Skip to main content

Functionalized Carbon Nanostructures in Agro-Food Production

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures

Abstract

Sustainable agriculture is a crucial practice to face worldwide food demand and to achieve global food security. For attaining sustainability in agricultural production, several molecular and conventional approaches have been followed. But, the existing practices have several demerits and restrict the achievement of sufficient agricultural sustainability. Recently, carbon nanomaterials (CNMs) have exerted the largest interest in agriculture and food production due to their distinct physicochemical characteristics, including their optical, electrical, mechanical, and thermal properties, small size, high surface area, etc. Additionally, functionalized CNMs display upgraded efficiency in various aspects. Thus, this chapter deals with the action of various carbon nanomaterials functionalized by substituted organic molecules in soil, plants, and agro-food production. Overall, this chapter would explain the potential contributions and importance of functionalized CNMs for the nano-carbon-enabled agricultural field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BNF:

Biological nitrogen fixation

CDs:

Carbon dots

CNTs:

Carbon nanotubes

DNA:

Deoxyribonucleic acid

DSH-MSNs:

Double shelled hollow mesoporous silica nanoparticles

FRET:

Fluorescence resonance energy transfer

HMCNs:

Hollow mesoporous carbon nanoparticles

IFE:

Inner filter effect

MSN:

Mesoporous silica nanoparticles

MWCNTs:

Multi-walled carbon nanotubes

NCDs:

Nitrogen-doped carbon dots

NIN:

Genetic code that expresses the ninein protein

PHMCN:

Polyethyleneimine hollow mesoporous carbon nanoparticles

PHMCN-Se:

Polyethyleneimine hollow mesoporous carbon nanoparticles-selinate complex

ROS:

Reactive oxygen species

RuBisCO:

Ribulose bisphosphate carboxylase

SWCNHs/SWCNTs:

Single-walled carbon nanohorns/carbon nanotubes

References

  1. Brady, N.C., Weil, R.R.: The Nature and Properties of Soils: Texte imprimé. Pearson Prentice Hall, Upper Saddle River, NJ (2008)

    Google Scholar 

  2. Ottow, E.A., Brinker, M., Teichmann, T., Fritz, E., Kaiser, W., Brosché, M., Kangasjärvi, J., Jiang, X., Polle, A.: Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol. 139, 2005 (1762–1772)

    Google Scholar 

  3. Barnes, R.F., Miller, D.F., Nelson, J.C.: Forages: an Introduction to Grassland Agriculture. Iowa State University Press, Iowa (1995)

    Google Scholar 

  4. Wani, S.H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., Suprasanna, P., Kavi Kishor, P.B.: Engineering salinity tolerance in plants: Progress and prospects. Planta. 251 (2020). https://doi.org/10.1007/s00425-020-03366-6

  5. Tang, X., Mu, X., Shao, H., Wang, H., Brestic, M.: Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit. Rev. Biotechnol. 35, 425–437 (2014). https://doi.org/10.3109/07388551.2014.889080

    Article  CAS  Google Scholar 

  6. Needelman, B.A.: What are soils? Nat Sci Educ. 4, 2 (2013)

    Google Scholar 

  7. Kibria, M.G., Hoque, M.A.: A review on plant responses to soil salinity and amelioration strategies. Open J Soil Sci. 09, 219–231 (2019)

    Article  Google Scholar 

  8. Hatfield, J.L., Follett, R.F.: Nitrogen in the environment sources, problems, and Management. Academic Press (2008)

    Google Scholar 

  9. Soetan, K., Olaiya, O., Oewole, O.: The importance of mineral elements for humans, domestic animals and plants. A review. Afr J Food Sci. 4, 200–222 (2010)

    CAS  Google Scholar 

  10. Galloway, J., Townsend, A., Erisman, J., Bekunda, M., Cai, Z., Freney, J., Martinelli, L., Seitzinger, S., Sutton, M.: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 320, 889–892 (2008). https://doi.org/10.1126/science.1136674

