Skip to main content

Autophagy in Embryonic Stem Cells and Neural Stem Cells

  • Chapter
  • First Online:
Autophagy in Stem Cell Maintenance and Differentiation

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 73))

  • 299 Accesses

Abstract

Autophagy is a conserved cytoprotective catabolic pathway that plays a crucial role in cellular turnover and homeostasis in eukaryotic cells. A large body of work has implicated autophagy in normal development and differentiation of mammalian cells. In particular, precise regulation of autophagy is important for the maintenance of stemness and differentiation of embryonic stem cells. Extensive reports also indicate a critical role of autophagy in neural stem cells and during embryonic and adult neurogenesis. One of the critical stages of autophagy regulation occurs at the level of expression of autophagy genes. Transcription factors and chromatin modulators govern the accessibility of autophagy genes to the transcription machinery and regulate their expression. Understanding autophagy regulation in stem cells becomes critical as aberrant autophagy leads to numerous degenerative and neuropsychological diseases. This chapter aims to provide an overview of autophagy in embryonic stem cells and neural stem cells with a focus on regulation of autophagy genes in these cellular states.

D. Puri and S. Bivalkar-Mehla—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimers disease

ATG:

Autophagy related genes

ESC:

Embryonic stem cell

mTOR:

Mammalian target of rapamycin

NCS:

Neural stem cell

PTSD:

Post Traumatic Stress Disorder

SGZ:

Subgranular Zone

SVZ:

Subventricular zone

References

  1. Abelaira HM, Réus GZ, Neotti MV, Quevedo J (2014) The role of mTOR in depression and antidepressant responses. Life Sci 101:10–14

    Article  CAS  PubMed  Google Scholar 

  2. Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334:1144–1147

    Article  CAS  PubMed  Google Scholar 

  3. Anding AL, Baehrecke EH (2017) Cleaning house: selective autophagy of organelles. Dev Cell 41:10–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Audesse AJ, Dhakal S, Hassell L-A, Gardell Z, Nemtsova Y, Webb AE (2019) FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells. PLoS Genet 15:e1008097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Backer JM (2016) The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J 473:2251–2271

    Article  CAS  PubMed  Google Scholar 

  6. Baptista P, Andrade JP (2018) Adult hippocampal neurogenesis: regulation and possible functional and clinical correlates. Front Neuroanat 12

    Google Scholar 

  7. Baumann K (2011) Inheritance for pluripotency. Nat Rev Mol Cell Biol 12:691–691

    Article  Google Scholar 

  8. Bivalkar-Mehla S, Puri D, Singh SB, Subramanyam D (2021) Understanding the role of Beclin1 in mouse embryonic stem cell differentiation through CRISPR-Cas9-mediated gene editing. J Biosci 46:18

    Article  CAS  PubMed  Google Scholar 

  9. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bulut-Karslioglu A, Biechele S, Jin H, Macrae TA, Hejna M, Gertsenstein M, Song JS, Ramalho-Santos M (2016) Inhibition of mTor induces a paused pluripotent state. Nature 540:119–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Button RW, Roberts SL, Willis TL, Hanemann CO, Luo S (2017) Accumulation of autophagosomes confers cytotoxicity. J Biol Chem 292:13599–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cann GM, Guignabert C, Ying L, Deshpande N, Bekker JM, Wang L, Zhou B, Rabinovitch M (2008) Developmental expression of LC3α and β: absence of fibronectin or autophagy phenotype in LC3β knockout mice. Dev Dyn 237:187–195

    Article  CAS  PubMed  Google Scholar 

  13. Chiao M-T, Cheng W-Y, Yang Y-C, Shen C-C, Ko J-L (2013) Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy 9:1509–1526

    Article  CAS  PubMed  Google Scholar 

  14. Cho Y-H, Han K-M, Kim D, Lee J, Lee S-H, Choi K-W, Kim J, Han Y-M (2014) Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. STEM CELLS 32:424–435

    Article  CAS  PubMed  Google Scholar 

  15. Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park DJ, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478

    Article  CAS  PubMed  Google Scholar 

  16. Chung Y, Lee J, Jung S, Lee Y, Cho JW, Oh YJ (2018) Dysregulated autophagy contributes to caspase-dependent neuronal apoptosis. Cell Death Dis 9:1–19

    Article  Google Scholar 

  17. Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213

    Article  CAS  Google Scholar 

  18. David BG, Fujita H, Yasuda K, Okamoto K, Panina Y, Ichinose J, Sato O, Horie M, Ichimura T, Okada Y et al (2019) Linking substrate and nucleus via actin cytoskeleton in pluripotency maintenance of mouse embryonic stem cells. Stem Cell Res 41:101614

    Article  CAS  PubMed  Google Scholar 

  19. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  PubMed  Google Scholar 

  20. Ding W-X, Yin X-M (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393:547–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dossou AS, Basu A (2019) The emerging roles of mTORC1 in macromanaging autophagy. Cancers 11:1422

    Article  CAS  PubMed Central  Google Scholar 

  22. Durairajan SSK, Liu L-F, Lu J-H, Chen L-L, Yuan Q, Chung SK, Huang L, Li X-S, Huang J-D, Li M (2012) Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol Aging 33:2903–2919

    Article  CAS  PubMed  Google Scholar 

  23. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  24. Fiorentini A, Rosi MC, Grossi C, Luccarini I, Casamenti F (2010) Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS One 5

    Google Scholar 

  25. Fu Y, Wu P, Pan Y, Sun X, Yang H, Difiglia M, Lu B (2017) A toxic mutant huntingtin species is resistant to selective autophagy. Nat Chem Biol 13:1152–1154

    Article  CAS  PubMed  Google Scholar 

  26. Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  27. Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat-Carotta S, Hansen AH, Tripathy R, Traunbauer AK, Hochstoeger T et al (2018) Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci 21:207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ha S, Jeong S-H, Yi K, Chung KM, Hong CJ, Kim SW, Kim E-K, Yu S-W (2017) Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells. J Biol Chem 292:13795–13808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ha S, Ryu HY, Chung KM, Baek S-H, Kim E-K, Yu S-W (2015) Regulation of autophagic cell death by glycogen synthase kinase-3β in adult hippocampal neural stem cells following insulin withdrawal. Mol Brain 8:30

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hirai H, Karian P, Kikyo N (2011) Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem J 438:11–23

    Article  CAS  PubMed  Google Scholar 

  31. Horesh Y, Katsel P, Haroutunian V, Domany E (2011) Gene expression signature is shared by patients with Alzheimer’s disease and schizophrenia at the superior temporal gyrus. Eur J Neurol 18:410–424

    Article  CAS  PubMed  Google Scholar 

  32. Hu Y-X, Han X-S, Jing Q (2019) Autophagy in development and differentiation. In: Qin Z-H (ed) Autophagy: biology and diseases: basic science. Springer, Singapore, pp 469–487

    Chapter  Google Scholar 

  33. Inaguma Y, Matsumoto A, Noda M, Tabata H, Maeda A, Goto M, Usui D, Jimbo EF, Kikkawa K, Ohtsuki M et al (2016) Role of class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders. J Neurochem 139:245–255

    Article  CAS  PubMed  Google Scholar 

  34. Isakson P, Lystad AH, Breen K, Koster G, Stenmark H, Simonsen A (2013) TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy 9:1955–1964

    Article  CAS  PubMed  Google Scholar 

  35. Ji C, Zhao H, Li D, Sun H, Hao J, Chen R, Wang X, Zhang H, Zhao YG (2020) Role of Wdr45b in maintaining neural autophagy and cognitive function. Autophagy 16:615–625

    Article  CAS  PubMed  Google Scholar 

  36. Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24:69–79

    Article  CAS  PubMed  Google Scholar 

  37. Jung S, Choe S, Woo H, Jeong H, An H-K, Moon H, Ryu HY, Yeo BK, Lee YW, Choi H et al (2020) Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy 16:512–530

    Article  CAS  PubMed  Google Scholar 

  38. Jung S, Jeong H, Yu S-W (2020) Autophagy as a decisive process for cell death. Exp Mol Med 52:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kao L-P, Wolvetang E (2018) Mitophagy during differentiation of human embryonic stem cells. FASEB J 32:653.1

    Google Scholar 

  40. Ke X-X, Zhang D, Zhu S, Xia Q, Xiang Z, Cui H (2014) Inhibition of H3K9 methyltransferase G9a repressed cell proliferation and induced autophagy in neuroblastoma cells. PLoS One 9:e106962

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, Schulman BA, Xu J, Semple I, Ro S-H, et al (2016) Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. eLife 5

    Google Scholar 

  43. Kobayashi T, Piao W, Takamura T, Kori H, Miyachi H, Kitano S, Iwamoto Y, Yamada M, Imayoshi I, Shioda S et al (2019) Enhanced lysosomal degradation maintains the quiescent state of neural stem cells. Nat Commun 10:5446

    Article  PubMed  PubMed Central  Google Scholar 

  44. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  45. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Korolchuk VI, Menzies FM, Rubinsztein DC (2010) Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 584:1393–1398

    Article  CAS  PubMed  Google Scholar 

  47. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  CAS  PubMed  Google Scholar 

  48. Kuo T-C, Chen C-T, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton J-M, Gao F-B et al (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13:1214–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lavoie S, Conway KL, Lassen KG, Jijon HB, Pan H, Chun E, Michaud M, Lang JK, Gallini Comeau CA, Dreyfuss JM et al (2019) The Crohn’s disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. eLife 8

    Google Scholar 

  51. Lee HJ, Gutierrez-Garcia R, Vilchez D (2017) Embryonic stem cells: a novel paradigm to study proteostasis? FEBS J 284:391–398

    Article  CAS  PubMed  Google Scholar 

  52. Leeman DS, Hebestreit K, Ruetz T, Webb AE, McKay A, Pollina EA, Dulken BW, Zhao X, Yeo RW, Ho TT et al (2018) Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359:1277–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li H, Zhang Y, Liu S, Li F, Wang B, Wang J, Cao L, Xia T, Yao Q, Chen H et al (2019) Melatonin enhances proliferation and modulates differentiation of neural stem cells via autophagy in hyperglycemia. Stem Cells 37:504–515

    Article  CAS  PubMed  Google Scholar 

  56. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, Qu L, Xia Y, Chen Y, Bai Y (2016) EVA1A/TMEM166 regulates embryonic neurogenesis by autophagy. Stem Cell Rep 6:396–410

    Article  CAS  Google Scholar 

  57. Liang Q, Luo Z, Zeng J, Chen W, Foo S-S, Lee S-A, Ge J, Wang S, Goldman SA, Zlokovic BV et al (2016) Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19:663–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu C, Hao S, Zhu M, Wang Y, Zhang T, Yang Z (2018) Maternal separation induces different autophagic responses in the hippocampus and prefrontal cortex of adult rats. Neuroscience 374:287–294

    Article  CAS  PubMed  Google Scholar 

  59. Liu K, Zhao Q, Liu P, Cao J, Gong J, Wang C, Wang W, Li X, Sun H, Zhang C et al (2016) ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy 12:2000–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu P, Liu K, Gu H, Wang W, Gong J, Zhu Y, Zhao Q, Cao J, Han C, Gao F et al (2017) High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1. Cell Death Differ 24:1672–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6:439–448

    Article  CAS  PubMed  Google Scholar 

  62. Lv X, Jiang H, Li B, Liang Q, Wang S, Zhao Q, Jiao J (2014) The crucial role of Atg5 in cortical neurogenesis during early brain development. Sci Rep 4

    Google Scholar 

  63. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281:14474–14485

    Google Scholar 

  64. Martello G, Smith A (2014) The nature of embryonic stem cells. Ann Rev Cell Dev Biol 30:647–675

    Article  CAS  Google Scholar 

  65. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Merenlender-Wagner A, Shemer Z, Touloumi O, Lagoudaki R, Giladi E, Andrieux A, Grigoriadis NC, Gozes I (2015) New horizons in schizophrenia treatment: autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia. Autophagy 10:2324–2332

    Article  PubMed Central  Google Scholar 

  67. Miller BR, Hen R (2015) The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol 30:51–58

    Article  CAS  PubMed  Google Scholar 

  68. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  69. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116:1679–1688

    Article  CAS  PubMed  Google Scholar 

  70. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morgado AL, Xavier JM, Dionísio PA, Ribeiro MFC, Dias RB, Sebastião AM, Solá S, Rodrigues CMP (2015) MicroRNA-34a modulates neural stem cell differentiation by regulating expression of synaptic and autophagic proteins. Mol Neurobiol 51:1168–1183

    Article  CAS  PubMed  Google Scholar 

  73. Mote RD, Mahajan G, Padmanabhan A, Ambati R, Subramanyam D (2017) Dual repression of endocytic players by ESCC microRNAs and the Polycomb complex regulates mouse embryonic stem cell pluripotency. Sci Rep 7:17572

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mote RD, Yadav J, Singh SB, Tiwari M, V LV, Patil S, Subramanyam D (2020) Pluripotency of embryonic stem cells lacking clathrin mediated endocytosis cannot be rescued by restoring cellular stiffness. J Biol Chem 295:16888

    Google Scholar 

  75. Narayana YV, Gadgil C, Mote RD, Rajan R, Subramanyam D (2019) Clathrin-mediated endocytosis regulates a balance between opposing signals to maintain the pluripotent state of embryonic stem cells. Stem Cell Rep 12:152–164

    Article  CAS  Google Scholar 

  76. Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12:2048–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122

