Skip to main content

Leading Roles of Heparan Sulfate in Angiogenesis and Cancer

  • Chapter
  • First Online:
Matrix Pathobiology and Angiogenesis

Abstract

Heparan sulfate (HS) is a member of the broad family of linear heteropolysaccharides known as glycosaminoglycans (GAGs). Except for hyaluronic acid, GAGs are present in tissues as proteoglycans. HS proteoglycans (HSPGs) are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. HSPGs play important roles in cancer initiation and progression, interacting with numerous signaling pathways that affect proliferation, adhesion, invasion, and angiogenesis. Here, we describe the structural characteristics, biosynthesis, post-translational modifications, and degradation of the HS chains. We also summarize the role of HS in cell transformation and angiogenesis. This chapter should help researchers understand the multitude of mechanisms through which HS affects cancer and angiogenesis and inspire the discovery of new therapeutic approaches targeting HS-dependent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramsson A, Kurup S, Busse M, Yamada S, Lindblom P, Schallmeiner E, Stenzel D, Sauvaget D, Ledin J, Ringvall M (2007) Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev 21:316–331

    Article  CAS  Google Scholar 

  • Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G, Wan X (2021) Mechanisms modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Front Oncol 11:528

    Article  Google Scholar 

  • Ai X, Do A-T, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162:341–351

    Article  CAS  Google Scholar 

  • Akagi M, Kawaguchi M, Liu W, Mccarty M, Takeda A, Fan F, Stoeltzing O, Parikh A, Jung Y, Bucana CJBJOC (2003) Induction of neuropilin-1 and vascular endothelial growth factor by epidermal growth factor in human gastric cancer cells. Br J Cancer 88:796–802

    Article  CAS  Google Scholar 

  • Annaval T, Wild R, Cretinon Y, Sadir R, Vives RR, Lortat-Jacob H (2020) Heparan sulfate proteoglycans biosynthesis and post synthesis mechanisms combine few enzymes and few core proteins to generate extensive structural and functional diversity. Molecules 25:4215

    Article  CAS  Google Scholar 

  • Arai T, Parker A, Busby W Jr, Clemmons DR (1994) Heparin, heparan sulfate, and dermatan sulfate regulate formation of the insulin-like growth factor-I and insulin-like growth factor-binding protein complexes. J Biol Chem 269:20388–20393

    Article  CAS  Google Scholar 

  • Arai T, Busby W Jr, Clemmons DR (1996) Binding of insulin-like growth factor (IGF) I or II to IGF-binding protein-2 enables it to bind to heparin and extracellular matrix. Endocrinology 137:4571–4575

    Article  CAS  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  CAS  Google Scholar 

  • Barash U, Lapidot M, Zohar Y, Loomis C, Moreira A, Feld S, Goparaju C, Yang H, Hammond E, Zhang G (2018) Involvement of heparanase in the pathogenesis of mesothelioma: basic aspects and clinical applications. JNCI 110:1102–1114

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  • Belting M (2014) Glycosaminoglycans in cancer treatment. Thromb Res 133(Suppl 2):S95–101

    Google Scholar 

  • Bengtsson J, Eriksson I, Kjellen L (2003) Distinct effects on heparan sulfate structure by different active site mutations in NDST-1. Biochemistry 42:2110–2115

    Article  CAS  Google Scholar 

  • Betz C, Lenard A, Belting H-G, Affolter M (2016) Cell behaviors and dynamics during angiogenesis. Development 143:2249–2260

    Article  CAS  Google Scholar 

  • Bielenberg DR, Zetter BR (2015) The contribution of angiogenesis to the process of metastasis. Cancer J 21(267)

    Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  CAS  Google Scholar 

  • Blackhall FH, Merry CL, Davies EJ, Jayson GC (2001) Heparan sulfate proteoglycans and cancer. Br J Cancer 85:1094–1098

    Article  CAS  Google Scholar 

  • Burgess RW, Skarnes WC, Sanes JR (2000) Agrin isoforms with distinct amino termini: differential expression, localization, and function. J Cell Biol 151:41–52

    Article  CAS  Google Scholar 

  • Busse M, Feta A, Presto J, Wilen M, Gronning M, Kjellen L, Kusche-Gullberg M (2007) Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J Biol Chem 282:32802–32810

    Article  CAS  Google Scholar 

  • Carneiro BR, Pernambuco Filho PCA, De Sousa Mesquita AP, Da Silva DS, MaS P, Nader HB, Lopes CC (2014) Acquisition of anoikis resistance up-regulates syndecan-4 expression in endothelial cells. PLoS One 9:e116001

    Article  Google Scholar 

  • Cavalheiro RP, Lima MA, Jarrouge-Boucas TR, Viana GM, Lopes CC, Coulson-Thomas VJ, Dreyfuss JL, Yates EA, Tersariol ILS, Nader HB (2017) Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan. Matrix Biol 63:23–37

    Article  CAS  Google Scholar 

  • Chang WL, Chang CW, Chang YY, Sung HH, Lin MD, Chang SC, Chen CH, Huang CW, Tung KS, Chou TB (2013) The Drosophila GOLPH3 homolog regulates the biosynthesis of heparan sulfate proteoglycans by modulating the retrograde trafficking of exostosins. Development 140:2798–2807

    Article  Google Scholar 

  • Chen E, Stringer SE, Rusch MA, Selleck SB, Ekker SC (2005) A unique role for 6-O sulfation modification in zebrafish vascular development. Dev Biol 284:364–376

    Article  CAS  Google Scholar 

  • Claffey KP, Abrams K, Shih S-C, Brown LF, Mullen A, Keough M (2001) Fibroblast growth factor 2 activation of stromal cell vascular endothelial growth factor expression and angiogenesis. Lab Investig 81:61–75

    Article  CAS  Google Scholar 

  • Colburn P, Buonassisi V (1982) Anti-clotting activity of endothelial cell cultures and heparan sulfate proteoglycans. Biochem Biophys Res Commun 104:220–227

    Article  CAS  Google Scholar 

  • Couchman JR (2010) Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 26:89–114

