1–20:21, Dagstuhl. Schloss Dagstuhl (2021)

    Google Scholar 

  13. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. 102-A(9), 1072–1078 (2019)

    Google Scholar 

  14. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    Chapter  Google Scholar 

  15. Nishimura, A., Hayashi, Y.I., Mizuki, T., Sone, H.: Pile-shifting scramble for card-based protocols. IEICE Trans. Fundam. 101-A(9), 1494–1502 (2018)

    Google Scholar 

  16. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical zero-knowledge proof and np-completeness proof of suguru puzzle. Inf. Comput. 285(Part), 104858 (2022)

    Google Scholar 

  17. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for connectivity: applications to Nurikabe, Hitori, and Heyawake. New Gener. Comput. 40, 149–171 (2022)

    Article  MATH  Google Scholar 

  18. Ruangwises, S.: An improved physical ZKP for Nonogram. In: Du, D.-Z., Du, D., Wu, C., Xu, D. (eds.) COCOA 2021. LNCS, vol. 13135, pp. 262–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92681-6_22

    Chapter  Google Scholar 

  19. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for Sudoku. New Gener. Comput. 40, 49–65 (2022)

    Article  Google Scholar 

  20. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)

    Article  Google Scholar 

  21. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_10

    Chapter  MATH  Google Scholar 

  22. Ruangwises, S., Itoh, T.: Securely computing the N-variable equality function with 2N cards. Theor. Comput. Sci. 887, 99–110 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: a physical ZKP for Shikaku. In Fraigniaud, P., Uno, Y. (eds.), Fun with Algorithms, volume 226 of LIPIcs, pp. 24:1–24:12. Schloss Dagstuhl (2022)

    Google Scholar 

  24. Saito, K.: Physical zero-knowledge proof for the pencil puzzle Nurimisaki. Graduation Thesis, The University of Electro-Communications, Tokyo (2020)

    Google Scholar 

  25. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shinagawa, K.: Card-based protocols using regular polygon cards. IEICE Trans. Fundam. 100-A(9), 1900–1909 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Léo Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T. (2022). Card-Based ZKP Protocol for Nurimisaki. In: Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fernandez Anta, A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2022. Lecture Notes in Computer Science, vol 13751. Springer, Cham. https://doi.org/10.1007/978-3-031-21017-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21017-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21016-7

  • Online ISBN: 978-3-031-21017-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics