Skip to main content

Optimizing ML Algorithms Under CSP and Riemannian Covariance in MI-BCIs

  • Conference paper
  • First Online:
HCI International 2022 - Late Breaking Papers. Multimodality in Advanced Interaction Environments (HCII 2022)

Abstract

Motor imagery brain-computer interface (MI-BCI) systems face a multitude of challenges, one of which is optimizing multiclass classification of electroencephalography (EEG) signals. Hersche et al. (2018) extracted features from the 4-class BCI competition IV-2a data using Common Spatial Patterns (CSP) and Riemannian Covariance methods which resulted in improved performance speed and accuracy when fed to Support Vector Machines (SVM). We propose testing a variety of classifiers for both feature extraction methods to see their relative performance compared to SVM and to observe the impact of the two different feature extraction methods aforementioned on the different classifiers. SVM performed best, and ensemble algorithms had poor performance- especially AdaBoost. CSP feature extraction resulted in improved accuracy for most algorithms, but consumed more time, whereas the Riemannian feature extraction was twice-faster runtime for all algorithms, as expected. These results provide better understanding of feature extraction using CSP or Riemannian Covariance for MI-BCI data.

Y. Windhorse and N. Almadbooh—Contributed equally to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.bbci.de/competition/iv/

  2. Feature extraction. https://www.mathworks.com/discovery/feature-extraction.html

  3. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2011)

    Article  Google Scholar 

  4. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI competition 2008-Graz data set a. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), vol. 16, pp. 1–6. Graz University of Technology (2008)

    Google Scholar 

  5. Congedo, M., Barachant, A., Bhatia, R.: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain Comput. Interfaces 4(3), 155–174 (2017)

    Article  Google Scholar 

  6. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Article  Google Scholar 

  7. Hersche, M., Rellstab, T., Schiavone, P.D., Cavigelli, L., Benini, L., Rahimi, A.: Fast and accurate multiclass inference for MI-BCIs using large multiscale temporal and spectral features, pp. 1690–1694 (2018). https://doi.org/10.23919/EUSIPCO.2018.8553378

  8. Hosseini, M.P., Hosseini, A., Ahi, K.: A review on machine learning for EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. 14, 204–218 (2020)

    Article  Google Scholar 

  9. Ienca, M., Haselager, P., Emanuel, E.J.: Brain leaks and consumer neurotechnology. Nat. Biotechnol. 36(9), 805–810 (2018)

    Article  Google Scholar 

  10. Khan, G., Hashmi, M., Awais, M., Khan, N., Basir, R.: High performance multi-class motor imagery EEG classification. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 4: BIOSIGNALS, pp. 149–155. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008864501490155

  11. Koles, Z.J.: The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr. Clin. Neurophysiol. 79(6), 440–447 (1991)

    Article  Google Scholar 

  12. Lemm, S., Blankertz, B., Curio, G., Muller, K.R.: Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9), 1541–1548 (2005)

    Article  Google Scholar 

  13. Lotte, F.: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces. Proc. IEEE 103(6), 871–890 (2015)

    Article  Google Scholar 

  14. Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Article  Google Scholar 

  15. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Article  Google Scholar 

  16. Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58, 355–362 (2011). https://doi.org/10.1109/TBME.2010.2082539

  17. Lotte, F., Jeunet, C., Mladenović, J., N’Kaoua, B., Pillette, L.: A BCI challenge for the signal processing community: considering the user in the loop (2018)

    Google Scholar 

  18. Qu, X., Hall, M., Sun, Y., Sekuler, R., Hickey, T.J.: A personalized reading coach using wearable EEG sensors-a pilot study of brainwave learning analytics. In: CSEDU (2), pp. 501–507 (2018)

    Google Scholar 

  19. Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3

    Chapter  Google Scholar 

  20. Qu, X., Liukasemsarn, S., Tu, J., Higgins, A., Hickey, T.J., Hall, M.H.: Identifying clinically and functionally distinct groups among healthy controls and first episode psychosis patients by clustering on EEG patterns. Front. Psychiatry 938 (2020)

    Google Scholar 

  21. Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7

    Chapter  Google Scholar 

  22. Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning. In: 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE (2018)

    Google Scholar 

  23. Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)

    Article  Google Scholar 

  24. Reuderink, B., Poel, M.: Robustness of the common spatial patterns algorithm in the BCI-pipeline. No. DTR08-9/TR-CTIT-08-52 in CTIT Technical report Series, Centre for Telematics and Information Technology (CTIT), Netherlands, July 2008

    Google Scholar 

  25. Robinson, N., Vinod, A.P., Ang, K.K., Tee, K.P., Guan, C.T.: EEG-based classification of fast and slow hand movements using wavelet-CSP algorithm. IEEE Trans. Biomed. Eng. 60(8), 2123–2132 (2013)

    Article  Google Scholar 

  26. Roc, A., et al.: A review of user training methods in brain computer interfaces based on mental tasks. J. Neural Eng. (2020)

    Google Scholar 

  27. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)

    Article  Google Scholar 

  28. Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., Wolpaw, J.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004). https://doi.org/10.1109/TBME.2004.827072

    Article  Google Scholar 

  29. Virgilio Gonzalez, C.D., Sossa Azuela, J.H., Rubio Espino, E., Ponce Ponce, V.H.: Classification of motor imagery EEG signals with CSP filtering through neural networks models. In: Batyrshin, I., Martínez-Villaseñor, M.L., Ponce Espinosa, H.E. (eds.) MICAI 2018. LNCS (LNAI), vol. 11288, pp. 123–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04491-6_10

    Chapter  Google Scholar 

  30. Wu, W., Chen, Z., Gao, X., Li, Y., Brown, E.N., Gao, S.: Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 639–653 (2014)

    Article  Google Scholar 

  31. Yang, H., Sakhavi, S., Ang, K.K., Guan, C.: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2620–2623. IEEE (2015)

    Google Scholar 

  32. Yang, P., Wang, J., Zhao, H., Li, R.: MLP with Riemannian covariance for motor imagery based EEG analysis. IEEE Access 8, 139974–139982 (2020)

    Article  Google Scholar 

  33. Yger, F., Berar, M., Lotte, F.: Riemannian approaches in brain-computer interfaces: a review. IEEE Trans. Neural Syst. Rehabil. Eng. 25(10), 1753–1762 (2017). https://doi.org/10.1109/TNSRE.2016.2627016

    Article  Google Scholar 

  34. Zhang, X., Yao, L., Wang, X., Monaghan, J.J., Mcalpine, D., Zhang, Y.: A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J. Neural Eng. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Almadbooh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Windhorse, Y., Almadbooh, N. (2022). Optimizing ML Algorithms Under CSP and Riemannian Covariance in MI-BCIs. In: Kurosu, M., et al. HCI International 2022 - Late Breaking Papers. Multimodality in Advanced Interaction Environments. HCII 2022. Lecture Notes in Computer Science, vol 13519. Springer, Cham. https://doi.org/10.1007/978-3-031-17618-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17618-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17617-3

  • Online ISBN: 978-3-031-17618-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics