Skip to main content

Diversifying Polyhydroxyalkanoates: Synthesis, Properties, Processing and Applications

  • Chapter
  • First Online:
Green-Based Nanocomposite Materials and Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 480 Accesses

Abstract

Polyhydroxyalkanoates (PHAs) are polyesters synthetized by microorganisms or a chemical synthetic route with inherent chemical and physical properties comparable to conventional non-biodegradable polymers but a less environmental impact. Furthermore, the new generations of PHAs have found engineering and specialties applications in biotechnological sector, biomedical for tissue engineering, drug delivery, etc. Similarly, synthesis, processing and recycle of PHAs involves processes that helps to change until a circular and green economy. Nevertheless, the low cost-effectiveness associated with fermentation and downstream processing for recovery and purification of PHAs after biopolymerization are one of the issues that remains. Additionally, PHAs offer several mechanical behaviors from hard to elastic due to partial crystallinity, wide values in glass transition temperature, variety of structures of repeating units, as well as several additives and fillers to design tailor-made properties. Moreover, PHAs are usually blended with other biodegradable polymers searching synergistic interactions (e.g., in mechanical, biodegradability, barrier properties, etc.) through miscibility modification and microdomains interactions for the diversification of their applications. Eventually, single use products of PHAs for packing could improve the managing plastics waste through reach short times of biodegradation, a carbon neutrality and the use of some residues and contaminants sources as raw materials for PHAs synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson, S.R., Rorrer, N.A., Carpenter, A.C., Beckham, G.T.: Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021). https://doi.org/10.1016/j.joule.2020.12.027

    Article  CAS  Google Scholar 

  2. OECD Global Plastics Outlook Database: Plastic pollution is growing relentlessly as waste management and recycling fall short, says OECD. https://doi.org/10.1787/de747aef-en

  3. Kumar, R.V., Hari, B.S., Ved, P.R., Biswajit, S., Jayanta, B., Brajesh, K.D., Goel, S.: Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 750 (2021). https://doi.org/10.1016/j.scitotenv.2020.141514

  4. Dey, A., Dhumal, C.V., Sengupta, P., Kumar, A., Pramanik, N.K., Alam, T.: Challenges and possible solutions to mitigate the problems of single-use plastics used for packaging food items: a review. J. Food Sci. Technol. 58, 3251–3269 (2021). https://doi.org/10.1007/s13197-020-04885-6

    Article  CAS  Google Scholar 

  5. Lam, C.-S., Ramanathan, S., Carbery, M., Gray, K., Vanka, K.S., Maurin, C., Bush, R., Palanisami, T.: A comprehensive analysis of plastics and microplastic legislation worldwide. Water Air Soil Pollut. 229, 19 (2018). https://doi.org/10.1007/s11270-018-4002-z

  6. Filiciotto, L., Rothenberg, G.: Biodegradable plastics: standards, policies, and impacts. Chemsuschem 14, 56–72 (2021). https://doi.org/10.1002/cssc.202002044

    Article  CAS  Google Scholar 

  7. Borelle, S.B., Ringma, J., Law-Lavender, K., Monnahanc, C., Lebreton, L., MC Givern, A., Murphy, E., Jambeck, J., Leonard, G.H., Hilleary, M.A., Eriksen, M., Possingham, H.P., De Frond, H., Gerber, L.R., Polidoro, B., Tahira, A., Bernard, M., Barnes, M., Rochman, C.M.: Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020). https://doi.org/10.1126/science.aba3656

  8. Dauvergne, P.: Why is the global governance of plastic failing the oceans? Glob. Enviromental Chang. 51, 22–31 (2018). https://doi.org/10.1016/j.gloenvcha.2018.05.002

    Article  Google Scholar 

  9. Tundo, P., Anastas, P., Black, D.S., Breen, J., Collins, T., Memoli, S., Miyamoto, J., Polyakoff, M., Tumas, W.: Special topic issue on green chemistry. Pure Appl. Chem. 72, 1207–1208 (2000). https://doi.org/10.1351/pac200072071207

  10. Meereboer, K.W., Misra, M., Mohanty, A.K.: Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 22, 5519–5558 (2020). https://doi.org/10.1039/D0GC01647K

    Article  CAS  Google Scholar 

  11. Byrom, D.: The synthesis and biodegradation of polyhydroxyalkanoates from bacteria. Int. Biodeterior. Biodegrad. 31, 199–208 (1993). https://doi.org/10.1016/0964-8305(93)90005-M

    Article  CAS  Google Scholar 

  12. Butt, F.I., Muhammad, N., Hamid, A., Moniruzzaman, M., Sharif, F.: Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications—review. Int. J. Biol. Macromol. 120, 1294–1305 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.002

  13. Elmowafy, E., Abdal-Hay, A., Skouras, A., Tiboni, M., Csettari, L., Guarino, V.: Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Rev. Med. Devices. 16, 467–482 (2019). https://doi.org/10.1080/17434440.2019.1615439

    Article  CAS  Google Scholar 

  14. Patil, P.B., Sarkar, D., Poddar, K., Sarkar, A.: Synthesis and characterization of polyhydroxyalkanoates from soil bacterium Bacillus sp. PhNs9. J. Chem. Technol. Biotechnol. (2022). https://doi.org/10.1002/jctb.7093

  15. Sharma, V., Sehgal, R., Gupta, R.: Polyhydroxyalkanoate (PHA): properties and modifications. Polymer (Guildf). 212, (2021). https://doi.org/10.1016/j.polymer.2020.123161

