Skip to main content
Log in

The neglected part of early embryonic development: maternal protein degradation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The degradation of maternally provided molecules is a very important process during early embryogenesis. However, the vast majority of studies deals with mRNA degradation and protein degradation is only a very little explored process yet. The aim of this article was to summarize current knowledge about the protein degradation during embryogenesis of mammals. In addition to resuming of known data concerning mammalian embryogenesis, we tried to fill the gaps in knowledge by comparison with facts known about protein degradation in early embryos of non-mammalian species. Maternal protein degradation seems to be driven by very strict rules in terms of specificity and timing. The degradation of some maternal proteins is certainly necessary for the normal course of embryonic genome activation (EGA) and several concrete proteins that need to be degraded before major EGA have been already found. Nevertheless, the most important period seems to take place even before preimplantation development—during oocyte maturation. The defects arisen during this period seems to be later irreparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Svoboda P, Fulka H, Malik R (2017) Clearance of parental products. Adv Exp Med Biol 953:489–535

    CAS  PubMed  Google Scholar 

  2. Sha QQ, Zhang J, Fan HY (2019) A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals. Biol Reprod 101:579–590

    PubMed  Google Scholar 

  3. Yokoi H, Natsuyama S, Iwai M, Noda Y, Mori T, Mori KJ, Fujita K, Nakayama H, Fujita J (1993) Nonradioisotopic quantitative RT-PCR to detect changes in messenger-RNA levels during early mouse embryo development. Biochem Biophys Res Commun 195:769–775

    CAS  PubMed  Google Scholar 

  4. Karabinova P, Kubelka M, Susor A (2011) Proteasomal degradation of ubiquitinated proteins in oocyte meiosis and fertilization in mammals. Cell Tissue Res 346:1–9

    CAS  PubMed  Google Scholar 

  5. Shin SW, Tokoro M, Nishikawa S, Lee HH, Hatanaka Y, Nishihara T, Amano T, Anzai M, Kato H, Mitani T et al (2010) Inhibition of the ubiquitin–proteasome system leads to delay of the onset of ZGA gene expression. J Reprod Dev 56:655–663

    CAS  PubMed  Google Scholar 

  6. Chalupnikova K, Solc P, Sulimenko V, Sedlacek R, Svoboda P (2014) An oocyte-specific ELAVL2 isoform is a translational repressor ablated from meiotically competent antral oocytes. Cell Cycle 13:1187–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huo LJ, Zhong ZS, Liang CG, Wang Q, Yin S, Ai JS, Yu LZ, Chen DY, Schatten H, Sun QY (2006) Degradation of securin in mouse and pig oocytes is dependent on ubiquitin–proteasome pathway and is required for proteolysis of the cohesion subunit, Rec8, at the metaphase-to-anaphase transition. Front Biosci 11:2193–2202

    CAS  PubMed  Google Scholar 

  8. Bachvarova R (1981) Synthesis, turnover, and stability of heterogeneous RNA in growing mouse oocytes. Dev Biol 86:384–392

    CAS  PubMed  Google Scholar 

  9. Sun L, Bertke MM, Champion MM, Zhu G, Huber PW, Dovichi NJ (2014) Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development. Sci Rep 4:4365

    PubMed  PubMed Central  Google Scholar 

  10. Henderson GRW, Brahmasani SR, Yelisetti UM, Konijeti S, Katari VC, Sisinthy S (2014) Candidate gene expression patterns in rabbit preimplantation embryos developed in vivo and in vitro. J Assist Reprod Genet 31:899–911

    PubMed  PubMed Central  Google Scholar 

  11. Lee G, Hynes R, Kirschner M (1984) Temporal and spatial regulation of fibronectin in early Xenopus development. Cell 36:729–740

    CAS  PubMed  Google Scholar 

  12. Jansova D, Tetkova A, Koncicka M, Kubelka M, Susor A (2018) Localization of RNA and translation in the mammalian oocyte and embryo. PLoS ONE 13:e0192544

    PubMed  PubMed Central  Google Scholar 

  13. Tetkova A, Jansova D, Susor A (2019) Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci Rep 9:13121

    PubMed  PubMed Central  Google Scholar 

  14. Liu B, Winkler F, Herde M, Witte CP, Großhans J (2019) A link between deoxyribonucleotide metabolites and embryonic cell-cycle control. Curr Biol 29:1187–1192

    CAS  PubMed  Google Scholar 

  15. Djabrayan NJV, Smits CM, Krajnc M, Stern T, Yamada S, Lemon WC, Keller PJ, Rushlow CA, Shvartsman SY (2019) Metabolic regulation of developmental cell cycles and zygotic transcription. Curr Biol 29:1193–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagaraj R, Sharpley MS, Chi F, Braas D, Zhou Y, Kim R, Clark AT, Banerjee U (2017) Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168:210–223

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilbert SF (2000) Developmental biology, 6th edn. Sinauer Associates, Sunderland

    Google Scholar 

  18. Tomanek M, Kopecny V, Kanka J (1989) Genome reactivation in developing early pig embryos: an ultrastructural and autoradiographic analysis. Anat Embryol (Berl) 180:309–316

    CAS  Google Scholar 

  19. Kanka J (2003) Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59:3–19

    CAS  PubMed  Google Scholar 

  20. Kanka J, Bryova A, Duranthon V, Oudin JF, Peynot N, Renard JP (2003) Identification of differentially expressed mRNAs in bovine preimplantation embryos. Zygote 11:43–52

    CAS  PubMed  Google Scholar 

  21. Johnson MH, Ziomek CA (1981) The foundation of two distinct cell lineages within the mouse morula. Cell 24:71–80

    CAS  PubMed  Google Scholar 

  22. Johnson MH, Ziomek CA (1981) Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J Cell Biol 91:303–308

    CAS  PubMed  Google Scholar 

  23. Hiiragi T, Solter D (2004) First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature 430:360–364

    CAS  PubMed  Google Scholar 

  24. Motosugi N, Bauer T, Polanski Z, Solter D, Hiiragi T (2005) Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev 19:1081–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wennekamp S, Mesecke S, Nédélec F, Hiiragi T (2013) A self-organization framework for symmetry breaking in the mammalian embryo. Nat Rev Mol Cell Biol 14:452–459

    PubMed  Google Scholar 

  26. Lund E, Sheets MD, Imboden SB, Dahlberg JE (2011) Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25:1121–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  Google Scholar 

  28. Fuchs O (2005) The role of ubiquitin–proteasome system in transforming growth factor-β signaling and its importance in tumorigenesis. Klin Onkol 18:199–206

    Google Scholar 

  29. Muratani M, Tansey WP (2003) How the ubiquitin–proteasome system controls transcription. Nat Rev Mol Cell Biol 4:192–201

    CAS  PubMed  Google Scholar 

  30. Osley MA (2004) H2B ubiquitylation: the end is in sight. Biochim Biophys Acta 1677:74–78

    CAS  PubMed  Google Scholar 

  31. Lipford JR, Smith GT, Chi Y, Deshaies RJ (2005) A putative stimulatory role for activator turnover in gene expression. Nature 438:113–116

    CAS  PubMed  Google Scholar 

  32. Gillette TG, Gonzalez F, Delahodde A, Johnston SA, Kodadek T (2004) Physical and functional association of RNA polymerase II and the proteasome. Proc Natl Acad Sci USA 101:5904–5909

    CAS  PubMed  Google Scholar 

  33. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    CAS  PubMed  Google Scholar 

  34. DeRenzo C, Seydoux G (2004) A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 14:420–426

    CAS  PubMed  Google Scholar 

  35. Mtango NR, Latham KE (2007) Ubiquitin proteasome pathway gene expression varies in rhesus monkey oocytes and embryos of different developmental potential. Physiol Genom 31:1–14

    CAS  Google Scholar 

  36. Verlhac MH, Terret ME, Pintard L (2010) Control of the oocyte-to-embryo transition by the ubiquitin–proteolytic system in mouse and C. elegans. Curr Opin Cell Biol 22:758–763

    CAS  PubMed  Google Scholar 

  37. Suzumori N, Burns KH, Yan W, Matzuk MM (2003) RFPL4 interacts with oocyte proteins of the ubiquitin–proteasome degradation pathway. Proc Natl Acad Sci USA 100:550–555

    CAS  PubMed  Google Scholar 

  38. Yang Y, Zhou C, Wang Y, Liu W, Liu C, Wang L, Liu Y, Shang Y, Li M, Zhou S et al (2017) The E3 ubiquitin ligase RNF114 and TAB1 degradation are required for maternal-to-zygotic transition. EMBO Rep 18:205–216

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S (2010) Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci USA 107:17639–17644

    CAS  PubMed  Google Scholar 

  40. Zhang P, Ni X, Guo Y, Guo X, Wang Y, Zhou Z, Huo R, Sha J (2009) Proteomic-based identification of maternal proteins in mature mouse oocytes. BMC Genom 10:348

    Google Scholar 

  41. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, Avni N, Ciechanover A (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 26:869–885

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, Krüger E (2003) Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem 278:21517–21525

    CAS  PubMed  Google Scholar 

  43. Potireddy S, Vassena R, Patel BG, Latham KE (2006) Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function. Dev Biol 298:155–166

    CAS  PubMed  Google Scholar 

  44. Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E (2014) Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 149:46–58

    CAS  PubMed  Google Scholar 

  45. Benesova V, Kinterova V, Kanka J, Toralova T (2016) Characterization of SCF-complex during bovine preimplantation development. PLoS ONE 11:e0147096

    PubMed  PubMed Central  Google Scholar 

  46. Shin SW, Shimizu N, Tokoro M, Nishikawa S, Hatanaka Y, Anzai M, Hamazaki J, Kishigami S, Saeki K, Hosoi Y et al (2013) Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition. Biol Open 2:170–182

    CAS  PubMed  Google Scholar 

  47. Wójcik C, Benchaib M, Lornage J, Czyba JC, Guerin JF (2000) Localization of proteasomes in human oocytes and preimplantation embryos. Mol Hum Reprod 6:331–336

    PubMed  Google Scholar 

  48. Evsikov AV, de Vries WN, Peaston AE, Radford EE, Fancher KS, Chen FH, Blake JA, Bult CJ, Latham KE, Solter D, Knowles BB (2004) Systems biology of the 2-cell mouse embryo. Cytogenet Genome Res 105:240–250

    CAS  PubMed  Google Scholar 

  49. Huo LJ, Fan HY, Zhong ZS, Chen DY, Schatten H, Sun QY (2004) Ubiquitin–proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech Dev 121:1275–1287

    CAS  PubMed  Google Scholar 

  50. Kepkova KV, Vodicka P, Toralova T, Lopatarova M, Cech S, Dolezel R, Havlicek V, Besenfelder U, Kuzmany A, Sirard MA, Laurincik J, Kanka J (2011) Transcriptomic analysis of in vivo and in vitro produced bovine embryos revealed a developmental change in cullin 1 expression during maternal-to-embryonic transition. Theriogenology 75:1582–1595

    CAS  PubMed  Google Scholar 

  51. Sutovsky P, Motlik J, Neuber E, Pavlok A, Schatten G, Palecek J, Hyttel P, Adebayo OT, Adwan K, Alberio R et al (2001) Accumulation of the proteolytic marker peptide ubiquitin in the trophoblast of mammalian blastocysts. Cloning Stem Cells 3:157–161

    CAS  PubMed  Google Scholar 

  52. Baek KH, Lee H, Yang S, Lim SB, Lee W, Lee JE, Lim JJ, Jun K, Lee DR, Chung Y (2012) Embryonic demise caused by targeted disruption of a cysteine protease Dub-2. PLoS ONE 7:e44223

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu H, Shamanna RA, de Freitas JK, Okur M, Khadka P, Kulikowicz T, Holland PP, Tian J, Croteau DL, Davis AJ et al (2017) Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat Commun 8:2039

    PubMed  PubMed Central  Google Scholar 

  54. Yin J, Kwon YT, Varshavsky A, Wang W (2004) RECQL4, mutated in the Rothmund–Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Mol Genet 13:2421–2430

    CAS  PubMed  Google Scholar 

  55. Larsen CN, Krantz BA, Wilkinson KD (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37:3358–3368

    CAS  PubMed  Google Scholar 

  56. Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207

    CAS  PubMed  Google Scholar 

  57. Wilkinson KD (2009) DUBs at a glance. J Cell Sci 122:2325–2329

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Susor A, Liskova L, Toralova T, Pavlok A, Pivonkova K, Karabinova P, Lopatarova M, Sutovsky P, Kubelka M (2010) Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes. Biol Reprod 82:1151–1161

    CAS  PubMed  Google Scholar 

  59. Fraile JM, Campos-Iglesias D, Rodríguez F, Astudillo A, Vilarrasa-Blasi R, Verdaguer-Dot N, Prado MA, Paulo JA, Gygi SP, Martín-Subero JI et al (2018) Loss of the deubiquitinase USP36 destabilizes the RNA helicase DHX33 and causes preimplantation lethality in mice. J Biol Chem 293:2183–2194

    CAS  PubMed  Google Scholar 

  60. Mtango NR, Latham KE, Sutovsky P (2014) Deubiquitinating enzymes in oocyte maturation, fertilization and preimplantation embryo development. Adv Exp Med Biol 759:89–110

    CAS  PubMed  Google Scholar 

  61. Ellederova Z, Halada P, Man P, Kubelka M, Motlik J, Kovarova H (2004) Protein patterns of pig oocytes during in vitro maturation. Biol Reprod 71:1533–1539

    CAS  PubMed  Google Scholar 

  62. Massicotte L, Coenen K, Mourot M, Sirard MA (2006) Maternal housekeeping proteins translated during bovine oocyte maturation and early embryo development. Proteomics 6:3811–3820

    CAS  PubMed  Google Scholar 

  63. Koyanagi S, Hamasaki H, Sekiguchi S, Hara K, Ishii Y, Kyuwa S, Yoshikawa Y (2012) Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova. Reproduction 143:271–279

    CAS  PubMed  Google Scholar 

  64. Mtango NR, Sutovsky M, VandeVoort CA, Latham KE, Sutovsky P (2012) Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. J Cell Physiol 227:2022–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Scheuermann JC, Gutiérrez L, Müller J (2012) Histone H2A monoubiquitination and Polycomb repression: the missing pieces of the puzzle. Fly (Austin) 6:162–168

    CAS  Google Scholar 

  66. Liu C, Ma Y, Shang Y, Huo R, Li W (2018) Post-translational regulation of the maternal-to-zygotic transition. Cell Mol Life Sci CMLS 75:1707–1722

    CAS  PubMed  Google Scholar 

  67. Shimizu N, Ueno K, Kurita E, Shin SW, Nishihara T, Amano T, Anzai M, Kishigami S, Kato H, Mitani T, Hosoi Y et al (2014) Possible role of ZPAC, zygote-specific proteasome assembly chaperone, during spermatogenesis in the mouse. J Reprod Dev 60:179–186

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ramos PC, Dohmen RJ (2008) PACemakers of proteasome core particle assembly. Structure 16:1296–1304

    CAS  PubMed  Google Scholar 

  69. Zuo EW, Yang XG, Lu YQ, Xie L, Shang JH, Li D, Yang H, Hu LL, Zhao HM, Lu SS et al (2015) ZPAC is required for normal spermatogenesis in mice. Mol Reprod Dev 82:747–755

    CAS  PubMed  Google Scholar 

  70. Bosu DR, Kipreos ET (2008) Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div 3:7

    PubMed  PubMed Central  Google Scholar 

  71. Zhou L, Zhang W, Sun Y, Jia L (2018) Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal 44:92–102

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY, Fan HY (2013) CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 342:1518–1521

    CAS  PubMed  Google Scholar 

  73. Xu YW, Cao LR, Wang M, Xu Y, Wu X, Liu J, Tong C, Fan HY (2017) Maternal DCAF2 is crucial for maintenance of genome stability during the first cell cycle in mice. J Cell Sci 130:3297–3307

    CAS  PubMed  Google Scholar 

  74. Zhang YL, Zhao LW, Zhang J, Le R, Ji SY, Chen C, Gao Y, Li D, Gao S, Fan HY (2018) DCAF13 promotes pluripotency by negatively regulating SUV39H1 stability during early embryonic development. EMBO J 37:e9898

    Google Scholar 

  75. Zhang J, Zhang YL, Zhao LW, Guo JX, Yu JL, Ji SY, Cao LR, Zhang SY, Shen L, Ou XH, Fan HY (2019) Mammalian nucleolar protein DCAF13 is essential for ovarian follicle maintenance and oocyte growth by mediating rRNA processing. Cell Death Differ 26:1251–1266

    CAS  PubMed  Google Scholar 

  76. Liu Y, Zhao LW, Shen JL, Fan HY, Jin Y (2019) Maternal DCAF13 regulates chromatin tightness to contribute to embryonic development. Sci Rep 9:6278

    PubMed  PubMed Central  Google Scholar 

  77. Kinterova V, Kanka J, Petruskova V, Toralova T (2019) Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos. Biol Reprod 100:896–906

    PubMed  Google Scholar 

  78. Chen J, Melton C, Suh N, Oh JS, Horner K, Xie F, Sette C, Blelloch R, Conti M (2011) Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev 25:755–766

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sousa Martins JP, Liu X, Oke A, Arora R, Franciosi F, Viville S, Laird DJ, Fung JC, Conti M (2016) DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation. J Cell Sci 129:1271–1282

    PubMed  PubMed Central  Google Scholar 

  80. Setoyama D, Yamashita M, Sagata N (2007) Mechanism of degradation of CPEB during Xenopus oocyte maturation. Proc Natl Acad Sci USA 104:18001–18006

    CAS  PubMed  Google Scholar 

  81. Shimuta K, Nakajo N, Uto K, Hayano Y, Okazaki K, Sagata N (2002) Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J 21:3694–3703

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kanemori Y, Uto K, Sagata N (2005) Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci USA 102:6279–6284

    CAS  PubMed  Google Scholar 

  83. Collart C, Smith JC, Zegerman P (2017) Chk1 inhibition of the replication factor Drf1 guarantees cell-cycle elongation at the Xenopus laevis mid-blastula transition. Dev Cell 42:82–96.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Daldello EM, Le T, Poulhe R, Jessus C, Haccard O, Dupré A (2015) Control of Cdc6 accumulation by Cdk1 and MAPK is essential for completion of oocyte meiotic divisions in Xenopus. J Cell Sci 128:2482–2496

    CAS  PubMed  Google Scholar 

  85. Yu C, Ji SY, Sha QQ, Sun QY, Fan HY (2015) CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Nat Commun 6:8017

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ooga M, Suzuki MG, Aoki F (2015) Involvement of histone H2B monoubiquitination in the regulation of mouse preimplantation development. J Reprod Dev 61:179–184

    PubMed  PubMed Central  Google Scholar 

  87. Jin XL, Chandrakanthan V, Morgan HD, O’Neill C (2009) Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway. Biol Reprod 80:286–294

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    CAS  PubMed  Google Scholar 

  89. de Oca M, Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    Google Scholar 

  90. Baran V, Brzakova A, Rehak P, Kovarikova V, Solc P (2016) PLK1 regulates spindle formation kinetics and APC/C activation in mouse zygote. Zygote 24:338–345

    CAS  PubMed  Google Scholar 

  91. Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J, Ellenberg J (2015) Multiple requirements of PLK1 during mouse oocyte maturation. PLoS ONE 10:e0116783

    PubMed  PubMed Central  Google Scholar 

  92. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    CAS  PubMed  Google Scholar 

  93. Roest HP, Baarends WM, de Wit J, van Klaveren JW, Wassenaar E, Hoogerbrugge JW, van Cappellen WA, Hoeijmakers JHJ, Grootegoed JA (2004) The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice. Mol Cell Biol 24:5485–5495

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu YN, Shen XH, Lee SE, Kwon JS, Kim DJ, Heo YT, Cui XS, Kim NH (2012) Autophagy influences maternal mRNA degradation and apoptosis in porcine parthenotes developing in vitro. J Reprod Dev 58:576–584