    Article  CAS  Google Scholar 

  • Couchman JR, Woods A (1999) Syndecan-4 and integrins: combinatorial signaling in cell adhesion. J Cell Sci 112:3415–3420

    Article  CAS  Google Scholar 

  • Crawford BE, Olson SK, Esko JD, Pinhal MA (2001) Cloning, Golgi localization, and enzyme activity of the full-length heparin/heparan sulfate-glucuronic acid C5-epimerase. J Biol Chem 276:21538–21543

    Article  CAS  Google Scholar 

  • Delos M, Foulquier F, Hellec C, Vicogne D, Fifre A, Carpentier M, Papy-Garcia D, Allain F, Denys A (2018) Heparan sulfate 3-O-sulfotransferase 2 (HS3ST2) displays an unexpected subcellular localization in the plasma membrane. Biochim Biophys Acta Gen Sub 1862:1644–1655

    Article  CAS  Google Scholar 

  • Dews IC, Mackenzie KR (2007) Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc Natl Acad Sci U S A 104:20782–20787

    Article  CAS  Google Scholar 

  • Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293:1663–1666

    Article  CAS  Google Scholar 

  • Dick G, Akslen-Hoel LK, Grondahl F, Kjos I, Prydz K (2012) Proteoglycan synthesis and Golgi organization in polarized epithelial cells. J Histochem Cytochem 60:926–935

    Article  Google Scholar 

  • Dietrich CP (1968) Novel heparin degradation products. Isolation and characterization of novel disaccharides and oligosaccharides produced from heparin by bacterial degradation. Biochem J 108:647–654

    Article  CAS  Google Scholar 

  • Dietrich CP, Nader HB, Straus AH (1983) Structural differences of heparan sulfates according to the tissue and species of origin. Biochem Biophys Res Commun 111:865–871

    Article  CAS  Google Scholar 

  • Dietrich CP, Nader HB, Buonassisi V, Colburn P (1988) Inhibition of synthesis of heparan sulfate by selenate: possible dependence on sulfation for chain polymerization. FASEB J 2:56–59

    Article  CAS  Google Scholar 

  • Dietrich CP, Tersariol IL, Toma L, Moraes CT, Porcionatto MA, Oliveira FW, Nader HB (1998) Structure of heparan sulfate: identification of variable and constant oligosaccharide domains in eight heparan sulfates of different origins. Cell Mol Biol 44:417–429

    CAS  Google Scholar 

  • Diez-Roux G, Ballabio A (2005) Sulfatases and human disease. Annu Rev Genomics Hum Genet 6:355–379

    Article  CAS  Google Scholar 

  • Dorfman A, Matalon R (1976) The mucopolysaccharidoses (a review). Proc Natl Acad Sci U S A 73:630–637

    Article  CAS  Google Scholar 

  • Dou W, Xu Y, Pagadala V, Pedersen LC, Liu J (2015) Role of deacetylase activity of N-deacetylase/N-sulfotransferase 1 in forming N-sulfated domain in heparan sulfate. J Biol Chem 290:20427–20437

    Article  CAS  Google Scholar 

  • Douaiher J, Succar J, Lancerotto L, Gurish MF, Orgill DP, Hamilton MJ, Krilis SA, Stevens RL (2014) Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. Adv Immunol 122:211–252

    Article  CAS  Google Scholar 

  • Dredge K, Hammond E, Davis K, Li CP, Liu L, Johnstone K, Handley P, Wimmer N, Gonda T, Gautam A (2010) The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Investig New Drugs 28:276–283

    Article  CAS  Google Scholar 

  • Dredge K, Hammond E, Handley P, Gonda T, Smith M, Vincent C, Brandt R, Ferro V, Bytheway I (2011) PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 104:635–642

    Article  CAS  Google Scholar 

  • Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB (2009) Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. An Acad Bras Cienc 81:409–429

    Article  CAS  Google Scholar 

  • Dreyfuss JL, Regatieri C, Lima M, Paredes-Gamero E, Brito A, Chavante S, Belfort R Jr, Farah M, Nader HB (2010) A heparin mimetic isolated from a marine shrimp suppresses neovascularization. J Thromb Haemost 8:1828–1837

    Article  CAS  Google Scholar 

  • Elfenbein A, Simons M (2013) Syndecan-4 signaling at a glance. J Cell Sci 126:3799–3804

    CAS  Google Scholar 

  • Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL (2020) Cancer metastasis: the role of the extracellular matrix and the heparan sulfate proteoglycan perlecan. Front Oncol 9:1482

    Article  Google Scholar 

  • Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–568

    Article  CAS  Google Scholar 

  • Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173

    Article  CAS  Google Scholar 

  • Esko JD, Zhang L (1996) Influence of core protein sequence on glycosaminoglycan assembly. Curr Opin Struct Biol 6:663–670

    Article  CAS  Google Scholar 

  • Farach-Carson MC, Carson DD (2007) Perlecan – a multifunctional extracellular proteoglycan scaffold. Glycobiology 17:897–905

    Article  CAS  Google Scholar 

  • Fedarko NS, Ishihara M, Conrad HE (1989) Control of cell division in hepatoma cells by exogenous heparan sulfate proteoglycan. J Cell Physiol 139:287–294

    Article  CAS  Google Scholar 

  • Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  CAS  Google Scholar 

  • Ferrara N, Gerber H-P, Lecouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  Google Scholar 

  • Ferreras C, Rushton G, Cole CL, Babur M, Telfer BA, van Kuppevelt TH, Gardiner JM, Williams KJ, Jayson GC, Avizienyte E (2012) Endothelial heparan sulfate 6-O-sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor. J Biol Chem 287:36132–36146

    Article  CAS  Google Scholar 

  • Franco CRC, HaO R, Trindade EDS, IaND S, Leite EL, Veiga SS, Nader HB, Dietrich CP (2001) Heparan sulfate and control of cell division: adhesion and proliferation of mutant CHO-745 cells lacking xylosyl transferase. Braz J Med Biol Res 34:971–975

    Article  CAS  Google Scholar 

  • Fransson LA, Silverberg I, Carlstedt I (1985) Structure of the heparan sulfate-protein linkage region. Demonstration of the sequence galactosyl-galactosyl-xylose-2-phosphate. J Biol Chem 260:14722–14726