  16. Xu, P., Yang, W., Niu, D., Yu, M., Du, M., Dong, W., Chen, M., Lemstra, P.J., Ma, P.: Multifunctional and robust polyhydroxyalkanoate nanocomposites with superior gas barrier, heat resistant and inherent antibacterial performances. Chem. Eng. J. 382, (2020). https://doi.org/10.1016/j.cej.2019.122864

  17. Kumar, M., Rathour, R., Singh, R., Sun, Y., Pandey, A., Gnansounou, E., Lin, K.Y.A., Tsng, D.C.W., Thakur, I.S.: Bacterial polyhydroxyalkanoates: opportunities, challenges, and prospects. J. Clean. Prod. 263 (2020). https://doi.org/10.1016/j.jclepro.2020.121500

  18. Philip, S., Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. clean Technol. 82, 233–247 (2007). https://doi.org/10.1002/jctb.1667

  19. Kalia, V.C., Ray, S., Patel, S.K.S., Singh, M., Singh, G.P.: The dawn of novel biotechnological applications of polyhydroxyalkanoates. In: Biotechnological Applications of Polyhydroxyalkanoates, pp. 1–11. Singapore (2019). https://doi.org/10.1007/978-981-13-3759-8_1

  20. Ojumu, T., Yu, J., Solomon, B.: Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr. J. Biotechnol. 3, 18–24 (2004). https://doi.org/10.4314/ajb.v3i1.14910

    Article  CAS  Google Scholar 

  21. Lee, S.Y.: Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49, 1–14 (1996). https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1%3c1::AID-BIT1%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  22. Zhang, B., Carlson, R., Srienc, F.: Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 536–543 (2006). https://doi.org/10.1128/AEM.72.1.536-543.2006

    Article  CAS  Google Scholar 

  23. Tang, X.: Chemical synthesis of polyhydroxyalkanoates via metal-catalyzed ring-opening polymerization of cyclic esters. In: In: Advances in Polymer Science, pp. 1–14. Springer, Heidelberg, Berlin (2022). https://doi.org/10.1007/12_2022_119

  24. Masood, F., Yasin, T., Hameeed, A.: Comparative oxo-biodegradation study of poly-3-hydroxybutyrate-co-3-hydroxyvalerate/polypropylene blend in controlled environments. Int. Biodeterior. Biodegradation. 87, 1–8 (2014). https://doi.org/10.1016/j.ibiod.2013.09.023

    Article  CAS  Google Scholar 

  25. Luzi, F., Torre, L., Kenny, J.M., Puglia, D.: Materials: bio-and fossil-based polymeric blends and nanocomposites for packaging: structure–property relationship. Materials 12, 471–520 (2019). https://doi.org/10.3390/ma12030471

    Article  CAS  Google Scholar 

  26. Koller, M., Braunegg, G.: Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EuroBiotech. J. 2, 89–103 (2018). https://doi.org/10.2478/ebtj-2018-0013

    Article  Google Scholar 

  27. Zahari, M.A.K.M., Abdullah, S.S.S., Roslan, A.M., Ariffin, H., Shirai, Y., Hassan, M.A.: Efficient utilization of oil palm frond for bio-based products and biorefinery. J. Clean. Prod. 65, 252–260 (2014). https://doi.org/10.1016/j.jclepro.2013.10.007

    Article  CAS  Google Scholar 

  28. Chen, S.S., Maneerung, T., Tsang, D.C., Ok, Y.S., Wang, C.H.: Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem. Eng. J. 328, 246–273 (2017). https://doi.org/10.1016/j.cej.2017.07.020

    Article  CAS  Google Scholar 

  29. Alves, A.A., Siqueira, E.C., Barros, M.P.S., Silva, P.E.C., Houllou, L.M.: Polyhydroxyalkanoates: a review of microbial production and technology application. Int. J. Environ. Sci. Technol. 1–12 (2022). https://doi.org/10.1007/s13762-022-04213-9

  30. Chen, G.Q.: Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen, G.Q. (ed.) Plastics from Bacteria: Natural Functions and Applications, pp. 17–37. Springer, Heidelberg, Berlin (2010). https://doi.org/10.1007/978-3-642-03287-5_2

  31. Tang, X., Westlie, A.H., Caporaso, L., Cavallo, L., Falivene, L., Chen, E.Y.X.: Biodegradable polyhydroxyalkanoates by stereoselective copolymerization of racemic diolides: stereocontrol and polyolefin-like properties. Angewandte 130, 7955–7964 (2020). https://doi.org/10.1002/ange.201916415

    Article  Google Scholar 

  32. Bouyahyi, M., Ajellal, N., Kirillov, E., Thomas, C.M., Carpentier, J.F.: Exploring electronic versus steric effects in stereoselective ring-opening polymerization of lactide and β-butyrolactone with amino-alkoxy-bis (phenolate)–yttrium complexes. Chem. Eur. J. 17, 1872–1883 (2011). https://doi.org/10.1002/chem.201002779

    Article  CAS  Google Scholar 

  33. Luo, Z., Wu, Y.L., Li, Z., Loh, X.J.: Recent progress in polyhydroxyalkanoates-based copolymers for biomedical applications. Biotechnol. J. 14, (2019). https://doi.org/10.1002/biot.201900283

  34. Westlie, A.H., Chen, E.Y.X.: Catalyzed chemical synthesis of unnatural aromatic polyhydroxyalkanoate and aromatic–aliphatic phas with record-high glass-transition and decomposition temperatures. Macromolecules 53, 9906–9915 (2020). https://doi.org/10.1021/acs.macromol.0c02110

  35. Sindhu, R., Madhavan, A., Arun, K.B., Pugazhendhi, A., Reshmy, R., Awasthi, M.K., Sirohi, R., Tarafdar, A., Binod, P.: Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: intervention strategies for enhanced production. Bioresour. Technol. 327 (2021). https://doi.org/10.1016/j.biortech.2021.124791

  36. Chen, G.Q., Hajnal, I., Wu, H., Lv, L., Ye, J.: Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol. 33, 565–574 (2015). https://doi.org/10.1016/j.tibtech.2015.07.007

    Article  CAS  Google Scholar 

  37. Lemoigne, M.: Produits de deshydration et de polymerisation de l’acide β-oxybutyrique. Bull. Soc. Chim. Biol. 8, 770–782 (1926)

    CAS  Google Scholar 

  38. Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13, 321–326 (2010). https://doi.org/10.1016/j.mib.2010.02.006

    Article  CAS  Google Scholar 

  39. Guzik, M.W., Kenny, S.T., Duane, G.F., Casey, E., Woods, T., Babu, R.P., Nikodinovic-Runic, J., Murray, M., O’Conner, K.E.: Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Appl. Microbiol. Biotechnol. 98, 4223–4232 (2014). https://doi.org/10.1007/s00253-013-5489-2

    Article  CAS  Google Scholar 

  40. Khanna, S., Srivastava, A.K.: Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 40, 607–619 (2005). https://doi.org/10.1016/j.procbio.2004.01.053

    Article  CAS  Google Scholar 

  41. Rai, R., Roy, I.: Polyhydroxyalkanoates: the emerging new green polymers of choice. In: Sharma, S.K., Mudhoo, A. (ed.) A Handbook of Applied Biopolymer Technology, Synthesis, Degradation and Application, pp. 79–101. RSC Publishing (2011). https://doi.org/10.1039/9781849733458-00079

  42. Verlinden, R.A., Hill, D.J., Kenward, M.A., Williams, C.D., Radecka, I.: Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 102, 1437–1449 (2007). https://doi.org/10.1111/j.1365-2672.2007.03335.x

    Article  CAS  Google Scholar 

  43. Wang, Q., Tappel, R.C., Zhu, C., Nomura, C.T.: Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl. Environ. Microbiol. 78, 519–527 (2012). https://doi.org/10.1128/AEM.07020-11

    Article  CAS  Google Scholar 

  44. Tamaki, A., Kunioka, M., Soga, K.: Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids. Appl. Microbiol. Biotechnol. 28, 330–334 (1988). https://doi.org/10.1007/BF00268190

    Article  Google Scholar 

  45. Sudesh, K., Abe, H., Doi, Y.: Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000). https://doi.org/10.1016/S0079-6700(00)00035-6

    Article  CAS  Google Scholar 

  46. Guzik, M.W., Narancic, T., Ilic-Tomic, T., Vojnovic, S., Kenny, S.T., Casey, W.T., Duane, G.F., Casey, E., Woods, T., Babu, R.P., Nikodinovic-Runic, J., O’Connor, K.E.: Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. Microbiology 160, 1760–1771 (2014). https://doi.org/10.1099/mic.0.078758-0

    Article  CAS  Google Scholar 

  47. Sonnleitner, B., Heinzle, E., Braunegg, G., Lafferty, R.M.: Formal kinetics of poly-β-hydroxybutyric acid (PHB) production in Alcaligenes eutrophus H 16 and Mycoplana rubra R 14 with respect to the dissolved oxygen tension in ammonium-limited batch cultures. Eur. J. Appl. Microbiol. Biotechnol. 7, 1–10 (1979). https://doi.org/10.1007/BF00522473

    Article  CAS  Google Scholar 

  48. Smit, A.M., Strabala, T.J., Peng, L., Rawson, P., Lloyd-Jones, G., Jordan, T.W.: Proteomic phenotyping of Novosphingobium nitrogenifigens reveals a robust capacity for simultaneous nitrogen fixation, polyhydroxyalkanoate production, and resistance to reactive oxygen species. Appl. Environ. Microbiol. 78, 4802–4815 (2012). https://doi.org/10.1128/AEM.00274-12

    Article  CAS  Google Scholar 

  49. Gomez, J.G.C., Rodrigues, M.F.A., Alli, R.C.P., Torres, B.B., Netto, C.L., Oliveira, M.S., Da Silva, L.F.: Evaluation of soil gram-negative bacteria yielding polyhydroxyalkanoic acids from carbohydrates and propionic acid. Appl. Microbiol. Biotechnol. 45, 785–791 (1996). https://doi.org/10.1007/s002530050763

    Article  CAS  Google Scholar 

  50. Yu, P.H., Chua, H., Huang, A.L., Lo, W., Chen, G.Q.: Conversion of food industrial wastes into bioplastics. Appl. Biochem. Biotechnol. 70, 603–614 (1998). https://doi.org/10.1007/BF02920172

    Article  Google Scholar 

  51. Valentin, H.E., Dennis, D.: Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J. Biotechnol. 58, 33–38 (1997). https://doi.org/10.1016/S0168-1656(97)00127-2