    CAS  PubMed  Google Scholar 

  95. Shen X, Zhang N, Wang Z, Bai G, Zheng Z, Gu Y, Wu Y, Liu H, Zhou D, Lei L (2015) Induction of autophagy improves embryo viability in cloned mouse embryos. Sci Rep 5:17829

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chi D, Zeng Y, Xu M, Si L, Qu X, Liu H, Li J (2017) LC3-dependent autophagy in Pig 2-cell cloned embryos could influence the degradation of maternal mRNA and the regulation of epigenetic modification. Cell Reprogramming 19:354–362

    CAS  Google Scholar 

  97. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120

    CAS  PubMed  Google Scholar 

  98. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    CAS  PubMed  Google Scholar 

  100. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    CAS  PubMed  Google Scholar 

  101. Lee SE, Hwang KC, Sun SC, Xu YN, Kim NH (2011) Modulation of autophagy influences development and apoptosis in mouse embryos developing in vitro. Mol Reprod Dev 78:498–509

    CAS  PubMed  Google Scholar 

  102. Cho YH, Han KM, Kim D, Lee J, Lee SH, Choi KW, Kim J, Han YM (2014) Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells 32:424–435

    CAS  PubMed  Google Scholar 

  103. Tsukamoto S, Tatsumi T (2018) Degradation of maternal factors during preimplantation embryonic development. J Reprod Dev 64:217–222

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yamamoto A, Mizushima N, Tsukamoto S (2014) Fertilization-induced autophagy in mouse embryos is independent of mTORC1. Biol Reprod 91:7

    PubMed  Google Scholar 

  105. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Imamura T, Neildez TMA, Thenevin C, Paldi A (2004) Essential role for poly(ADP-ribosyl)ation in mouse preimplantation development. BMC Mol Biol 5:4

    PubMed  PubMed Central  Google Scholar 

  107. Lee HR, Gupta MK, Kim DH, Hwang JH, Kwon B, Lee HT (2016) Poly(ADP-ribosyl)ation is involved in pro-survival autophagy in porcine blastocysts. Mol Reprod Dev 83:37–49

    CAS  PubMed  Google Scholar 

  108. Lee JE, Oh HA, Song H, Jun JH, Roh CR, Xie H, Dey SK, Lim HJ (2011) Autophagy regulates embryonic survival during delayed implantation. Endocrinology 152:2067–2075

    CAS  PubMed  Google Scholar 

  109. Tsukamoto S, Hara T, Yamamoto A, Kito S, Minami N, Kubota T, Sato K, Kokubo T (2014) Fluorescence-based visualization of autophagic activity predicts mouse embryo viability. Sci Rep 4:4533

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee HR, Kim DH, Kim MG, Lee JS, Hwang JH, Lee HT (2016) The regulation of autophagy in porcine blastocysts: regulation of PARylation-mediated autophagy via mammalian target of rapamycin complex 1 (mTORC1) signaling. Biochem Biophys Res Commun 473:899–906

    CAS  PubMed  Google Scholar 

  111. Song BS, Yoon SB, Kim JS, Sim BW, Kim YH, Cha JJ, Choi SA, Min HK, Lee Y, Huh JW et al (2012) Induction of autophagy promotes preattachment development of bovine embryos by reducing endoplasmic reticulum stress. Biol Reprod 87:1–11

    Google Scholar 

  112. Xu YN, Cui XS, Sun SC, Lee SE, Li YH, Kwon JS, Lee SH, Hwang KC, Kim NH (2011) Mitochondrial dysfunction influences apoptosis and autophagy in porcine parthenotes developing in vitro. J Reprod Dev 57:143–150

    CAS  PubMed  Google Scholar 

  113. Kang MH, Das J, Gurunathan S, Park HW, Song H, Park C, Kim JH (2017) The cytotoxic effects of dimethyl sulfoxide in mouse preimplantation embryos: a mechanistic study. Theranostics 7:4735–4752

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Shin KT, Guo J, Niu YJ, Cui XS (2018) The toxic effect of aflatoxin B1 on early porcine embryonic development. Theriogenology 118:157–163

    CAS  PubMed  Google Scholar 

  115. Tang L, Yang S, Wang H, Gu H, Xia X, Feng Y, Yang Z, Zhao S, Su C, Su Z et al (2018) Nucleoside reverse transcriptase inhibitor-induced rat oocyte dysfunction and low fertility mediated by autophagy. Oncotarget 9:3895–3907

    PubMed  Google Scholar 

  116. Lin T, Oqani RK, Lee JE, Kang JW, Kim SY, Cho ES, Jeong YD, Baek JJ, Jin DI (2018) α-Solanine impairs oocyte maturation and quality by inducing autophagy and apoptosis and changing histone modifications in a pig model. Reprod Toxicol 75:96–109

    CAS  PubMed  Google Scholar 

  117. Sutovsky P, Manandhar G, Laurincik J, Letko J, Caamaño JN, Day BN, Lai L, Prather RS, Sharpe-Timms KL, Zimmer R et al (2005) Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes. Reproduction 129:269–282

    CAS  PubMed  Google Scholar 

  118. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tan JMM, Wong ESP, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, Ho MWL, Troncoso J, Gygi SP, Lee MK et al (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17:431–439