    Article  CAS  Google Scholar 

  • Freeman C, Hopwood J (1992) Lysosomal degradation of heparin and heparan sulphate. Adv Exp Med Biol 313:121–134

    Article  CAS  Google Scholar 

  • Fritz TA, Agrawal PK, Esko JD, Krishna NR (1997) Partial purification and substrate specificity of heparan sulfate alpha-N-acetylglucosaminyltransferase I: synthesis, NMR spectroscopic characterization and in vitro assays of two aryl tetrasaccharides. Glycobiology 7:587–595

    Article  CAS  Google Scholar 

  • Fuster MM, Wang L (2010) Endothelial heparan sulfate in angiogenesis. Prog Mol Biol Transl Sci 93:179–212

    Article  CAS  Google Scholar 

  • Fuster MM, Wang L, Castagnola J, Sikora L, Reddi K, Lee PH, Radek KA, Schuksz M, Bishop JR, Gallo RL (2007) Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol 177:539–549

    Article  CAS  Google Scholar 

  • Gacche RN, Meshram RJ (2013) Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. Prog Biophys Mol Biol 113:333–354

    Article  CAS  Google Scholar 

  • García-García MJ, Anderson KV (2003) Essential role of glycosaminoglycans in Fgf signaling during mouse gastrulation. Cell 114:727–737

    Article  Google Scholar 

  • Gesteira TF, Coulson-Thomas VJ, Ogata FT, Farias EH, Cavalheiro RP, De Lima MA, Cunha GL, Nakayasu ES, Almeida IC, Toma L, Nader HB (2011a) A novel approach for the characterisation of proteoglycans and biosynthetic enzymes in a snail model. Biochim Biophys Acta 1814:1862–1869

    Article  CAS  Google Scholar 

  • Gesteira TF, Coulson-Thomas VJ, Taunay-Rodrigues A, Oliveira V, Thacker BE, Juliano MA, Pasqualini R, Arap W, Tersariol IL, Nader HB, Esko JD, Pinhal MA (2011b) Inhibitory peptides of the sulfotransferase domain of the heparan sulfate enzyme, N-deacetylase-N-sulfotransferase-1. J Biol Chem 286:5338–5346

    Article  CAS  Google Scholar 

  • Gesteira TF, Pol-Fachin L, Coulson-Thomas VJ, Lima MA, Verli H, Nader HB (2013) Insights into the N-sulfation mechanism: molecular dynamics simulations of the N-sulfotransferase domain of NDST1 and mutants. PLoS One 8:e70880

    Article  CAS  Google Scholar 

  • Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13:871–882

    Article  CAS  Google Scholar 

  • Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY (1993) Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell 4:121–133

    Article  CAS  Google Scholar 

  • Grobe K, Ledin J, Ringvall M, Holmborn K, Forsberg E, Esko JD, Kjellen L (2002) Heparan sulfate and development: differential roles of the N-acetylglucosamine N-deacetylase/N-sulfotransferase isozymes. Biochim Biophys Acta 1573:209–215

    Article  CAS  Google Scholar 

  • Habuchi H, Nagai N, Sugaya N, Atsumi F, Stevens RL, Kimata K (2007) Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. J Biol Chem 282:15578–15588

    Article  CAS  Google Scholar 

  • Hagner-Mcwhirter A, Lindahl U, Li J (2000) Biosynthesis of heparin/heparan sulphate: mechanism of epimerization of glucuronyl C-5. Biochem J 347(Pt 1):69–75

    Article  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  Google Scholar 

  • Hellberg C, Östman A, Heldin C-H (2010) PDGF and vessel maturation. Recent Results Cancer Res 180:103–114

    Article  CAS  Google Scholar 

  • Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12:551–564

    Article  CAS  Google Scholar 

  • Hook M, Lindahl U, Hallen A, Backstrom G (1975) Biosynthesis of heparin. Studies on the microsomal sulfation process. J Biol Chem 250:6065–6071

    Article  CAS  Google Scholar 

  • Hunter K, Palermo C, Kester J, Simpson K, Li J, Tang L, Klimstra D, Vlodavsky I, Joyce J (2014) Heparanase promotes lymphangiogenesis and tumor invasion in pancreatic neuroendocrine tumors. Oncogene 33:1799–1808

    Article  CAS  Google Scholar 

  • Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

    Article  CAS  Google Scholar 

  • Ishijima M, Suzuki N, Hozumi K, Matsunobu T, Kosaki K, Kaneko H, Hassell JR, Arikawa-Hirasawa E, Yamada Y (2012) Perlecan modulates VEGF signaling and is essential for vascularization in endochondral bone formation. Matrix Biol 31:234–245

    Article  CAS  Google Scholar 

  • Jackson RL, Busch SJ, Cardin AD (1991) Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71:481–539

    Article  CAS  Google Scholar 

  • Jia L, Ma S (2016) Recent advances in the discovery of heparanase inhibitors as anti-cancer agents. Eur J Med Chem 121:209–220

    Article  CAS  Google Scholar 

  • Jiang X, Couchman JR (2003) Perlecan and tumor angiogenesis. J Histochem Cytochem 51:1393–1410

    Article  CAS  Google Scholar 

  • Jung S, Lee H, Yu D, Kim B, Park S, Lee Y, Park H, Ko Y-G, Lee J (2016) Heparan sulfation is essential for the prevention of cellular senescence. Cell Death Diff 23:417–429

    Article  CAS  Google Scholar 

  • Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M (2020) Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 49:5008–5057

    Article  CAS  Google Scholar 

  • Khan S, Fung KW, Rodriguez E, Patel R, Gor J, Mulloy B, Perkins SJ (2013) The solution structure of heparan sulfate differs from that of heparin: implications for function. J Biol Chem 288:27737–27751

    Article  CAS  Google Scholar 

  • Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    Article  CAS  Google Scholar 