    Article  PubMed  Google Scholar 

  78. Ohsumi Y (1999) Molecular mechanism of autophagy in yeast, Saccharomyces cerevisiae. Philos Trans R Soc Lond B Biol Sci 354:1577–1580; discussion 1580–1581

    Google Scholar 

  79. Paik J, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun WS, Chae S-S, Zheng H, Ying H, Mahoney J et al (2009) FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5:540–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  81. Petri R, Pircs K, Jönsson ME, Åkerblom M, Brattås PL, Klussendorf T, Jakobsson J (2017) let-7 regulates radial migration of new-born neurons through positive regulation of autophagy. EMBO J 36:1379–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pohl C, Jentsch S (2009) Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol 11:65–70

    Article  CAS  PubMed  Google Scholar 

  84. Puri D, Subramanyam D (2019) Stress‐(self) eating: epigenetic regulation of autophagy in response to psychological stress. FEBS J 286:447–2460

    Google Scholar 

  85. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    Article  CAS  PubMed  Google Scholar 

  86. Varmazyar R, Noori-Zadeh A, Abbaszadeh HA, Ghasemi Hamidabadi H, Rajaei F, Darabi S, Rezaie MJ, Abdollahifar MA, Zafari F, Bakhtiyari S (2019) Neural stem cells neuroprotection by simvastatin via autophagy induction and apoptosis inhibition. Bratisl Lek Listy 120:744–751

    Google Scholar 

  87. Ravichandran KS (2010) Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207:1807–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Richter-Levin G, Xu L (2018) How could stress lead to major depressive disorder? IBRO Rep 4:38–43

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rodriguez-Fernandez IA, Qi Y, Jasper H (2019) Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction. Nat Commun 10:1050

    Article  PubMed  PubMed Central  Google Scholar 

  90. Roidl D, Hellbach N, Bovio PP, Villarreal A, Heidrich S, Nestel S, Grüning BA, Boenisch U, Vogel T (2016) DOT1L activity promotes proliferation and protects cortical neural stem cells from activation of ATF4-DDIT3-mediated ER stress in vitro. Stem Cells 34:233–245

    Article  CAS  PubMed  Google Scholar 

  91. Romito A, Cobellis G (2016) Pluripotent stem cells: current understanding and future directions. Stem Cells Int 2016:9451492

    Google Scholar 

  92. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T et al (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci 106:20842–20846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang B-G, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268

    Article  CAS  PubMed  Google Scholar 

  94. Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon H-U (2012) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22:432–435

    Article  CAS  PubMed  Google Scholar 

  95. Sato M, Sato K (2012) Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy. Autophagy 8:424–425

    Article  CAS  PubMed  Google Scholar 

  96. Schäffner I, Minakaki G, Khan MA, Balta E-A, Schlötzer-Schrehardt U, Schwarz TJ, Beckervordersandforth R, Winner B, Webb AE, DePinho RA et al (2018) FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron 99:1188-1203.e6

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schink KO, Stenmark H (2011) Cell differentiation: midbody remnants—junk or fate factors? Curr Biol CB 21:R958-960

    Article  CAS  PubMed  Google Scholar 

  98. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sou Y, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y et al (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762–4775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Subramani S, Malhotra V (2013) Non-autophagic roles of autophagy-related proteins. EMBO Rep 14:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Suleiman J, Allingham-Hawkins D, Hashem M, Shamseldin HE, Alkuraya FS, El-Hattab AW (2018) WDR45B-related intellectual disability, spastic quadriplegia, epilepsy, and cerebral hypoplasia: a consistent neurodevelopmental syndrome. Clin Genet 93:360–364

    Article  CAS  PubMed  Google Scholar 

  102. Suvorova II, Pospelov VA (2019) AMPK/Ulk1-dependent autophagy as a key mTOR regulator in the context of cell pluripotency. Cell Death Dis 10

    Google Scholar 

  103. Teyssou E, Takeda T, Lebon V, Boillée S, Doukouré B, Bataillon G, Sazdovitch V, Cazeneuve C, Meininger V, LeGuern E et al (2013) Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol (Berl) 125:511–522

    Article  CAS  Google Scholar 

  104. Toralova T, Kinterova V, Chmelikova E, Kanka J (2020) The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 77:3177–3194

    Article  CAS  PubMed  Google Scholar 

  105. Tra T, Gong L, Kao L-P, Li X-L, Grandela C, Devenish RJ, Wolvetang E, Prescott M (2011) Autophagy in human embryonic stem cells. PLoS One 6:e27485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tsukamoto S, Hara T, Yamamoto A, Kito S, Minami N, Kubota T, Sato K, Kokubo T (2014) Fluorescence-based visualization of autophagic activity predicts mouse embryo viability. Sci Rep 4:4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tsukamoto S, Tatsumi T (2018) Degradation of maternal factors during preimplantation embryonic development. J Reprod Dev 64:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vázquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, Pablo FD (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199