    Article  CAS  Google Scholar 

  11. Sprent, J.I., Sprent, P.: Nitrogen Fixing Organisms: Pure and Applied Aspects. Chapman and Hall, London etc. (1990)

    Book  Google Scholar 

  12. Tate, R.: Soil Microbiology (Symbiotic Nitrogen Fixation). John Wiley & Sons, Inc., New York (1995)

    Google Scholar 

  13. Brockwell, J., Bottomley, P., Thies, J.: Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil. 174, 143–180 (1995)

    Article  CAS  Google Scholar 

  14. Sato, T.: Effects of Rhizobium Inoculation on Nitrogen Fixation and Growth of Leguminous Green Manure Crop Hairy Vetch (Vicia Villosa Roth). Advances in Biology and Ecology of Nitrogen Fixation, IntechOpen (2014)

    Book  Google Scholar 

  15. Yadav, M.R., Kumar, S., Lal, M.K., Kumar, D., Kumar, R., Yadav, R.K., Kumar, S., Nanda, G., Singh, J., Udawat, P., Meena, N.K., Jha, P.K., Minkina, T., Glinushkin, A.P., Kalinitchenko, V.P., Rajput, V.D.: Mechanistic understanding of leakage and consequences and recent technological advances in improving nitrogen use efficiency in cereals. Agron. J. 13, 527 (2023)

    CAS  Google Scholar 

  16. Huang, Y.C., Fan, R., Grusak, M.A., Sherrier, J.D., Huang, C.P.: Effects of nano-ZnO on the agronomically relevant rhizobium-legume symbiosis. Sci. Total Environ. 497-498, 78–90 (2014). https://doi.org/10.1016/j.scitotenv.2014.07.100

    Article  CAS  Google Scholar 

  17. Oldroyd, G.E., Dixon, R.: Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 26, 19–24 (2014). https://doi.org/10.1016/j.copbio.2013.08.006

    Article  CAS  Google Scholar 

  18. Erisman, J.W., Galloway, J.N., Seitzinger, S., Bleeker, A., Dise, N.B., Petrescu, A.M., Leach, A.M., de Vries, W.: Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 368, 20130116 (2013). https://doi.org/10.1098/rstb.2013.0116

    Article  CAS  Google Scholar 

  19. Canfield, D.E., Glazer, A.N., Falkowski, P.G.: The evolution and future of earth’s nitrogen cycle. Science. 330, 192–196 (2010). https://doi.org/10.1126/science.1186120

    Article  CAS  Google Scholar 

  20. Liang, Y., Guo, M., Fan, C., Dong, H., Ding, G., Zhang, W., Tang, G., Yang, J., Kong, D., Cao, Y.: Development of novel urease-responsive pendimethalin microcapsules using silica-IPTS-PEI as controlled release carrier materials. ACS Sustain. Chem. Eng. 5, 4802–4810 (2017)

    Article  CAS  Google Scholar 

  21. Nazarov, P., Baleev, D., Ivanova, M., Sokolova, L., Karakozova, M.: Infectious plant diseases: etiology, current status. Acta Nat. 12, 46–59 (2020). https://doi.org/10.32607/actanaturae.11026

    Article  CAS  Google Scholar 

  22. Singh, D., Singh, S.K., Modi, A., Singh, P.K., Yeka Zhimo, V., Kumar, A.: Impacts of agrochemicals on soil microbiology and food quality. Agrochem Detect Treatm Remed, 101–116 (2020)

    Google Scholar 

  23. Drechsel, L., Schulz, M., von Stetten, F., Moldovan, C., Zengerle, R., Paust, N.: Electrochemical pesticide detection with AutoDip – a portable platform for automation of crude sample analyses. Lab Chip. 15, 704–710 (2015)

    Article  CAS  Google Scholar 

  24. Ma, X., Wang, J., Wu, Q., Wang, C., Wang, Z.: Extraction of carbamate pesticides in fruit samples by graphene reinforced hollow fibre liquid microextraction followed by high performance liquid chromatographic detection. Food Chem. 157, 119–124 (2014)

    Article  CAS  Google Scholar 

  25. Baltes, N.J., Gil-Humanes, J., Voytas, D.F.: Genome engineering and agriculture: opportunities and challenges. Prog. Mol. Biol. Transl. Sci., 1–26 (2017). https://doi.org/10.1016/bs.pmbts.2017.03.011