  • Korf-Klingebiel M, Reboll MR, Grote K, Schleiner H, Wang Y, Wu X, Klede S, Mikhed Y, Bauersachs J, Klintschar M (2019) Heparan sulfate-editing extracellular sulfatases enhance vascular endothelial growth factor bioavailability for ischemic heart repair. Circ Res 125:787–801

    Article  CAS  Google Scholar 

  • Korpetinou A, Skandalis SS, Labropoulou VT, Smirlaki G, Noulas A, Karamanos NK, Theocharis AD (2014) Serglycin: at the crossroad of inflammation and malignancy. Front Oncol 3:327

    Article  Google Scholar 

  • Kowalewski B, Lamanna WC, Lawrence R, Damme M, Stroobants S, Padva M, Kalus I, Frese MA, Lubke T, Lullmann-Rauch R, D’hooge R, Esko JD, Dierks T (2012) Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci U S A 109:10310–10315

    Article  CAS  Google Scholar 

  • Kumar B, Singh S, Skvortsova I, Kumar V (2017) Promising targets in anti-cancer drug development: recent updates. Curr Med Chem 24:4729–4752

    CAS  Google Scholar 

  • Kuo PH, Teng YH, Cin AL, Han W, Huang PW, Wang LH, Chou YT, Yang JL, Tseng YL, Kao M, Chang MD (2020) Heparan sulfate targeting strategy for enhancing liposomal drug accumulation and facilitating deep distribution in tumors. Drug Deliv 27:542–555

    Article  CAS  Google Scholar 

  • Kurup S, Abramsson A, Li J-P, Lindahl U, Kjellen L, Betsholtz C, Gerhardt H, Spillmann D (2006) Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment. Biochem Soc Trans 34:454–455

    Article  CAS  Google Scholar 

  • Langsdorf A, Schumacher V, Shi X, Tran T, Zaia J, Jain S, Taglienti M, Kreidberg JA, Fine A, Ai X (2011) Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem cell niche. Glycobiology 21:152–161

    Article  CAS  Google Scholar 

  • Lanzi C, Cassinelli G (2018) Heparan sulfate mimetics in cancer therapy: the challenge to define structural determinants and the relevance of targets for optimal activity. Molecules 23:2915

    Article  Google Scholar 

  • Lanzi C, Zaffaroni N, Cassinelli G (2017) Targeting heparan sulfate proteoglycans and their modifying enzymes to enhance anticancer chemotherapy efficacy and overcome drug resistance. Curr Med Chem 24:2860–2886

    Article  CAS  Google Scholar 

  • Larochelle WJ, May-Siroff M, Robbins KC, Aaronson SA (1991) A novel mechanism regulating growth factor association with the cell surface: identification of a PDGF retention domain. Genes Dev 5:1191–1199

    Article  CAS  Google Scholar 

  • Lawrence R, Yabe T, Hajmohammadi S, Rhodes J, Mcneely M, Liu J, Lamperti ED, Toselli PA, Lech M, Spear PG, Rosenberg RD, Shworak NW (2007) The principal neuronal gD-type 3-O-sulfotransferases and their products in central and peripheral nervous system tissues. Matrix Biol 26:442–455

    Article  CAS  Google Scholar 

  • Lee S, Springstead JR, Parks BW, Romanoski CE, Palvolgyi R, Ho T, Nguyen P, Lusis AJ, Berliner JA (2012) Metalloproteinase processing of HBEGF is a proximal event in the response of human aortic endothelial cells to oxidized phospholipids. Arterioscler Thromb Vasc Biol 32:1246–1254

    Article  CAS  Google Scholar 

  • Lee S, Kim MG, Kim N, Do Heo W, Lee GM (2016) Heparan sulfate proteoglycan synthesis in CHO DG44 and HEK293 cells. Biotechnol Bioprocess Eng 21:439–445

    Article  CAS  Google Scholar 

  • Lewis KD, Robinson WA, Millward MJ, Powell A, Price TJ, Thomson DB, Walpole ET, Haydon AM, Creese BR, Roberts KL (2008) A phase II study of the heparanase inhibitor PI-88 in patients with advanced melanoma. Investig New Drugs 26:89–94

    Article  CAS  Google Scholar 

  • Li J-P, Kusche-Gullberg M (2016) Heparan sulfate: biosynthesis, structure, and function. Int Rev Cell Mol Biol 325:215–273

    Article  CAS  Google Scholar 

  • Li T, Kang G, Wang T, Huang H (2018) Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett 16:687–702

    Google Scholar 

  • Lindahl U (1977) Biosynthesis of heparin and heparan sulfate. Ups J Med Sci 82:78–79

    Article  CAS  Google Scholar 

  • Lindahl B, Eriksson L, Lindahl U (1995) Structure of heparan sulphate from human brain, with special regard to Alzheimer’s disease. Biochem J 306(Pt 1):177–184

    Article  CAS  Google Scholar 

  • Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellström M, Bäckström G, Fredriksson S, Landegren U, Nyström HC (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840

    Article  CAS  Google Scholar 

  • Lip GY, Chin BS, Blann AD (2002) Cancer and the prothrombotic state. Lancet Oncol 3:27–34

    Article  CAS  Google Scholar 

  • Liu J, Pedersen LC (2007) Anticoagulant heparan sulfate: structural specificity and biosynthesis. Appl Microbiol Biotechnol 74:263–272

    Article  CAS  Google Scholar 

  • Liu X-Y, Tang Q-S, Chen H-C, Jiang X-L, Fang H (2013) Lentiviral miR30-based RNA interference against heparanase suppresses melanoma metastasis with lower liver and lung toxicity. Int J Biol Sci 9:564

    Article  Google Scholar 

  • Liu C-J, Chang J, Lee P-H, Lin D-Y, Wu C-C, Jeng L-B, Lin Y-J, Mok K-T, Lee W-C, Yeh H-Z (2014) Adjuvant heparanase inhibitor PI-88 therapy for hepatocellular carcinoma recurrence. World J Gastroenterol: WJG 20:11384

    Article  CAS  Google Scholar 

  • Lopes CC, Dietrich CP, Nader HB (2006a) Specific structural features of syndecans and heparan sulfate chains are needed for cell signaling. Braz J Med Biol Res 39:157–167