    Article  CAS  Google Scholar 

  52. Morya, R., Kumar, M., Thakur, I.S.: Utilization of glycerol by Bacillus sp. ISTVK1 for production and characterization of polyhydroxyvalerate. Bioresour. Technol. Reports. 2, 1–6 (2018). https://doi.org/10.1016/j.biteb.2018.03.002

  53. Kumar, M., Gupta, J., Thakur, I.S.: Production and optimization of polyhydroxyalkanoate from oleaginous bacteria Bacillus sp. ISTC1. RRJMB. 5, 80–89 (2016)

    Google Scholar 

  54. Kumar, M., Gupta, A., Thakur, I.S.: Carbon dioxide sequestration by chemolithotrophic oleaginous bacteria for production and optimization of polyhydroxyalkanoate. Bioresour. Technol. 213, 249–256 (2016). https://doi.org/10.1016/j.biortech.2016.02.038

    Article  CAS  Google Scholar 

  55. Jiang, Y., Song, X., Gong, L., Li, P., Dai, C., Shao, W.: High poly (β-hydroxybutyrate) production by Pseudomonas fluorescens A2a5 from inexpensive substrates. Enzyme Microb. Technol. 42, 167–172 (2008). https://doi.org/10.1016/j.enzmictec.2007.09.003

    Article  CAS  Google Scholar 

  56. Cavalheiro, J.M., de Almeida, M.C.M., Grandfils, C., Da Fonse, M.M.R.: Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 44, 509–515 (2009). https://doi.org/10.1016/j.procbio.2009.01.008

    Article  CAS  Google Scholar 

  57. Wen, Q., Chen, Z., Tian, T., Chen, W.: Effects of phosphorus and nitrogen limitation on PHA production in activated sludge. J. Environ. Sci. 22, 1602–1607 (2010). https://doi.org/10.1016/S1001-0742(09)60295-3

    Article  CAS  Google Scholar 

  58. Cromwick, A.M., Foglia, T., Lenz, R.W.: The microbial production of poly(-hydroxyalkanoates) from tallow. Appl. Microbiol. Biotechnol. 46, 464–469 (1996). https://doi.org/10.1007/s002530050845

    Article  CAS  Google Scholar 

  59. Sun, Z., Ramsay, J.A., Guay, M., Ramsay, B.A.: Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 74, 69–77 (2007). https://doi.org/10.1007/s00253-006-0655-4

    Article  CAS  Google Scholar 

  60. Gumel, A.M., Annuar, M.S.M., Heildelberg, T.: Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001. Brazilian J. Microbiol. 45, 427–438 (2014). https://doi.org/10.1590/S1517-83822014000200009

    Article  CAS  Google Scholar 

  61. Pantazaki, A.A., Papaneophytou, C.P., Pritsa, A.G., Liakopoulou-Kyriakides, M., Kyriakidis, D.A.: Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process Biochem. 44, 847–853 (2009). https://doi.org/10.1016/j.procbio.2009.04.002

    Article  CAS  Google Scholar 

  62. Bhattacharyya, A., Pramanik, A., Maji, S.K., Haldar, S., Mukhopadhyay, U.K., Mukherjee, J.: Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2, 1–10 (2012). https://doi.org/10.1186/2191-0855-2-34

    Article  CAS  Google Scholar 

  63. Koller, M., Hesse, P., Bona, R., Kutschera, C., Atlić, A., Braunegg, G.: Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol. Biosci. 7, 218–226 (2007). https://doi.org/10.1002/mabi.200600211

    Article  CAS  Google Scholar 

  64. Mitra, R., Xu, T., Xiang, H., Han, J.: Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb. Cell Fact. 19, 1–30 (2020). https://doi.org/10.1186/s12934-020-01342-z

    Article  Google Scholar 

  65. Kouřilová, X., Schwarzerová, J., Pernicová, I., Sedlář, K., Mrázová, K., Krzyžánek, V., Nebesářová, J., Obruča, S.: The first insight into polyhydroxyalkanoates accumulation in multi-extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms 9, 909–922 (2021). https://doi.org/10.3390/microorganisms9050909

    Article  CAS  Google Scholar 

  66. Cui, B., Huang, S., Xu, F., Zhang, R., Zhang, Y.: Improved productivity of poly (3-hydroxybutyrate)(PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Appl. Microbiol. Biotechnol. 99, 6009–6019 (2015). https://doi.org/10.1007/s00253-015-6489-1

    Article  CAS  Google Scholar 

  67. Ibrahim, M.H., Steinbüchel, A.: High-cell-density cyclic fed-batch fermentation of a poly (3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl. Environ. Microbiol. 76, 7890–7895 (2010). https://doi.org/10.1128/AEM.01488-10

  68. Pernicova, I., Novackova, I., Sedlacek, P., Kourilova, X., Koller, M., Obruca, S.: Application of osmotic challenge for enrichment of microbial consortia in polyhydroxyalkanoates producing thermophilic and thermotolerant bacteria and their subsequent isolation. Int. J. Biol. Macromol. 144, 698–704 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.128

    Article  CAS  Google Scholar 

  69. Sangkharak, K., Prasertsan, P.: The production of polyhydroxyalkanoate by Bacillus licheniformis using sequential mutagenesis and optimization. Biotechnol. Bioprocess Eng. 18, 272–279 (2013). https://doi.org/10.1007/s12257-012-0615-z