  26. Gelvin, S.B.: Integration of agrobacterium T-DNA into the plant genome. Annu. Rev. Genet. 51, 195–217 (2017). https://doi.org/10.1146/annurev-genet-120215-035320

    Article  CAS  Google Scholar 

  27. Ghimire, B.K., Yu, C.Y., Kim, W.-R., Moon, H.-S., Lee, J., Kim, S.H., Chung, I.M.: Assessment of benefits and risk of genetically modified plants and products: current controversies and perspective. Sustainability. 15, 2023 (1722)

    Google Scholar 

  28. Dipti, P.: Bioenergy crops an alternative energy. Int J Environ Eng. 4, 265–272 (2013)

    Google Scholar 

  29. Stavridou, E., Hastings, A., Webster, R., Robson, P.: The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. Glob. Change Biol. Bioenergy. 9, 92–104 (2017)

    Article  CAS  Google Scholar 

  30. Karp, A., Shield, I.: Bioenergy from plants and the sustainable yield challenge. New Phytol. 179, 15–32 (2008). https://doi.org/10.1111/j.1469-8137.2008.02432.x

    Article  Google Scholar 

  31. Erb, K., Haberl, H., Plutzar, C.: Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy. 47, 260–269 (2012). https://doi.org/10.1016/j.enpol.2012.04.066

    Article  Google Scholar 

  32. Ale, S., Femeena, P.V., Mehan, S., Cibin, R.: Environmental impacts of bioenergy crop production and benefits of multifunctional bioenergy systems. Bioenergy Carbon Capt Storage, 195–217 (2019). https://doi.org/10.1016/B978-0-12-816229-3.00010-7

  33. European Commission: Commission recommendation of 18 October 2011 on the definition of nanomaterial. OJEU. L275, 38–40 (2011)

    Google Scholar 

  34. Mukherjee, A., Majumdar, S., Servin, A., Pagano, L., Dhankher, O., White, J.: Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7, 172 (2016). https://doi.org/10.3389/fpls.2016.00172

    Article  Google Scholar 

  35. Alkaç, İ.M., Çerçi, B., Timuralp, C., Şen, F.: Nanomaterials and their classification. Nanomaterials for direct alcohol fuel cells, pp. 17–33. Elsevier (2021)

    Book  Google Scholar 

  36. Popov, V.: Carbon nanotubes: properties and application. Mater. Sci. Eng. C. 43, 61–102 (2004). https://doi.org/10.1016/j.mser.2003.10.001

    Article  CAS  Google Scholar 

  37. Ioannou, A., Gohari, G., Papaphilippou, P., Panahirad, S., Akbari, A., Dadpour, M., Krasia-Christoforou, T., Fotopoulos, V.: Advanced nanomaterials in agriculture under a changing climate: the way to the future? EEB. 176, 104048 (2020)

    CAS  Google Scholar 

  38. Khan, I., Raza, M., Awan, S., Shah, G., Rizwan, M., Ali, B., Tariq, R., Hassan, M., Alyemeni, M., Brestic, M., Zhang, X., Ali, S., Huang, L.: Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 156, 221–232 (2020). https://doi.org/10.1016/j.plaphy.2020.09.018

    Article  CAS  Google Scholar 

  39. Panova, G., Ktitorova, I., Skobeleva, O., Sinjavina, N., Charykov, N., Semenov, K.: Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions. J. Plant Growth Regul. 79, 309–317 (2016)

    Article  CAS  Google Scholar 

  40. Alavilli, H., Yolcu, S., Skorupa, M., Aciksoz, S., Asif, M.: Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. Planta. 258, 30 (2023). https://doi.org/10.1007/s00425-023-04189-x

    Article  CAS  Google Scholar 

  41. Gohari, G., Panahirad, S., Sepehri, N., Akbari, A., Zahedi, S., Jafari, H., Dadpour, M., Fotopoulos, V.: Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline. Environ. Sci. Pollut. Res. 28, 42877–42890 (2021). https://doi.org/10.1007/s11356-021-13794-w

    Article  CAS  Google Scholar 

  42. Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., Zhong, J., Huang, H., Wang, Y., Li, S., Lifshitz, Y., Lee, S., Kang, Z.: Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater. 1, 663–672 (2018). https://doi.org/10.1021/acsabm.8b00345

    Article  CAS  Google Scholar 

  43. Shafiq, F., Iqbal, M., Ali, M., Ashraf, M.A.: Fullerenol regulates oxidative stress and tissue ionic homeostasis in spring wheat to improve net-primary productivity under salt-stress. Ecotoxicol Environ. 211, 111901 (2021). https://doi.org/10.1016/j.ecoenv.2021.111901

    Article  CAS  Google Scholar 

  44. Li, Z., Zhu, L., Zhao, F., Li, J., Zhang, X., Kong, X., Wu, H., Zhang, Z.: Plant salinity stress response and nano-enabled plant salt tolerance. Front. Plant Sci. 13, 843994 (2022). https://doi.org/10.3389/fpls.2022.843994

    Article  Google Scholar 

  45. Yuan, Z., Zhang, Z., Wang, X., Li, L., Cai, K., Han, H.: Novel impacts of functionalized multi-walled carbon nanotubes in plants: promotion of nodulation and nitrogenase activity in the rhizobium-legume system. Nanoscale. 9, 9921–9937 (2017). https://doi.org/10.1039/c7nr01948c

    Article  CAS  Google Scholar 

  46. Lahiani, M., Chen, J., Irin, F., Puretzky, A., Green, M., Khodakovskaya, M.: Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon. 81, 607–619 (2015). https://doi.org/10.1016/j.carbon.2014.09.095

    Article  CAS  Google Scholar 

  47. Haghighi, M., da Silva, J.: The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J. Crop. Sci. Biotechnol. 17, 201–208 (2014). https://doi.org/10.1007/s12892-014-0057-6

    Article  Google Scholar 

  48. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., Biris, A.: Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 3, 3221–3227 (2009). https://doi.org/10.1021/nn900887m

    Article  CAS  Google Scholar 

  49. Tiwari, D., Dasgupta-Schubert, N., Villaseñor Cendejas, L., Villegas, J., Carreto Montoya, L., Borjas García, S.: Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. 4, 577–591 (2014). https://doi.org/10.1007/s13204-013-0236-7

    Article  CAS  Google Scholar 

  50. Safdar, M., Kim, W., Park, S., Gwon, Y., Kim, Y., Kim, J.: Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnology. 20, 275 (2022). https://doi.org/10.1186/s12951-022-01483-w

    Article  CAS  Google Scholar 

  51. Cañas, J., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E., Olszyk, D.: Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 27, 2008 (1922–1931). https://doi.org/10.1897/08-117.1

    Article  Google Scholar 

  52. Zhang, H., Yue, M., Zheng, X., Xie, C., Zhou, H., Li, L.: Physiological effects of single-and multi-walled carbon nanotubes on rice seedlings. IEEE Trans Nano Biosci. 16, 563–570 (2017). https://doi.org/10.1109/TNB.2017.2715359

    Article  Google Scholar 

  53. Xu, X., Mao, X., Zhuang, J., Lei, B., Li, Y., Li, W., Zhang, X., Hu, C., Fang, Y., Liu, Y.: PVA-coated fluorescent carbon dot nanocapsules as an optical amplifier for enhanced photosynthesis of lettuce. ACS Sustain. Chem. Eng. 8, 3938–3949 (2020)

    Article  CAS  Google Scholar 

  54. Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C., Liu, Y.: A review on the effects of carbon dots in plant systems. Mater Chem Front. 4, 437–448 (2020)

    Article  CAS  Google Scholar 

  55. Chandra, S., Pradhan, S., Mitra, S., Patra, P., Bhattacharya, A., Pramanik, P., Goswami, A.: High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis. Nanoscale. 6, 3647–3655 (2014). https://doi.org/10.1039/c3nr06079a

    Article  CAS  Google Scholar 

  56. Chakravarty, D., Erande, M., Late, D.: Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J. Sci. Food Agric. 95, 2772–2778 (2015). https://doi.org/10.1002/jsfa.7106