    Article  CAS  Google Scholar 

  • Lopes CC, Toma L, MaDS P, Porcionatto MA, Sogayar MC, Dietrich CP, Nader HB (2006b) EJ-ras oncogene transfection of endothelial cells upregulates the expression of syndecan-4 and downregulates heparan sulfate sulfotransferases and epimerase. Biochimie 88:1493–1504

    Article  CAS  Google Scholar 

  • Malmström J, Westergren-Thorsson G (1998) Heparan sulfate upregulates platelet-derived growth factor receptors on human lung fibroblasts. Glycobiology 8:1149–1155

    Article  Google Scholar 

  • Manon-Jensen T, Itoh Y, Couchman JR (2010) Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 277:3876–3889

    Article  CAS  Google Scholar 

  • Marchand M, Monnot C, Muller L, Germain S (2019) Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin Cell Dev Biol 89:147–156

    Article  CAS  Google Scholar 

  • Medeiros GF, Mendes A, Castro RA, Bau EC, Nader HB, Dietrich CP (2000) Distribution of sulfated glycosaminoglycans in the animal kingdom: widespread occurrence of heparin-like compounds in invertebrates. Biochim Biophys Acta 1475:287–294

    Article  CAS  Google Scholar 

  • Meikle PJ, Fuller M, Hopwood JJ (2005) Lysosomal degradation of heparin and heparan sulfate. In: Garg HG, Linhardt RJ, Hales CA (eds) Chemistry and biology of heparin and heparan sulfate. Elsevier, pp 285–311

    Chapter  Google Scholar 

  • Melo CM, Wang H, Fujimura K, Strnadel J, Meneghetti MCZ, Nader HB, Klemke RL, Pinhal MS (2021) The heparan sulfate binding peptide in tumor progression of triple-negative breast cancer. Front Oncol 11:2777

    Article  Google Scholar 

  • Melrose J (2020) Perlecan, a modular instructive proteoglycan with diverse functional properties. Int J Biochem Cell Biol 128:105849

    Article  CAS  Google Scholar 

  • Meneghetti MC, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA (2015) Heparan sulfate and heparin interactions with proteins. J R Soc Interface 12:0589

    Article  Google Scholar 

  • Meneghetti MCZ, Gesteira Ferreira T, Tashima AK, Chavante SF, Yates EA, Liu J, Nader HB, Lima MA (2017) Insights into the role of 3-O-sulfotransferase in heparan sulfate biosynthesis. Org Biomol Chem 15:6792–6799

    Article  CAS  Google Scholar 

  • Meneghetti MCZ, Deboni P, Palomino CMV, Braga LP, Cavalheiro RP, Viana GM, Yates EA, Nader HB, Lima MA (2021) ER-Golgi dynamics of HS-modifying enzymes via vesicular trafficking is a critical prerequisite for the delineation of HS biosynthesis. Carbohydr Polym 255:117477

    Article  CAS  Google Scholar 

  • Mitchell P, Liew G, Gopinath B, Wong TY (2018) Age-related macular degeneration. Lancet 392:1147–1159

    Article  Google Scholar 

  • Mochizuki M, Güç E, Park AJ, Julier Z, Briquez PS, Kuhn GA, Müller R, Swartz MA, Hubbell JA, Martino MM (2020) Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing. Nat Biomed Eng 4:463–475

    Article  CAS  Google Scholar 

  • Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277:49175–49185

    Article  CAS  Google Scholar 

  • Moussay E, Palissot V, Vallar L, Poirel HA, Wenner T, El Khoury V, Aouali N, Van Moer K, Leners B, Bernardin F (2010) Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer 9:1–16

    Article  Google Scholar 

  • Mulloy B, Forster MJ (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10:1147–1156

    Article  CAS  Google Scholar 

  • Murakami M, Simons M (2008) Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 15:215

    Article  CAS  Google Scholar 

  • Nadanaka S, Purunomo E, Takeda N, Tamura J, Kitagawa H (2014) Heparan sulfate containing unsubstituted glucosamine residues: biosynthesis and heparanase-inhibitory activity. J Biol Chem 289:15231–15243

    Article  CAS  Google Scholar 

  • Nader H, Dietrich C, Buonassisi V, Colburn P (1987) Heparin sequences in the heparan sulfate chains of an endothelial cell proteoglycan. Proc Natl Acad Sci 84:3565–3569

    Article  CAS  Google Scholar 

  • Nader HB, Buonassisi V, Colburn P, Dietrich CP (1989) Heparin stimulates the synthesis and modifies the sulfation pattern of heparan sulfate proteoglycan from endothelial cells. J Cell Physiol 140:305–310

    Article  CAS  Google Scholar 

  • Nader HB, Chavante SF, Dos-Santos EA, Oliveira TW, De-Paiva JF, Jeronimo SM, Medeiros GF, De-Abreu LR, Leite EL, De-Sousa-Filho JF, Castro RA, Toma L, Tersariol IL, Porcionatto MA, Dietrich CP (1999) Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas 32:529–538

    CAS  Google Scholar 

  • Nader HB, Lopes CC, Rocha HA, Santos EA, Dietrich CP (2004) Heparins and heparinoids: occurrence, structure and mechanism of antithrombotic and hemorrhagic activities. Curr Pharm Des 10:951–966

    Article  CAS  Google Scholar 

  • Nadir Y, Sarig G, Axelman E, Meir A, Wollner M, Shafat I, Hoffman R, Brenner B, Vlodavsky I, Haim N (2014) Heparanase procoagulant activity is elevated and predicts survival in non-small cell lung cancer patients. Thromb Res 134:639–642

    Article  CAS  Google Scholar 

  • Nassar E, Hassan N, El-Ghonaimy EA, Hassan H, Abdullah MS, Rottke TV, Kiesel L, Greve B, Ibrahim SA, Götte M (2021) Syndecan-1 promotes angiogenesis in triple-negative breast cancer through the prognostically relevant tissue factor pathway and additional angiogenic routes. Cancers 13:2318

    Article  CAS  Google Scholar 

  • Nawroth R, Van Zante A, Cervantes S, Mcmanus M, Hebrok M, Rosen SD (2007) Extracellular sulfatases, elements of the Wnt signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells. PLoS One 2:e392

    Article  Google Scholar 

  • Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J (1994) Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. JNCI 86:356–361

    Article  CAS  Google Scholar 

  • Nissen LJ, Cao R, Hedlund E-M, Wang Z, Zhao X, Wetterskog D, Funa K, Bråkenhielm E, Cao Y (2007) Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117:2766–2777

    Article  CAS  Google Scholar 

  • O’Donnell CD, Shukla D (2009) A novel function of heparan sulfate in the regulation of cell-cell fusion. J Biol Chem 284:29654–29665

    Article  Google Scholar 

  • Onimaru M, Yonemitsu Y, Tanii M, Nakagawa K, Masaki I, Okano S, Ishibashi H, Shirasuna K, Hasegawa M, Sueishi K (2002) Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res 91:923–930

    Article  CAS  Google Scholar 

  • Onyeisi JOS, de Almeida C, Pernambuco Filho P, de Araujo LS, Nader HB, Lopes CC (2019) Heparan sulfate proteoglycans as trastuzumab targets in anoikis-resistant endothelial cells. J Cell Biochem 120(8):13826–13840

    Article  CAS  Google Scholar 

  • Onyeisi JOS, De Almeida Pernambuco Filho PC, De Sousa Mesquita AP, De Azevedo LC, Nader HB, Lopes CC (2020a) Effects of syndecan-4 gene silencing by micro RNA interference in anoikis resistant endothelial cells: syndecan-4 silencing and anoikis resistance. Int J Biochem Cell Biol 128:105848. https://doi.org/10.1016/j.biocel.2020.105848

    Article  CAS  Google Scholar 

  • Onyeisi JOS, Ferreira BZF, Nader HB, Lopes CC (2020b) Heparan sulfate proteoglycans as targets for cancer therapy: a review. Cancer Biol Ther 21:1087–1094

    Article  CAS  Google Scholar 

  • Onyeisi JOS, Greve B, Espinoza-Sanchez NA, Kiesel L, Lopes CC, Gotte M (2021a) microRNA-140-3p modulates invasiveness, motility, and extracellular matrix adhesion of breast cancer cells by targeting syndecan-4. J Cell Biochem 122(10):1491–1505

    Article  CAS  Google Scholar 

  • Onyeisi JOS, Lopes CC, Götte M (2021b) Syndecan-4 as a pathogenesis factor and therapeutic target in cancer. Biomolecules 11:503

    Article  CAS  Google Scholar 

  • Ori A, Wilkinson MC, Fernig DG (2011) A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J Biol Chem 286:19892–19904

    Article  CAS  Google Scholar 

  • Otsuki S, Hanson SR, Miyaki S, Grogan SP, Kinoshita M, Asahara H, Wong C-H, Lotz MK (2010) Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proc Natl Acad Sci 107:10202–10207

    Article  CAS  Google Scholar 

  • Park H-J, Lee W-Y, Chai S-Y, Woo J-S, Chung H-J, Park J-K, Song H, Hong K (2018) Expression of insulin-like growth factor binding protein-3 and regulation of the insulin-like growth factor-I axis in pig testis. Biotechnol Bioprocess Eng 23:278–285

    Article  CAS  Google Scholar 

  • Pempe EH, Burch TC, Law CJ, Liu J (2012) Substrate specificity of 6-O-endosulfatase (Sulf-2) and its implications in synthesizing anticoagulant heparan sulfate. Glycobiology 22:1353–1362

    Article  CAS  Google Scholar 

  • Peterson S, Frick A, Liu J (2009) Design of biologically active heparan sulfate and heparin using an enzyme-based approach. Nat Prod Rep 26:610–627

    Article  CAS  Google Scholar 

  • Petit A, Rak J, Hung M-C, Rockwell P, Goldstein N, Fendly B, Kerbel RS (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151:1523

    CAS  Google Scholar 

  • Pinhal MA, Walenga JM, Jeske W, Hoppensteadt D, Dietrich CP, Fareed J, Nader HB (1994) Antithrombotic agents stimulate the synthesis and modify the sulfation pattern of a heparan sulfate proteoglycan from endothelial cells. Thromb Res 74:143–153

    Article  CAS  Google Scholar 

  • Pinhal MA, Smith B, Olson S, Aikawa J, Kimata K, Esko JD (2001) Enzyme interactions in heparan sulfate biosynthesis: uronosyl 5-epimerase and 2-O-sulfotransferase interact in vivo. Proc Natl Acad Sci U S A 98:12984–12989

    Article  CAS  Google Scholar 

  • Porcionatto MA, Moreira CR, Lotfi CF, Armelin HA, Dietrich CP, Nader HB (1998) Stimulation of heparan sulfate proteoglycan synthesis and secretion during G1 phase induced by growth factors and PMA. J Cell Biochem 70:563–572

    Article  CAS  Google Scholar 

  • Presto J, Thuveson M, Carlsson P, Busse M, Wilen M, Eriksson I, Kusche-Gullberg M, Kjellen L (2008) Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc Natl Acad Sci U S A 105:4751–4756

    Article  CAS  Google Scholar 

  • Prydz K, Dalen KT (2000) Synthesis and sorting of proteoglycans. J Cell Sci 113(Pt 2):193–205

    Article  CAS  Google Scholar 

  • Qin Y, Ke J, Gu X, Fang J, Wang W, Cong Q, Li J, Tan J, Brunzelle JS, Zhang C, Jiang Y, Melcher K, Li JP, Xu HE, Ding K (2015) Structural and functional study of D-glucuronyl C5-epimerase. J Biol Chem 290:4620–4630

    Article  CAS  Google Scholar 

  • Raman K, Nguyen TK, Kuberan B (2011) Is N-sulfation just a gateway modification during heparan sulfate biosynthesis? FEBS Lett 585:3420–3423

    Article  CAS  Google Scholar 

  • Ricci F, Bandello F, Navarra P, Staurenghi G, Stumpp M, Zarbin M (2020) Neovascular age-related macular degeneration: therapeutic management and new-upcoming approaches. Int J Mol Sci 21:8242

    Article  CAS  Google Scholar 

  • Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G, Casu B, Penco S, Pisano C, Carminati P, Tortoreto M (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17:1382–1393

    Article  CAS  Google Scholar 

  • Robinson CJ, Mulloy B, Gallagher JT, Stringer SE (2006) VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase. J Biol Chem 281:1731–1740

    Article  CAS  Google Scholar 

  • Rong J, Habuchi H, Kimata K, Lindahl U, Kusche-Gullberg M (2000) Expression of heparan sulphate L-iduronyl 2-O-sulphotransferase in human kidney 293 cells results in increased D-glucuronyl 2-O-sulphation. Biochem J 346(Pt 2):463–468

    Article  CAS  Google Scholar 

  • Rosen SD, Lemjabbar-Alaoui H (2010) Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin Ther Targets 14:935–949

    Article  CAS  Google Scholar 

  • Rudd TR, Yates EA (2012) A highly efficient tree structure for the biosynthesis of heparan sulfate accounts for the commonly observed disaccharides and suggests a mechanism for domain synthesis. Mol BioSyst 8:1499–1506

    Article  CAS  Google Scholar 

  • Rudd TR, Preston MD, Yates EA (2017) The nature of the conserved basic amino acid sequences found among 437 heparin binding proteins determined by network analysis. Mol BioSyst 13:852–865

    Article  CAS  Google Scholar 

  • Safaiyan F, Lindahl U, Salmivirta M (2000) Structural diversity of N-sulfated heparan sulfate domains: distinct modes of glucuronyl C5 epimerization, iduronic acid 2-O-sulfation, and glucosamine 6-O-sulfation. Biochemistry 39:10823–10830

    Article  CAS  Google Scholar 

  • Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3:a004952

    Article  Google Scholar 

  • Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528

    Article  CAS  Google Scholar 

  • Schaefer L, Schaefer RM (2010) Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 339:237–246

    Article  CAS  Google Scholar 

  • Schwartz NB, Dorfman A (1975) Purification of rat chondrosarcoma xylosyltransferase. Arch Biochem Biophys 171:136–144

    Article  CAS  Google Scholar 

  • Seffouh I, Przybylski C, Seffouh A, El Masri R, Vivès RR, Gonnet F, Daniel R (2019) Mass spectrometry analysis of the human endosulfatase Hsulf-2. Biochem Biophys Rep 18:100617

    Google Scholar 

  • Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673

    Article  CAS  Google Scholar 

  • Senay C, Lind T, Muguruma K, Tone Y, Kitagawa H, Sugahara K, Lidholt K, Lindahl U, Kusche-Gullberg M (2000) The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep 1:282–286

    Article  CAS  Google Scholar 

  • Sheng N, Zhang L, Yang S (2018) MicroRNA-429 decreases the invasion ability of gastric cancer cell line BGC-823 by downregulating the expression of heparanase. Exp Therap Med 15:1927–1933

    CAS  Google Scholar 

  • Shi J, Chen P, Jingxu S, Song Y, Ma B, Gao P, Chen X, Wang Z (2017) MicroRNA-1258: an invasion and metastasis regulator that targets heparanase in gastric cancer. Oncol Lett 13(5):3739–3745. https://doi.org/10.3892/ol.2017.5886

    Article  CAS  Google Scholar 

  • Simpson CD, Anyiwe K, Schimmer AD (2008) Anoikis resistance and tumor metastasis. Cancer Lett 272:177–185

    Article  CAS  Google Scholar 

  • Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T (2017) Insulin-like growth factor (IGF) pathway targeting in cancer: role of the IGF axis and opportunities for future combination studies. Target Oncol 12:571–597

    Article  Google Scholar 

  • Smith EM, Mitsi M, Nugent MA, Symes K (2009) PDGF-A interactions with fibronectin reveal a critical role for heparan sulfate in directed cell migration during Xenopus gastrulation. Proc Natl Acad Sci 106:21683–21688

    Article  CAS  Google Scholar 

  • Sugahara K, Kitagawa H (2002) Heparin and heparan sulfate biosynthesis. IUBMB Life 54:163–175

    Article  CAS  Google Scholar 

  • Tang R, Rosen SD (2009) Functional consequences of the subdomain organization of the sulfs. J Biol Chem 284:21505–21514

    Article  CAS  Google Scholar 

  • Tang D, Zhang Q, Zhao S, Wang J, Kangping LU, Song Y, Zhao L, Kang X, Wang J, Xu S, Tian L (2013) The expression and clinical significance of microRNA-1258 and heparanase in human breast cancer. Clin Biochem 46(10–11):926–932. S0009912013000556. https://doi.org/10.1016/j.clinbiochem.2013.01.027

    Article  CAS  Google Scholar 

  • Teixeira FC, Vijaya Kumar A, Kumar Katakam S, Cocola C, Pelucchi P, Graf M, Kiesel L, Reinbold R, Pavão MS, Greve B (2020) The heparan sulfate sulfotransferases HS2ST1 and HS3ST2 are novel regulators of breast cancer stem-cell properties. Front Cell Dev Biol 8:992

    Article  Google Scholar 

  • Tersariol IL, Ferreira TM, Medeiros MG, Porcionatto MA, Moraes CT, Abreu LR, Nader HB, Dietrich CP (1994) Sequencing of heparan sulfate proteoglycans: identification of variable and constant oligosaccharide regions in eight heparan sulfate proteoglycans of different origins. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas 27:2097–2102

    CAS  Google Scholar 

  • Thacker BE, Xu D, Lawrence R, Esko JD (2014) Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 35:60–72

    Article  CAS  Google Scholar 

  • Thiébot B, Bichoualne L, Langris M, Bonnamy P-J, Barbey P, Carreau S, Bocquet J (1997) IGF-1 stimulates synthesis of undersulfated proteoglycans and of hyaluronic acid by peritubular cells from immature rat testis. Biochim Biophys Acta 1358:127–141

    Article  Google Scholar 

  • Toma L, Dietrich CP, Nader HB (1996a) Differences in the nonreducing ends of heparan sulfates excreted by patients with mucopolysaccharidoses revealed by bacterial heparitinases: a new tool for structural studies and differential diagnosis of Sanfilippo’s and Hunter’s syndromes. Lab Investig 75:771–781

    CAS  Google Scholar 

  • Toma L, Pinhal MA, Dietrich CP, Nader HB, Hirschberg CB (1996b) Transport of UDP-galactose into the Golgi lumen regulates the biosynthesis of proteoglycans. J Biol Chem 271:3897–3901

    Article  CAS  Google Scholar 

  • Traister A, Shi W, Filmus J (2008) Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J 410:503–511

    Article  CAS  Google Scholar 

  • Tsunoda S, Nakamura T, Sakurai H, Saiki I (2007) Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization. Cancer Sci 98:541–548

    Article  CAS  Google Scholar 

  • Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  CAS  Google Scholar 

  • Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, Werb Z, Rosen SD (2006) HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7:1–13

    Article  Google Scholar 

  • Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  CAS  Google Scholar 

  • Van Wijk XM, Van Kuppevelt TH (2014) Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 17:443–462

    Google Scholar 

  • Vertel BM, Walters LM, Flay N, Kearns AE, Schwartz NB (1993) Xylosylation is an endoplasmic reticulum to Golgi event. J Biol Chem 268:11105–11112

    Article  CAS  Google Scholar 

  • Vicente CM, Lima MA, Yates EA, Nader HB, Toma L (2015) Enhanced tumorigenic potential of colorectal cancer cells by extracellular sulfatases. Mol Cancer Res 13:510–523

    Article  CAS  Google Scholar 

  • Vivès RR, Seffouh A, Lortat-Jacob H (2014) Post-synthetic regulation of HS structure: the yin and yang of the sulfs in cancer. Front Oncol 3:331

    Article  Google Scholar 

  • Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108:341–347

    Article  CAS  Google Scholar 

  • Vlodavsky I, Gross-Cohen M, Weissmann M, Ilan N, Sanderson RD (2018) Opposing functions of heparanase-1 and heparanase-2 in cancer progression. Trends Biochem Sci 43:18–31

    Article  CAS  Google Scholar 

  • Wander R, Kaminski AM, Xu Y, Pagadala V, Krahn JM, Pham TQ, Liu J, Pedersen LC (2021) Deciphering the substrate recognition mechanisms of the heparan sulfate 3-O-sulfotransferase-3. RSC Chem Biol 2:1239–1248

    Article  CAS  Google Scholar 

  • Wang S, Ai X, Freeman SD, Pownall ME, Lu Q, Kessler DS, Emerson CP (2004) QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis. Proc Natl Acad Sci 101:4833–4838

    Article  CAS  Google Scholar 

  • Wang Z, Hsieh PH, Xu Y, Thieker D, Chai EJE, Xie S, Cooley B, Woods RJ, Chi L, Liu J (2017) Synthesis of 3-O-sulfated oligosaccharides to understand the relationship between structures and functions of heparan sulfate. J Am Chem Soc 139:5249–5256

    Article  CAS  Google Scholar 

  • Weiss RJ, Spahn PN, Toledo AG, Chiang AWT, Kellman BP, Li J, Benner C, Glass CK, Gordts P, Lewis NE, Esko JD (2020) ZNF263 is a transcriptional regulator of heparin and heparan sulfate biosynthesis. Proc Natl Acad Sci U S A 117:9311–9317

    Article  CAS  Google Scholar 

  • Wempe F, Lindner V, Augustin HG (1997) Basic fibroblast growth factor (bFGF) regulates the expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) in autocrine-activated endothelial cells. Arterioscler Thromb Vasc Biol 17:2471–2478

    Article  CAS  Google Scholar 

  • Westermark B, Heldin C-H (1993) Platelet-Derived Growth Factor Structure, function and implications in normal and malignant cell growth. Acta Oncol 32:101–105

    Article  CAS  Google Scholar 

  • Whitelock JM, Melrose J, Iozzo RV (2008) Diverse cell signaling events modulated by perlecan. Biochemistry 47:11174–11183

    Article  CAS  Google Scholar 

  • Xia G, Chen J, Tiwari V, Ju W, Li JP, Malmstrom A, Shukla D, Liu J (2002) Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1. J Biol Chem 277:37912–37919

    Article  CAS  Google Scholar 

  • Xin H, Biswas N, Li P, Zhong C, Chan TC, Nudleman E, Ferrara N (2021) Heparin-binding VEGFR1 variants as long-acting VEGF inhibitors for treatment of intraocular neovascular disorders. Proc Natl Acad Sci U S A 118:e1921252118

    Article  CAS  Google Scholar 

  • Xu Y, Moon AF, Xu S, Krahn JM, Liu J, Pedersen LC (2017) Structure based substrate specificity analysis of heparan sulfate 6-O-sulfotransferases. ACS Chem Biol 12:73–82

    Article  CAS  Google Scholar 

  • Yue X, Li X, Nguyen HT, Chin DR, Sullivan DE, Lasky JA (2008) Transforming growth factor-β1 induces heparan sulfate 6-O-endosulfatase 1 expression in vitro and in vivo. J Biol Chem 283:20397–20407

    Article  CAS  Google Scholar 

  • Zanotelli MR, Reinhart-King CA (2018) Mechanical forces in tumor angiogenesis. Biomech Oncol 1092:91–112

    Article  CAS  Google Scholar 

  • Zhou X, Hu M, Ge Z (2019) Tumor-suppressive miR-299-3p inhibits gastric cancer cell invasion by targeting heparanase. Mol Med Rep 20:2151–2158

    CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES) and Financiadora de Estudos e Projetos (FINEP), Brazil.

Conflict of Interest

The authors confirm that this chapter contents have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Cristina Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopes, C.C. et al. (2023). Leading Roles of Heparan Sulfate in Angiogenesis and Cancer. In: Papadimitriou, E., Mikelis, C.M. (eds) Matrix Pathobiology and Angiogenesis. Biology of Extracellular Matrix, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-19616-4_9

Download citation

Publish with us

Policies and ethics