    Article  CAS  Google Scholar 

  70. Jung, Y.K., Kim, T.Y., Park, S.J., Lee, S.Y.: Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105, 161–171 (2010). https://doi.org/10.1002/bit.22548

    Article  CAS  Google Scholar 

  71. Wang, H.H., Zhou, X.R., Liu, Q., Chen, G.Q.: Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl. Microbiol. Biotechnol. 89, 1497–1507 (2011). https://doi.org/10.1007/s00253-010-2964-x

    Article  CAS  Google Scholar 

  72. Wang, Q., Yang, P., Liu, C., Xue, Y., Xian, M., Zhao, G.: Biosynthesis of poly (3-hydroxypropionate) from glycerol by recombinant Escherichia coli. Bioresour. Technol. 131, 548–551 (2013). https://doi.org/10.1016/j.biortech.2013.01.096

    Article  CAS  Google Scholar 

  73. Meng, D.C., Chen, G.Q.: Synthetic biology of polyhydroxyalkanoates (PHA). In: Zhao, H., Zeng, A. (ed.) Synthetic Biology-Metabolic Engineering, pp. 147–154. Advances in Biochemical Engineering/Biotechnology, 162. Springer, Cham (2017). https://doi.org/10.1007/10_2017_3

  74. Zhou, X.Y., Yuan, X.X., Shi, Z.Y., Meng, D.C., Jiang, W.J., Wu, L.P., Chen, J.C., Chen, G.Q.: Hyperproduction of poly (4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb. Cell Fact. 11, 1–8 (2012). https://doi.org/10.1186/1475-2859-11-54

  75. Meng, D.C., Wang, Y., Wu, L.P., Shen, R., Chen, J.C., Wu, Q., Chen, G.Q.: Production of poly (3-hydroxypropionate) and poly (3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab. Eng. 29, 189–195 (2015). https://doi.org/10.1016/j.ymben.2015.03.015

    Article  CAS  Google Scholar 

  76. Wang, Q., Liu, X., Qi, Q.: Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Appl. Microbiol. Biotechnol. 98, 3923–3931 (2014). https://doi.org/10.1007/s00253-013-5494-5

    Article  CAS  Google Scholar 

  77. Wong, Y.M., Brigham, C.J., Rha, C., Sinskey, A.J., Sudesh, K.: Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour. Technol. 121, 320–327 (2012). https://doi.org/10.1016/j.biortech.2012.07.015

    Article  CAS  Google Scholar 

  78. Wang, Q., Yang, P., Xian, M., Liu, H., Cao, Y., Yang, Y., Zhao, G.: Production of block copolymer poly (3-hydroxybutyrate)-block-poly (3-hydroxypropionate) with adjustable structure from an inexpensive carbon source. ACS Macro Lett. 2, 996–1000 (2013). https://doi.org/10.1021/mz400446g

    Article  CAS  Google Scholar 

  79. Pederson, E.N., McChalicher, C.W., Srienc, F.: Bacterial synthesis of PHA block copolymers. Biomacromolecules 7, 1904–1911 (2006). https://doi.org/10.1021/bm0510101

    Article  CAS  Google Scholar 

  80. Hu, D., Chung, A.L., Wu, L.P., Zhang, X., Wu, Q., Chen, J.C., Chen, G.Q.: Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB-b-P4HB. Biomacromolecules 12, 3166–3173 (2011). https://doi.org/10.1021/bm200660k

    Article  CAS  Google Scholar 

  81. Shen, R., Cai, L., Meng, D., Wu, L., Guo, K., Dong, G., Li, L., Chen, J.C., Wu, Q., Chen, G.: Benzene containing polyhydroxyalkanoates homo-and copolymers synthesized by genome edited Pseudomonas entomophila. Sci. China Life Sci. 57, 4–10 (2014). https://doi.org/10.1007/s11427-013-4596-8

    Article  CAS  Google Scholar 

  82. Abraham, G.A., Gallardo, A., San, R.J., Olivera, E.R., Jodra, R., García, B., Garcia, J.L., Luengo, J.M.: Microbial synthesis of poly (β-hydroxyalkanoates) bearing phenyl groups from pseudomonas p utida: chemical structure and characterization. Biomacromol 2, 562–567 (2001). https://doi.org/10.1021/bm010018h

    Article  CAS  Google Scholar 

  83. Li, S., Cai, L., Wu, L., Zeng, G., Chen, J., Wu, Q., Chen, G.Q.: Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromolecules 15, 2310–2319 (2014). https://doi.org/10.1021/bm500669s

    Article  CAS  Google Scholar 

  84. Wang, H.H., Li, X.T., Chen, G.Q.: Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442. Process Biochem. 44, 106–111 (2009). https://doi.org/10.1016/j.procbio.2008.09.014

  85. Chen, G.Q., Chen, X.Y., Wu, F.Q., Chen, J.C.: Polyhydroxyalkanoates (PHA) toward cost competitiveness and functionality. Adv. Ind. Eng. Polym. Res. 3, 1–7 (2020). https://doi.org/10.1016/j.aiepr.2019.11.001

    Article  Google Scholar 

  86. Obulisamy, P.K., Mehariya, S.: Polyhydroxyalkanoates from extremophiles: a review. Bioresour. Technol. 325, 124653 (2021). https://doi.org/10.1016/j.biortech.2020.124653