    Article  PubMed  Google Scholar 

  109. Vega-Rubín-de-Celis S (2019) The role of Beclin 1-dependent autophagy in cancer. Biology 9

    Google Scholar 

  110. Vilchez D, Simic MS, Dillin A (2014) Proteostasis and aging of stem cells. Trends Cell Biol 24:161–170

    Article  CAS  PubMed  Google Scholar 

  111. Vitillo L, Kimber SJ (2017) Integrin and FAK regulation of human pluripotent stem cells. Curr Stem Cell Rep 3:358–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang C, Chen S, Yeo S, Karsli-Uzunbas G, White E, Mizushima N, Virgin HW, Guan J-L (2016) Elevated p62/SQSTM1 determines the fate of autophagy-deficient neural stem cells by increasing superoxide. J Cell Biol 212:545–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang C, Liang C-C, Bian ZC, Zhu Y, Guan J-L (2013) FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16:532–542

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wang M, Liang X, Cheng M, Yang L, Liu H, Wang X, Sai N, Zhang X (2019) Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke. Cell Death Dis 10:1–14

    Google Scholar 

  115. Wang Y, Zhou K, Li T, Xu Y, Xie C, Sun Y, Zhang Y, Rodriguez J, Blomgren K, Zhu C (2017) Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain. Cell Death Dis 8:e2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Winslow AR, Chen C-W, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S et al (2010) α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190:1023–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wolf E, Gebhardt A, Kawauchi D, Walz S, von Eyss B, Wagner N, Renninger C, Krohne G, Asan E, Roussel MF et al (2013) Miz1 is required to maintain autophagic flux. Nat Commun 4:2535

    Article  PubMed  Google Scholar 

  118. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies FM, Rubinsztein DC (2016) Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun 7:10533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xi Y, Dhaliwal JS, Ceizar M, Vaculik M, Kumar KL, Lagace DC (2016) Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus. Cell Death Dis 7:e2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xiao X, Shang X, Zhai B, Zhang H, Zhang T (2018) Nicotine alleviates chronic stress-induced anxiety and depressive-like behavior and hippocampal neuropathology via regulating autophagy signaling. Neurochem Int 114:58–70

    Article  CAS  PubMed  Google Scholar 

  121. Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S (2001) Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 74:408–413

    Article  CAS  PubMed  Google Scholar 

  122. Xu J, Xia L, Shang Q, Du J, Zhu D, Wang Y, Bi D, Song J, Ma C, Gao C et al (2017) A variant of the autophagy-related 5 gene is associated with child cerebral palsy. Front Cell Neurosci 11

    Google Scholar 

  123. Xu X, Araki K, Li S, Han J-H, Ye L, Tan WG, Konieczny BT, Bruinsma MW, Martinez J, Pearce EL et al (2014) Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol 15:1152–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xu Y, Zhang Y, García-Cañaveras JC, Guo L, Kan M, Yu S, Blair IA, Rabinowitz JD, Yang X (2020) Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science 369:397–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yazdankhah M, Farioli-Vecchioli S, Tonchev AB, Stoykova A, Cecconi F (2014) The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis 5:e1403–e1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yu S-W, Baek S-H, Brennan RT, Bradley CJ, Park SK, Lee YS, Jun EJ, Lookingland KJ, Kim E-K, Lee H et al (2008) Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells Dayt Ohio 26:2602–2610

    Article  CAS  Google Scholar 

  127. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang X, He X, Li Q, Kong X, Ou Z, Zhang L, Gong Z, Long D, Li J, Zhang M et al (2017) PI3K/AKT/mTOR signaling mediates valproic acid-induced neuronal differentiation of neural stem cells through epigenetic modifications. Stem Cell Rep 8:1256–1269

    Article  CAS  Google Scholar 

  129. Zhang Y, Morgan MJ, Chen K, Choksi S, Liu Z (2012) Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119:2895–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Subramanyam lab for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Subramanyam .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

All the authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puri, D., Bivalkar-Mehla, S., Subramanyam, D. (2023). Autophagy in Embryonic Stem Cells and Neural Stem Cells. In: Shravage, B.V., Turksen, K. (eds) Autophagy in Stem Cell Maintenance and Differentiation. Stem Cell Biology and Regenerative Medicine, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-031-17362-2_3

Download citation

Publish with us

Policies and ethics