    Article  CAS  Google Scholar 

  57. Zaytseva, O., Neuman, G.: Carbon nanomaterials: production. Impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric. 3, 17 (2016)

    Article  Google Scholar 

  58. Demirer, G., Zhang, H., Goh, N., González-Grandío, E., Landry, M.: Carbon nanotube-mediated DNA delivery without transgene integration in intact plants. Nat. Protoc. 14, 2954–2971 (2019). https://doi.org/10.1038/s41596-019-0208-9

    Article  CAS  Google Scholar 

  59. Demirer, G., Zhang, H., Goh, N., Pinals, R., Chang, R., Landry, M.: Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci Adv. 6, eaaz0495 (2020). https://doi.org/10.1126/sciadv.aaz0495

    Article  CAS  Google Scholar 

  60. Chen, Z., Zhao, J., Cao, J., Zhao, Y., Huang, J., Zheng, Z., Li, W., Jiang, S., Qiao, J., Xing, B., Zhang, J.: Opportunities for graphene, single-walled and multi-walled carbon nanotube applications in agriculture: a review. Crop Design. 1, 100006 (2022)

    Article  Google Scholar 

  61. Demirer, G., Zhang, H., Matos, J., Goh, N., Cunningham, F., Sung, Y., Chang, R., Aditham, A., Chio, L., Cho, M.-J.: High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019). https://doi.org/10.1038/s41565-019-0382-5

    Article  CAS  Google Scholar 

  62. Giraldo, J., Landry, M., Faltermeier, S., McNicholas, T., Iverson, N., Boghossian, A., Reuel, N., Hilmer, A., Sen, F., Brew, J., Strano, M.: Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014). https://doi.org/10.1038/nmat3890

    Article  CAS  Google Scholar 

  63. Jat, S., Bhattacharya, J., Sharma, M.: Nanomaterial based gene delivery: a promising method for plant genome engineering. J. Mater. Chem. B. 8, 4165–4175 (2020). https://doi.org/10.1039/D0TB00217H

    Article  CAS  Google Scholar 

  64. Golestanipour, A., Nikkhah, M., Aalami, A., Hosseinkhani, S.: Gene delivery to tobacco root cells with single-walled carbon nanotubes and cell-penetrating fusogenic peptides. Mol. Biotechnol. 60, 863–878 (2018)

    Article  CAS  Google Scholar 

  65. Burlaka, O., Yemets, A., Pirko, Y., Blume, Y.: Non-covalent functionalization of carbon nanotubes for efficient gene delivery. nanophysics, nanophotonics, surface studies and applications, pp. 355–370. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-30737-4_30

    Book  Google Scholar 

  66. Burlaka, O., Pirko, Y., Yemets, A., Blume, Y.: Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol. Genet. 49, 3–12 (2015)

    Article  CAS  Google Scholar 

  67. Wang, C., Yang, J., Qin, J., Yang, Y.: Eco-friendly nanoplatforms for crop quality control, protection, and nutrition. Adv. Sci. 8, 2004525 (2021). https://doi.org/10.1002/advs.202004525

    Article  CAS  Google Scholar 

  68. Patel, D.K., Kim, H.-B., Dutta, S.D., Ganguly, K., Lim, K.-T.: Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials. 13, 2020 (1679). https://doi.org/10.3390/ma13071679

    Article  CAS  Google Scholar 

  69. Xiao, Q., Zhang, S., Zhang, D., Wang, Y., Xu, P.: Effects of slow/controlled release fertilizers felted and coated by nanomaterials on crop yield and quality. J Plant Nutr Fertil. 5, 951–955 (2008)

    Google Scholar 

  70. Bityutskii, N.P., Yakkonen, K.L., Lukina, K.A., Semenov, K.N.: Fullerenol increases effectiveness of foliar iron fertilization in iron-deficient cucumber. PLoS One. 15, e0232765 (2020). https://doi.org/10.1371/journal.pone.0232765

    Article  CAS  Google Scholar 

  71. Wang, C., Yang, J., Qin, J., Yang, Y.: Eco-friendly nanoplatforms for crop quality control, protection, and nutrition. Adv. Sci. 8, 2004525 (2021)