    Article  CAS  Google Scholar 

  87. Obruča, S., Dvořák, P., Sedláček, P., Koller, M., Sedlář, K., Pernicová, I., Šafránek, D.: Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol. Adv. 58, (2022). https://doi.org/10.1016/j.biotechadv.2022.107906

  88. Chavan, S., Yadav, B., Tyagi, R.D., Drogui, P.: A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. Bioresour. Technol. 341 (2021). https://doi.org/10.1016/j.biortech.2021.125900

  89. Mozhdehi, D., Luginbuhl, K.M., Dzuricky, M., Costa, S.A., Xiong, S., Huang, F.C., Lewis, M., Zelenetz, S., Colby, C.D., Chilkoti, A.: Genetically encoded cholesterol-modified polypeptides. J. Am. Chem. Soc. 141, 945–951 (2019). https://doi.org/10.1021/jacs.8b10687

    Article  CAS  Google Scholar 

  90. Wang, Q., Zhuang, Q., Liang, Q., Qi, Q.: Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli. Appl. Microbiol. Biotechnol. 97, 3301–3307 (2013). https://doi.org/10.1007/s00253-013-4809-x

    Article  CAS  Google Scholar 

  91. Neoh, S.Z., Chek, M.F., Tan, H.T., Linares-Pastén, J.A., Nandakumar, A., Hakoshima, T., Sudesh, K.: Polyhydroxyalkanoate synthase (PhaC): the key enzyme for biopolyester synthesis. Curr. Res. Biotechnol. 4, 87–101 (2022). https://doi.org/10.1016/j.crbiot.2022.01.002

    Article  CAS  Google Scholar 

  92. Tan, D., Yin, J., Chen, G.Q.: Production of polyhydroxyalkanoates. In: Pandey, A., Negi, S., S.C.R. (ed.) Current Developments in Biotechnology and Bioengineering, pp. 655–692. Elsevier (2017). https://doi.org/10.1016/B978-0-444-63662-1.00029-4

  93. Liu, Q., Luo, G., Zhou, X.R., Chen, G.Q.: Biosynthesis of poly (3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 13, 11–17 (2011). https://doi.org/10.1016/j.ymben.2010.10.004

    Article  CAS  Google Scholar 

  94. Wang, Q., Luan, Y., Cheng, X., Zhuang, Q., Qi, Q.: Engineering of Escherichia coli for the biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from glucose. Appl. Microbiol. Biotechnol. 99, 2593–2602 (2015). https://doi.org/10.1007/s00253-015-6380-0

    Article  CAS  Google Scholar 

  95. Tripathi, L., Wu, L.P., Dechuan, M., Chen, J., Wu, Q., Chen, G.Q.: Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Bioresour. Technol. 142, 225–231 (2013). https://doi.org/10.1016/j.biortech.2013.05.027

    Article  CAS  Google Scholar 

  96. Volova, T., Kiselev, E., Nemtsev, I., Lukyanenko, A., Sukovatyi, A., Kuzmin, A., Ryltseva, G., Shishatskaya, E.: Properties of degradable polyhydroxyalkanoates with different monomer compositions. Int. J. Biol. Macromol. 182, 98–114 (2021). https://doi.org/10.1016/j.ijbiomac.2021.04.008

    Article  CAS  Google Scholar 

  97. Avella, M., La Rota, G., Martuscelli, E., Raimo, M.: Review properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J. Mater. Sci. 35, 523–545 (2000). https://doi.org/10.1023/A:1004740522751

  98. Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., Lim, W.A.: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013). https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  Google Scholar 

  99. Lv, L., Ren, Y.L., Chen, J.C., Wu, Q., Chen, G.Q.: Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P (3HB-co-4HB) biosynthesis. Metab. Eng. 29, 160–168 (2015). https://doi.org/10.1016/j.ymben.2015.03.013

    Article  CAS  Google Scholar 

  100. De-Chuang, M., Chen, G.Q.: Synthetic biology of polyhydroxyalkanoates (PHA). In: Synthetic Biology—Metabolic Engineering, pp. 147–174. Springer (2018). https://doi.org/10.1007/10_2017_3

  101. Ligny, R., Hänninen, M.M., Guillaume, S.M., Carpentier, J.F.: Highly syndiotactic or isotactic polyhydroxyalkanoates by ligand-controlled yttrium-catalyzed stereoselective ring-opening polymerization of functional racemic β-lactones. Angew. Chemie. 129, 10524–10529 (2017). https://doi.org/10.1002/ange.201704283

    Article  Google Scholar 

  102. Doi, Y.: Microbial synthesis, physical properties, and biodegradability of polyhydroxyalkanoates. Basel Hüthig Wepf Verlag. 98, 585–599 (1995). https://doi.org/10.1002/masy.19950980150

    Article  CAS  Google Scholar 

  103. Winnacker, M.: Polyhydroxyalkanoates: recent advances in their synthesis and applications. Eur. J. Lipid Sci. Technol. 121, 1900101 (2019). https://doi.org/10.1002/ejlt.201900101

    Article  CAS  Google Scholar 

  104. Taguchi, S., Matsumoto, K.I.: Evolution of polyhydroxyalkanoate synthesizing systems toward a sustainable plastic industry. Polym. J. 53, 67–79 (2021). https://doi.org/10.1038/s41428-020-00420-8

    Article  CAS  Google Scholar 

  105. Ma, Y.M., Yao, H., Wei, D.X., Wu, L.P., Chen, G.Q.: Synthesis, characterization and application of comb-like polyhydroxyalkanoate-graft-poly(N-isopropylacrylamide). Biomacromolecules 17, 2680–2690 (2016). https://doi.org/10.1021/acs.biomac.6b00724

  106. Yao, H., Wei, D., Che, X., Cai, L., Tao, L., Liu, L., Wu, G.Q., Chen, G.Q.: Comb-like temperature-responsive polyhydroxyalkanoate-graft-poly(2dimethylaminoethylmethacrylate) for controllable protein adsorption. Polym. Chem. 7, 5957–5965 (2016). https://doi.org/10.1039/C6PY01235C

    Article  CAS  Google Scholar 

  107. Yao, H., Wu, L.P., Chen, G.Q.: Synthesis and characterization of electroconductive PHA-graft-graphene nanocomposites. Biomacromolecules 20, 645–652 (2018). https://doi.org/10.1021/acs.biomac.8b01257

    Article  CAS  Google Scholar 

  108. Yu, L.P., Zhang, X., Wei, D.X., Wu, Q., Jiang, X.R., Chen, G.Q.: Highly efficient fluorescent material based on rare-earth-modified polyhydroxyalkanoates. Biomacromolecules 20, 3233–3241 (2019). https://doi.org/10.1021/acs.biomac.8b01722

    Article  CAS  Google Scholar 

  109. Zhang, X., Li, Z., Che, X., Yu, L., Jia, W., Shen, R., Chen, J., Ma, Y., Chen, G.Q.: Synthesis and characterization of polyhydroxyalkanoate organo/hydrogels. Biomacromolecules 20, 3303–3312 (2019). https://doi.org/10.1021/acs.biomac.9b00479

    Article  CAS  Google Scholar 

  110. Che, X.M., Wei, D.X., Chen, G.Q.: Superhydrophobic polyhydroxyalkanoates: preparation and applications. Biomacromolecules 20, 618–624 (2018). https://doi.org/10.1021/acs.biomac.8b01176

    Article  CAS  Google Scholar 

  111. Kai, D., Loh, X.J.: Polyhydroxyalkanoates: chemical modifications toward biomedical applications. ACS Sustain. Chem. Eng. 2, 106–119 (2014). https://doi.org/10.1021/sc400340p

    Article  CAS  Google Scholar 

  112. Timbart, L., Renard, E., Langlois, V., Guerin, P.: Novel biodegradable copolyesters containing blocks of poly(3-hydroxyoctanoate) and poly(ε-caprolactone): synthesis and characterization. Macromol. Biosci. 4, 1014–1020 (2004). https://doi.org/10.1002/mabi.200400104

    Article  CAS  Google Scholar 

  113. Raza, Z.A., Abid, S., Banat, I.M.: Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126, 45–56 (2018). https://doi.org/10.1016/j.ibiod.2017.10.001

    Article  CAS  Google Scholar 

  114. Miguel, O., Fernandez-Berridi, M.J., Iruin, J.J.: Survey on transport properties of liquids, vapors, and gases in biodegradable poly (3-hydroxybutyrate)(PHB). J. Appl. Polym. Sci. 64, 1849–1859 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970531)64:9%3c1849::AID-APP22%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  115. Miguel, O., Iruin, J.J.: Evaluation of the transport properties of poly (3‐hydroxybutyrate) and its 3‐hydroxyvalerate copolymers for packaging applications. In: Macromolecular Symposia, pp. 427–438 (1999). https://doi.org/10.1002/masy.19991440140

  116. Israni, N., Shivakumar, S.: Polyhydroxyalkanoates in packaging. In: Biotechnological Applications of Polyhydroxyalkanoates, pp. 363–388. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3759-8_14

  117. Follain, N., Chappey, C., Dargent, E., Chivrac, F., Crétois, R., Marais, S.: Structure and barrier properties of biodegradable polyhydroxyalkanoate films. J. Phys. Chem. C. 118, 6165–6177 (2014). https://doi.org/10.1021/jp408150k

    Article  CAS  Google Scholar 

  118. Bucci, D.Z., Tavares, L.B.B., Sell, I.: Biodegradation and physical evaluation of PHB packaging. Polym. Test. 26, 908–915 (2007). https://doi.org/10.1016/j.polymertesting.2007.06.013

    Article  CAS  Google Scholar 

  119. Vanheusden, C., Samyn, P., Goderis, B., Hamid, M., Reddy, N., Ethirajan, A., Peeters, R., Buntinx, M.: Extrusion and injection molding of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBHHx): influence of processing conditions on mechanical properties and microstructure. Polymers (Basel) 13, 4012–4035 (2021). https://doi.org/10.3390/polym13224012

    Article  CAS  Google Scholar 

  120. Ramachandran, H., Kannusamy, S., Huong, K.H., Mathava, R., Amirul, A.A.: Blends of polyhydroxyalkanoates (PHAs). In: Polyhydroxyalkanoate (PHA) Based Blends, Composites and Nanocomposites, pp. 66–97 (2014). https://doi.org/10.1039/9781782622314-00066

  121. Martínez-Abad, A., González-Ausejo, J., Lagarón, J.M., Cabedo, L.: Biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/thermoplastic polyurethane blends with improved mechanical and barrier performance. Polym. Degrad. Stab. 132, 52–61 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.03.039

    Article  CAS  Google Scholar 

  122. Gumel, A.M., Annuar, M.S.M.: Nanocomposites of polyhydroxyalkanoates (PHAs). In: Polyhydroxyalkanoate (PHA) Based Blends, Composites and Nanocomposites, pp. 98–118 (2014). https://doi.org/10.1039/9781782622314-00098

  123. Valappil, S.P., Boccaccini, A.R., Bucke, C., Roy, I.: Polyhydroxyalkanoates in gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91, 1–17 (2007). https://doi.org/10.1007/s10482-006-9095-5

    Article  CAS  Google Scholar 

  124. Valappil, S.P., Misra, S.K., Boccaccini, A.R., Roy, I.: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev. Med. Devices. 3, 853–868 (2006). https://doi.org/10.1586/17434440.3.6.853

    Article  CAS  Google Scholar 

  125. Gursel, I., Yagmurlu, F., Korkusuz, F.E.Z.A., Hasirci, V.A.S.I.F.: In vitro antibiotic release from poly (3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J. Microencapsul. 19, 153–164 (2002). https://doi.org/10.1080/02652040110065413

  126. Zhang, C., Zhao, L., Dong, Y., Zhang, X., Lin, J., Chen, Z.: Folate-mediated poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur. J. Pharm. Biopharm. 76, 10–16 (2010). https://doi.org/10.1016/j.ejpb.2010.05.005

    Article  CAS  Google Scholar 

  127. Türesin, F., Gürsel, I., Hasirci, V.A.S.I.F.: Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J. Biomater. Sci. Polym. Ed. 12, 195–207 (2001). https://doi.org/10.1163/156856201750180924

  128. Scheithauer, E.C., Li, W., Ding, Y., Harhaus, L., Roether, J.A., Boccaccini, A.R.: Preparation and characterization of electrosprayed daidzein—loaded PHBV microspheres. Mater. Lett. 158, 66–69 (2015). https://doi.org/10.1016/j.matlet.2015.05.133

    Article  CAS  Google Scholar 

  129. Chaturvedi, K., Kulkarni, A.R., Aminabhavi, T.M.: Blend microspheres of poly (3-hydroxybutyrate) and cellulose acetate phthalate for colon delivery of 5-fluorouracil. Ind. Eng. Chem. Res. 50, 10414–10423 (2011). https://doi.org/10.1021/ie2011005

    Article  CAS  Google Scholar 

  130. Ali, I., Jamil, N.: Polyhydroxyalkanoates: current applications in the medical field. Front. Biol. (Beijing) 11, 19–27 (2016). https://doi.org/10.1007/s11515-016-1389-z

    Article  CAS  Google Scholar 

  131. Sevastianov, V.I., Perova, N.V., Shishatskaya, E.I., Kalacheva, G.S., Volova, T.G.: Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. Polym. Ed. 14, 1029–1042 (2003). https://doi.org/10.1163/156856203769231547

    Article  CAS  Google Scholar 

  132. Chen, W., Tong, Y.W.: PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon–dendrite polarization. Acta Biomater. 8, 540–548 (2012). https://doi.org/10.1016/j.actbio.2011.09.026

    Article  CAS  Google Scholar 

  133. Hong, H., Dong, N., Shi, J., Chen, S., Guo, C., Hu, P., Qi, H.: Fabrication of a novel hybrid heart valve leaflet for tissue engineering: an in vitro study. Artif. Organs. 33, 554–558 (2009). https://doi.org/10.1111/j.1525-1594.2009.00742.x

    Article  Google Scholar 

  134. Basnett, P., Ching, K.Y., Stolz, M., Knowles, J.C., Boccaccini, A.R., Smith, C., Locke, I.C., Keshavarz, T., Roy, I.: Novel poly (3-hydroxyoctanoate)/poly (3-hydroxybutyrate) blends for medical applications. React. Funct. Polym. 73, 1340–1348 (2013). https://doi.org/10.1016/j.reactfunctpolym.2013.03.019

  135. Bian, Y.Z., Wang, Y., Aibaidoula, G., Chen, G.Q., Wu, Q.: Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30, 217–225 (2009). https://doi.org/10.1016/j.biomaterials.2008.09.036

    Article  CAS  Google Scholar 

  136. Basnett, P., Knowles, J.C., Pishbin, F., Smith, C., Keshavarz, T., Boccaccini, A.R., Roy, I.: Novel biodegradable and biocompatible poly (3-hydroxyoctanoate)/bacterial cellulose composites. Adv. Eng. Mater. 14, B330–B343 (2012). https://doi.org/10.1002/adem.201180076

    Article  CAS  Google Scholar 

  137. Shangguan, Y.Y., Wang, Y.W., Wu, Q., Chen, G.Q.: The mechanical properties and in vitro biodegradation and biocompatibility of UV-treated poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials 27, 2349–2357 (2006). https://doi.org/10.1016/j.biomaterials.2005.11.024

    Article  CAS  Google Scholar 

  138. Volova, T., Shishatskaya, E., Sevastianov, V., Efremov, S., Mogilinaya, O.: Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem. Eng. J. 16, 125–133 (2003). https://doi.org/10.1016/S1369-703X(03)00038-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Rivera Gálvez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivera Gálvez, F.J. (2023). Diversifying Polyhydroxyalkanoates: Synthesis, Properties, Processing and Applications. In: Avalos Belmontes, F., González, F.J., López-Manchado, M.Á. (eds) Green-Based Nanocomposite Materials and Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-18428-4_11

Download citation

Publish with us

Policies and ethics