    CAS  PubMed  Google Scholar 

  120. Sato M, Konuma R, Sato K, Tomura K, Sato K (2014) Fertilization-induced K63-linked ubiquitylation mediates clearance of maternal membrane proteins. Development 141:1324–1331

    CAS  PubMed  Google Scholar 

  121. Rojansky R, Cha MY, Chan DC (2016) Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5:e17896

    PubMed  PubMed Central  Google Scholar 

  122. Hajjar C, Sampuda KM, Boyd L (2014) Dual roles for ubiquitination in the processing of sperm organelles after fertilization. BMC Dev Biol 14:6

    PubMed  PubMed Central  Google Scholar 

  123. Song WH, Yi YJ, Sutovsky M, Meyers S, Sutovsky P (2016) Autophagy and ubiquitin–proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci USA 113:E5261–5270

    CAS  PubMed  Google Scholar 

  124. Komatsu M, Ichimura Y (2010) Selective autophagy regulates various cellular functions. Genes Cells Devoted Mol Cell Mech 15:923–933

    CAS  Google Scholar 

  125. Benesova V, Kinterova V, Kanka J, Toralova T (2017) Potential involvement of SCF-complex in zygotic genome activation during early bovine embryo development. Methods Mol Biol 1605:245–257

    CAS  PubMed  Google Scholar 

  126. Hanson PI, Cashikar A (2012) Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 28:337–362

    CAS  PubMed  Google Scholar 

  127. Traub LM, Lukacs GL (2007) Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs. J Cell Sci 120:543–553

    CAS  PubMed  Google Scholar 

  128. Sato M, Sato K (2013) Dynamic regulation of autophagy and endocytosis for cell remodeling during early development. Traffic 14:479–486

    CAS  PubMed  Google Scholar 

  129. Sato K, Sato M, Audhya A, Oegema K, Schweinsberg P, Grant BD (2006) Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol Biol Cell 17:3085–3094

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Balklava Z, Pant S, Fares H, Grant BD (2007) Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol 9:1066–1073

    CAS  PubMed  Google Scholar 

  131. Kadandale P, Stewart-Michaelis A, Gordon S, Rubin J, Klancer R, Schweinsberg P, Grant BD, Singson A (2005) The egg surface LDL receptor repeat-containing proteins EGG-1 and EGG-2 are required for fertilization in Caenorhabditis elegans. Curr Biol 15:2222–2229

    CAS  PubMed  Google Scholar 

  132. Audhya A, McLeod IX, Yates JRIII, Oegema K (2007) MVB-12, a Fourth subunit of metazoan ESCRT-I, functions in receptor downregulation. PLoS ONE 2:9

    Google Scholar 

  133. Zuo Y, Su G, Wang S, Yang L, Liao M, Wei Z, Bai C, Li G (2016) Exploring timing activation of functional pathway based on differential co-expression analysis in preimplantation embryogenesis. Oncotarget 7:74120–74131

    PubMed  PubMed Central  Google Scholar 

  134. Miller-Fleming L, Olin-Sandoval V, Campbell C, Ralser M (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427:3389–3406

    CAS  PubMed  Google Scholar 

  135. Fenelon JC, Murphy BD (2017) Inhibition of polyamine synthesis causes entry of the mouse blastocyst into embryonic diapause. Biol Reprod 97:119–132

    PubMed  Google Scholar 

  136. Lenis YY, Johnson GA, Wang X, Tang WW, Dunlap KA, Satterfield MC, Wu G, Hansen TR, Bazer FW (2018) Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep. J Anim Sci Biotechnol 9:10

    PubMed  PubMed Central  Google Scholar 

  137. Pendeville H, Carpino N, Marine JC, Takahashi Y, Muller M, Martial JA, Cleveland JL (2001) The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 21:6549–6558

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532

    CAS  PubMed  Google Scholar 

  139. Osborne HB, Duval C, Ghoda L, Omilli F, Bassez T, Coffino P (1991) Expression and post-transcriptional regulation of ornithine decarboxylase during early Xenopus development. Eur J Biochem 202:575–581

    CAS  PubMed  Google Scholar 

  140. Reverte CG, Ahearn MD, Hake LE (2001) CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Dev Biol 231:447–458

    CAS  PubMed  Google Scholar 

  141. Mendez R, Barnard D, Richter JD (2002) Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J 21:1833–1844

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hodgman R, Tay J, Mendez R, Richter JD (2001) CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development 128:2815–2822

    CAS  PubMed  Google Scholar 

  143. Uzbekova S, Arlot-Bonnemains Y, Dupont J, Dalbiès-Tran R, Papillier P, Pennetier S, Thélie A, Perreau C, Mermillod P, Prigent C et al (2008) Spatio-temporal expression patterns of aurora kinases A, B, and C and cytoplasmic polyadenylation-element-binding protein in bovine oocytes during meiotic maturation. Biol Reprod 78:218–233

    CAS  PubMed  Google Scholar 

  144. Bowerman B, Kurz T (2006) Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early C. elegans embryogenesis. Development 133:773–784

    CAS  PubMed  Google Scholar 

  145. Kurz T, Pintard L, Willis JH, Hamill DR, Gönczy P, Peter M, Bowerman B (2002) Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway. Science 295:1294–1298

    CAS  PubMed  Google Scholar 

  146. Furukawa M, He YJ, Borchers C, Xiong Y (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5:1001–1007

    CAS  PubMed  Google Scholar 

  147. Gao S, Han Z, Kihara M, Adashi E, Latham EK (2005) Protease inhibitor MG132 in cloning: no end to the nightmare. Trends Biotechnol 23:66–68

    CAS  PubMed  Google Scholar 

  148. Yu Y, Yong J, Li X, Qing T, Qin H, Xiong X, You J, Ding M, Deng H (2005) The proteasomal inhibitor MG132 increases the efficiency of mouse embryo production after cloning by electrofusion. Reproduction 130:553–558

    CAS  PubMed  Google Scholar 

  149. Nakajima N, Inomata T, Ito J, Kashiwazaki N (2008) Treatment with proteasome inhibitor MG132 during cloning improves survival and pronuclear number of reconstructed rat embryos. Cloning Stem Cells 10:461–468

    CAS  PubMed  Google Scholar 

  150. Le Bourhis D, Beaujean N, Ruffini S, Vignon X, Gall L (2010) Nuclear remodeling in bovine somatic cell nuclear transfer embryos using MG132-treated recipient oocytes. Cell Reprogramming 12:729–738

    Google Scholar 

  151. You J, Lee E, Bonilla L, Francis J, Koh J, Block J, Chen S, Hansen PJ (2012) Treatment with the proteasome inhibitor MG132 during the end of oocyte maturation improves oocyte competence for development after fertilization in cattle. PLoS ONE 7:e48613

    CAS  PubMed  PubMed Central  Google Scholar 

  152. You J, Lee J, Kim J, Park J, Lee E (2010) Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs. Mol Reprod Dev 77:149–157

    CAS  PubMed  Google Scholar 

  153. Shen K, Li X, Dai X, Wang P, Li S, Xiong Z, Chen P, Liu Q, Shi D (2017) Effects of MG132 on the in vitro development and epigenetic modification of Debao porcine somatic cell nuclear transfer embryos. Theriogenology 94:48–58

    CAS  PubMed  Google Scholar 

  154. Higuchi C, Shimizu N, Shin SW, Morita K, Nagai K, Anzai M, Kato H, Mitani T, Yamagata K, Hosoi Y et al (2018) Ubiquitin-proteasome system modulates zygotic genome activation in early mouse embryos and influences full-term development. J Reprod Dev 64:65–74

    CAS  PubMed  Google Scholar 

  155. Yurttas P, Morency E, Coonrod SA (2010) Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction 139:809–823

    CAS  PubMed  Google Scholar 

  156. Pennetier S, Perreau C, Uzbekova S, Thélie A, Delaleu B, Mermillod P, Dalbiès-Tran R (2006) MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine. BMC Dev Biol 6:26

    PubMed  PubMed Central  Google Scholar 

  157. Ohsugi M, Zheng P, Baibakov B, Li L, Dean J (2008) Maternally derived FILIA-MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development 135:259–269

    CAS  PubMed  Google Scholar 

  158. Gao Y, Liu X, Tang B, Li C, Kou Z, Li L, Liu W, Wu Y, Kou X, Li J et al (2017) Protein expression landscape of mouse embryos during pre-implantation development. Cell Rep 21:3957–3969

    CAS  PubMed  Google Scholar 

  159. Toralova T, Benesova V, Vodickova Kepkova K, Vodicka P, Susor A, Kanka J (2012) Bovine preimplantation embryos with silenced nucleophosmin mRNA are able to develop until the blastocyst stage. Reproduction 144:349–359

    CAS  PubMed  Google Scholar 

  160. Svarcova O, Laurincik J, Avery B, Mlyncek M, Niemann H, Maddox-Hyttel P (2007) Nucleolar development and allocation of key nucleolar proteins require de novo transcription in bovine embryos. Mol Reprod Dev 74:1428–1435

    CAS  PubMed  Google Scholar 

  161. Li L, Lu X, Dean J (2013) The maternal to zygotic transition in mammals. Mol Aspects Med 34:919–938

    PubMed  PubMed Central  Google Scholar 

  162. Peshkin L, Wühr M, Pearl E, Haas W, Freeman RM Jr, Gerhart JC, Klein AM, Horb M, Gygi SP, Kirschner MW (2015) On the relationship of protein and mRNA dynamics in vertebrate embryonic development. Dev Cell 35:383–394

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Lu X, Gao Z, Qin D, Li L (2017) A maternal functional module in the mammalian oocyte-to-embryo transition. Trends Mol Med 23:1014–1023

    PubMed  Google Scholar 

  164. Bebbere D, Masala L, Albertini DF, Ledda S (2016) The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet 33:1431–1438

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Duesbery NS, Choi T, Brown KD, Wood KW, Resau J, Fukasawa K, Cleveland DW, Vande Woude GF (1997) CENP-E is an essential kinetochore motor in maturing oocytes and is masked during mos-dependent, cell cycle arrest at metaphase II. Proc Natl Acad Sci USA 94:9165–9170

    CAS  PubMed  Google Scholar 

  166. Allard P, Champigny MJ, Skoggard S, Erkmann JA, Whitfield ML, Marzluff WF, Clarke HJ (2002) Stem-loop binding protein accumulates during oocyte maturation and is not cell-cycle-regulated in the early mouse embryo. J Cell Sci 115:4577–4586

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Toralova T, Susor A, Nemcova L, Kepkova K, Kanka J (2009) Silencing CENPF in bovine preimplantation embryo induces arrest at 8-cell stage. Reproduction 138(5):783–791

    CAS  PubMed  Google Scholar 

  168. Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P (2013) Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341:893–896

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Fisher D (2011) Control of DNA replication by cyclin-dependent kinases in development. Results Probl Cell Differ 53:201–217

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ichikawa K, Noda T, Furuichi Y (2002) Preparation of the gene targeted knockout mice for human premature aging diseases, Werner syndrome, and Rothmund–Thomson syndrome caused by the mutation of DNA helicases. Nihon Yakurigaku Zasshi Folia Pharmacol Jpn 119:219–226

    CAS  Google Scholar 

  171. Hoki Y, Araki R, Fujimori A, Ohhata T, Koseki H, Fukumura R, Nakamura M, Takahashi H, Noda Y, Kito S et al (2003) Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum Mol Genet 12:2293–2299

    CAS  PubMed  Google Scholar 

  172. Wu J, Capp C, Feng L, Hsieh T (2008) Drosophila homologue of the Rothmund–Thomson syndrome gene: essential function in DNA replication during development. Dev Biol 323:130–142

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Jeon Y, Ko E, Lee KY, Ko MJ, Park SY, Kang J, Jeon CH, Lee H, Hwang DS (2011) TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells. J Biol Chem 286:5414–5422

    CAS  PubMed  Google Scholar 

  174. Sansam CL, Cruz NM, Danielian PS, Amsterdam A, Lau ML, Hopkins N, Lees JA (2010) A vertebrate gene, TICRR, is an essential checkpoint and replication regulator. Genes Dev 24:183–194

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Yao L, Chen J, Wu X, Jia S, Meng A (2017) Zebrafish cdc6 hypomorphic mutation causes Meier–Gorlin syndrome-like phenotype. Hum Mol Genet 26:4168–4180

    CAS  PubMed  PubMed Central  Google Scholar 

  176. El Dika M, Laskowska-Kaszub K, Koryto M, Dudka D, Prigent C, Tassan JP, Kloc M, Polanski Z, Borsuk E, Kubiak JZ (2014) CDC6 controls dynamics of the first embryonic M-phase entry and progression via CDK1 inhibition. Dev Biol 396:67–80

    PubMed  Google Scholar 

  177. Zhou ZW, Liu C, Li TL, Bruhn C, Krueger A, Min WK, Wang ZQ, Carr AM (2013) An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence. PLoS Genet 9:e1003702

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Eisenmann KM, West RA, Hildebrand D, Kitchen SM, Peng J, Sigler R, Zhang J, Siminovitch KA, Alberts AS (2007) T cell responses in mammalian diaphanous-related formin mDia1 knock-out mice. J Biol Chem 282:25152–25158

    CAS  PubMed  Google Scholar 

  179. Peng J, Wallar BJ, Flanders A, Swiatek PJ, Alberts AS (2003) Disruption of the Diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42. Curr Biol 13:534–545

    CAS  PubMed  Google Scholar 

  180. Cheng Y, Quinn JF, Weiss LA (2013) An eQTL mapping approach reveals that rare variants in the SEMA5A regulatory network impact autism risk. Hum Mol Genet 22:2960–2972

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Silva T, Bradley RH, Gao Y, Coue M (2006) Xenopus CDC7/DRF1 complex is required for the initiation of DNA replication. J Biol Chem 281:11569–11576

    CAS  PubMed  Google Scholar 

  182. Takahashi TS, Walter JC (2005) Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes Dev 19:2295–2300

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Tikhmyanova N, Coleman TR (2003) Isoform switching of Cdc6 contributes to developmental cell cycle remodeling. Dev Biol 260:362–375

    CAS  PubMed  Google Scholar 

  184. Solc P, Saskova A, Baran V, Kubelka M, Schultz RM, Motlik J (2008) CDC25A phosphatase controls meiosis I progression in mouse oocytes. Dev Biol 317:260–269

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Farrell JA, Shermoen AW, Yuan K, O’Farrell PH (2012) Embryonic onset of late replication requires Cdc25 down-regulation. Genes Dev 26:714–725

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Sibon OC, Stevenson VA, Theurkauf WE (1997) DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388:93–97

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Grant GACR 13-24730P and Internal Grant Agency of the Czech University of Life Sciences CIGA 20172013. This work was supported by IAPG institutional support RVO: 67985904. JK was supported by the Danish Council for Independent Research/Natural Sciences (FNU) 8021-00048B. The authors would like to thank B. J. Watson-Jones for reading the manuscript and language correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Kinterova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toralova, T., Kinterova, V., Chmelikova, E. et al. The neglected part of early embryonic development: maternal protein degradation. Cell. Mol. Life Sci. 77, 3177–3194 (2020). https://doi.org/10.1007/s00018-020-03482-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03482-2

Keywords

Navigation