    Article  CAS  Google Scholar 

  72. Zhang, G., Zhou, L., Cai, D., Wu, Z.: Anion-responsive carbon nanosystem for controlling selenium fertilizer release and improving selenium utilization efficiency in vegetables. Carbon. 129, 711–719 (2018)

    Article  CAS  Google Scholar 

  73. Cao, L., Zhang, H., Zhou, Z., Xu, C., Shan, Y., Lin, Y., Huang, Q.: Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles. Nanoscale. 10, 20354–20365 (2018). https://doi.org/10.1039/c8nr04626c

    Article  CAS  Google Scholar 

  74. Kundu, M., Krishnan, P., Kotnala, R., Sumana, G.: Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends Food Sci Technol. 88, 157–178 (2019). https://doi.org/10.1016/j.tifs.2019.03.024

    Article  CAS  Google Scholar 

  75. Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y., Zhou, X.: The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Mikrochim. Acta. 184, 2017 (1899–1914)

    Google Scholar 

  76. Shi, L., Li, Y., Li, X., Zhao, B., Wen, X., Zhang, G., Dong, C., Shuang, S.: Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu2+ sensing in living cells. Biosens. Bioelectron. 77, 598–602 (2016). https://doi.org/10.1016/j.bios.2015.10.031

    Article  CAS  Google Scholar 

  77. Borse, V., Thakur, M., Sengupta, S., Srivastava, R.: N-doped multi-fluorescent carbon dots for ‘turn off-on’ silver-biothiol dual sensing and mammalian cell imaging application. Sens. Actuators B: Chem. 248, 481–492 (2017)

    Article  CAS  Google Scholar 

  78. Zhang, Y., Cui, P., Zhang, F., Feng, X., Wang, Y., Yang, Y., Liu, X.: Fluorescent probes for "off-on" highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta. 152, 288–300 (2016). https://doi.org/10.1016/j.talanta.2016.02.018

    Article  CAS  Google Scholar 

  79. Zhou, L., Lin, Y., Huang, Z., Ren, J., Qu, X.: Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Comm. 48, 1147–1149 (2012). https://doi.org/10.1039/c2cc16791c

    Article  CAS  Google Scholar 

  80. Li, H., Sun, C., Vijayaraghavan, R., Zhou, F., Zhang, X., MacFarlane, D.: Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides. Carbon. 104, 33–39 (2016)

    Article  CAS  Google Scholar 

  81. Hou, J., Dong, J., Zhu, H., Teng, X., Ai, S., Mang, M.: A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots. Biosens. Bioelectron. 68, 20–26 (2015). https://doi.org/10.1016/j.bios.2014.12.037

    Article  CAS  Google Scholar 

  82. Hou, J., Dong, G., Tian, Z., Lu, J., Wang, Q., Ai, S., Wang, M.: A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-cu(II) system. Food Chem. 202, 81–87 (2016). https://doi.org/10.1016/j.foodchem.2015.11.134

    Article  CAS  Google Scholar 

  83. Wu, X., Song, Y., Yan, X., Zhu, C., Ma, Y., Du, D., Lin, Y.: Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 94, 292–297 (2017). https://doi.org/10.1016/j.bios.2017.03.010

    Article  CAS  Google Scholar 

  84. Ślesak, I., Libik, M., Karpinska, B., Karpinski, S., Miszalski, Z.: The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim. Pol. 54, 39–50 (2007)

    Article  Google Scholar 

  85. Hua, J., Jiao, Y., Wang, M., Yang, Y.: Determination of norfloxacin or ciprofloxacin by carbon dots fluorescence enhancement using magnetic nanoparticles as adsorbent. Mikrochim. Acta. 185, 137 (2018). https://doi.org/10.1007/s00604-018-2685-x

    Article  CAS  Google Scholar 

  86. Qu, F., Sun, Z., Liu, D., Zhao, X., You, J.: Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots. Mikrochim. Acta. 183, 2547–2553 (2016)

    Article  CAS  Google Scholar 

  87. Shi, X., Wei, W., Fu, Z., Gao, W., Zhang, C., Zhao, Q., Deng, F., Lu, X.: Review on carbon dots in food safety applications. Talanta. 194, 809–821 (2019). https://doi.org/10.1016/j.talanta.2018.11.005

    Article  CAS  Google Scholar 

  88. Wang, N., Wang, Y., Guo, T., Yang, T., Chen, M., Wang, J.: Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of iron (III) and Escherichia coli. Biosens. Bioelectron. 85, 68–75 (2016). https://doi.org/10.1016/j.bios.2016.04.089

    Article  CAS  Google Scholar 

  89. Bhaisare, M., Gedda, G., Khan, M., Wu, H.: Fluorimetric detection of pathogenic bacteria using magnetic carbon dots. Anal. Chim. Acta. 920, 63–71 (2016). https://doi.org/10.1016/j.aca.2016.02.025

    Article  CAS  Google Scholar 

  90. Zhong, D., Zhuo, Y., Feng, Y., Yang, X.: Employing carbon dots modified with vancomycin for assaying gram-positive bacteria like Staphylococcus aureus. Biosens. Bioelectron. 74, 546–553 (2015). https://doi.org/10.1016/j.bios.2015.07.015

    Article  CAS  Google Scholar 

  91. Pandey, K., Anas, M., Hicks, V., Green, M., Khodakovskaya, M.: Improvement of commercially valuable traits of industrial crops by application of carbon-based nanomaterials. Sci. Rep. 9, 19358 (2019). https://doi.org/10.1038/s41598-019-55903-3

    Article  CAS  Google Scholar 

  92. Kole, C., Kole, P., Randunu, K., Choudhary, P., Podila, R., Ke, P., Rao, A., Marcus, R.: Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 13, 37 (2013). https://doi.org/10.1186/1472-6750-13-37

    Article  Google Scholar 

  93. Pandey, K., Lahiani, M., Hicks, V., Hudson, M., Green, M., Khodakovskaya, M.: Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS One. 13, e0202274 (2018). https://doi.org/10.1371/journal.pone.0202274

    Article  CAS  Google Scholar 

  94. Husen, A.: Carbon-based nanomaterials and their interactions with agricultural crops. Nanomaterials for agriculture and forestry applications. Elsevier, 199–218 (2020). https://doi.org/10.1016/B978-0-12-817852-2.00008-1

  95. Shang, Y., Hasan, M., Ahammed, G., Li, M., Yin, H., Zhou, J.: Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 24, 2558 (2019)

    Article  CAS  Google Scholar 

  96. Katti, D., Sharma, A., Pradhan, S., Katti, K.: Carbon nanotube proximity influences rice DNA. Chem. Phys. 2015455, 17–22 (2015). https://doi.org/10.1016/j.chemphys.2015.03.015

    Article  CAS  Google Scholar 

  97. Tripathi, D., Shweta, Singh, S., Singh, S., Pandey, R., Singh, V., Sharma, N., Prasad, S., Dubey, N., Chauhan, D.: An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem. 110, 2–12 (2017). https://doi.org/10.1016/j.plaphy.2016.07.030

    Article  CAS  Google Scholar 

  98. Khodakovskaya, M., de Silva, K., Nedosekin, D., Dervishi, E., Biris, A., Shashkov, E., Galanzha, E., Zharov, V.: Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. 108, 1028–1033 (2011). https://doi.org/10.1073/pnas.1008856108

    Article  Google Scholar 

  99. Jordan, J., Oates, R., Subbiah, S., Payton, P., Singh, K., Shah, S., Green, M., Klein, D., Cañas-Carrell, J.: Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. Proc. Natl. Acad. Sci. 256, 127042 (2020). https://doi.org/10.1016/j.chemosphere.2020.127042

    Article  CAS  Google Scholar 

  100. Zhuzhukin, K.V., Evlakov, P.M., Grodetskaya, T.A., Gusev, A.A., Zakharova, O.V., Shuklinov, A.V., Tomina, E.V.: Effect of multi-walled carbon nanotubes on the growth and expression of stress resistance genes in birch. Forests. 14, 163 (2023). https://doi.org/10.3390/f14010163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajasekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rajasekar, P., Thamizhinian, V., Arun Kumar, S. (2024). Functionalized Carbon Nanostructures in Agro-Food Production. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_68-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_68-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics