Skip to main content

Non-covalent Functionalization of Carbon Nanotubes for Efficient Gene Delivery

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

Abstract

During recent decades there is a growing need in advanced nanotechnology-based gene delivery techniques for biology, biotechnology, and biomedicine since conventional genetic transformation techniques are exhausting their potentialities in front of recent major challenges in respective fields. There exists a wide variety of nanostructures of different properties and compositions that are considered suitable for this aim. Among them, carbon nanotubes (CNTs) are viewed to pose promising platform for the development of advanced gene delivery methods due to their acceptable biocompatibility levels, needlelike structure, and high surface area responsible for extensive modification and molecular cargo binding. In this review the background and recent achievements of using CNTs as gene delivery vehicles are discussed. The applicability of covalent and non-covalent CNT functionalization approaches for the design of favorable CNT interfaces useful in biology is elucidated as well as basic mechanisms of these processes are outlined. In contrast to widely exploited covalent functionalization, the potential of non-covalent surface modification of CNTs is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silva AT, Nguyen A, Ye C et al (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291

    Article  Google Scholar 

  2. Sokolova V, Epple M (2008) Inorganic nanoparticles as a carrier for nucleic acid into cells. Angew Chem Int Ed 47:1382–1395

    Article  Google Scholar 

  3. Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793

    Article  Google Scholar 

  4. Alvarez MA (ed) (2011) Genetic transformation. InTech, Rijeka

    Google Scholar 

  5. Clive J (2014) Global status of commercialized biotech/GM crops: 2014. ISAAA Brief No. 49. ISAAA, Ithaca.

    Google Scholar 

  6. Hernández AC, Guillén JC (2012) How to get exogenous DNA to cross the cell membrane of plants: comment on “Physical methods for genetic transformation in plants” by Rivera et al. Phys Life Rev 9(3):348–349

    Article  Google Scholar 

  7. Dizaj SM, Jafari S, Khosroushahi AY (2014) A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett 9:252–260

    Article  ADS  Google Scholar 

  8. Rai M, Deshmukh S, Gade A, Abd-Elsalam KA (2012) Strategic nanoparticle-mediated gene transfer in plants and animals—a novel approach. Curr Nanosci 8:170–179

    Article  ADS  Google Scholar 

  9. Karimi M, Solati N, Ghasemi A et al (2015) Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv 12(7):1089–1105

    Article  Google Scholar 

  10. Chen ZY, Liang K, Qiu RX, Luo LP (2011) Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. Ultrasound Med 30:1247–1258

    Google Scholar 

  11. Cha TS, Chen CF, Yee W et al (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434

    Article  Google Scholar 

  12. Darbani B, Farajnia S, Toorchi M et al (2008) DNA-delivery methods to produce transgenic plants. Biotechnol 7(3):385–402

    Article  Google Scholar 

  13. Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21(12):963–977

    Article  Google Scholar 

  14. Rafsanjani MSO, Alvari A, Samim M et al (2012) Application of novel nanotechnology strategies in plant biotransformation: a contemporary overview. Recent Pat Biotechnol 6:69–79

    Article  Google Scholar 

  15. Al-Jamal KT, Gherardini L, Bardi G et al (2011) Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci U S A 108(27):10952–10957

    Article  ADS  Google Scholar 

  16. Klumpp C, Kostarelos K, Prato M et al (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758(3):404–412

    Article  Google Scholar 

  17. Serag MF, Kaji N, Gaillard C et al (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5(1):493–499

    Article  Google Scholar 

  18. Serag MF, Kaji N, Venturelli E et al (2011) Functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5(11):9264–9270

    Article  Google Scholar 

  19. Ali-Boucetta H, Al-Jamal KT, McCarthy D et al (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 4:459–461

    Article  Google Scholar 

  20. Bhirde A, Patel V, Gavard J et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    Article  Google Scholar 

  21. Dong H, Ding L, Yan F et al (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32(15):3875–3882

    Article  Google Scholar 

  22. Hao Y, Xu P, He C et al (2011) Impact of carbodiimide crosslinker used for magnetic carbon nanotube mediated GFP plasmid delivery. Nanotechnology 22(28):285103

    Article  Google Scholar 

  23. Herrero MA, Toma FM, Al-Jamal KT et al (2009) Synthesis and characterization of a carbon nanotube–dendron series for efficient siRNA delivery. J Am Chem Soc 131:9843–9848

    Article  Google Scholar 

  24. Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605

    Article  ADS  Google Scholar 

  25. Liu Y, Wu DC, Zhang WD et al (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure non-covalent immobilization and efficient delivery of DNA. Angew Chem Int Edn 44(30):4782–4785

    Article  Google Scholar 

  26. Podesta JE, Al-Jamal KT, Herrero MA et al (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5:1176–1185

    Article  Google Scholar 

  27. Qin W, Yang K, Tang H et al (2011) Improved GFP gene transfection mediated by polyamidoamine dendrimerfunctionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf B Biointerfaces 84(1):206–213

    Article  Google Scholar 

  28. Singh R, Pantarotto D, McCarthy D et al (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127:4388–4396

    Article  Google Scholar 

  29. Wang T, Upponi JR, Torchilin VP (2012) Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm 427(1):3–20

    Article  Google Scholar 

  30. Mattos IB, Alves DA, Hollanda LM et al (2011) Effects of multi-walled carbon nanotubes (MWCNT) under Neisseria meningitides transformation process. J Nanobiotechnology 9:53

    Article  Google Scholar 

  31. Nunes A, Amsharov N, Guo C et al (2010) Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small 6(20):2281–2291

    Article  Google Scholar 

  32. Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43:5242–5246

    Article  Google Scholar 

  33. Raffa V, Vittorio O, Costa M et al (2012) Multiwalled carbon nanotube antennas induce effective plasmid dna transfection of bacterial cells. J Nanoneurosci 2(1):56–62

    Article  Google Scholar 

  34. Rojas-Chapana J, Troszczynska J, Firkowska I et al (2005) Multi-walled carbon nanotubes for plasmid delivery into E. coli cells. Lab Chip 5:536–539

    Article  Google Scholar 

  35. Yuan H, Hu S, Huang P et al (2011) Single walled carbon nanotubes exhibit dual-phase regulation to exposed Arabidopsis mesophyll cells. Nanoscale Res Lett 6:44

    ADS  Google Scholar 

  36. Burlaka OM, Pirko YV, Yemets AI, Blume YB (2015) Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol Genet 49(6):349–357

    Article  Google Scholar 

  37. Liu Q, Chen B, Wang Q et al (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010

    Article  ADS  Google Scholar 

  38. Serag MF, Kaji N, Tokeshi M et al (2012) The plant cell uses carbon nanotubes to build tracheary elements. Integr Biol 4:127–131

    Article  Google Scholar 

  39. Serag MF, Kaji N, Tokeshiac M, Baba Y (2012) Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. RSC Advances 2:398–400

    Article  Google Scholar 

  40. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  Google Scholar 

  41. Wu Y, Phillips JA, Liu H et al (2008) Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2(10):2023–2028

    Article  Google Scholar 

  42. Mohanpuria P, Rana N, Yadav S (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  Google Scholar 

  43. Yang W, Thordarson P, Gooding JJ et al (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001

    Article  Google Scholar 

  44. Chen J, Chen Q, Ma Q (2012) Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes. J Colloid Interface Sci 370(1):32–38

    Article  Google Scholar 

  45. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397

    Article  Google Scholar 

  46. Kharisov BI, Kharissova OV, Gutierre HL, Mendez UO (2009) Recent advances on the soluble carbon nanotubes. Ind Eng Chem Res 48:572–590

    Article  Google Scholar 

  47. Clark MD, Subramanian S, Krishnamoorti R (2011) Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J Colloid Interface Sci 354(1):144–151

    Article  Google Scholar 

  48. Ramos-Perez V, Cifuentes A, Coronas N et al (2013) Modification of carbon nanotubes for gene delivery vectors. In: Bergese P, Hamad-Schifferli K (eds) Nanomaterial interfaces in biology: methods and protocols. Methods in molecular biology, vol 1025. Springer, New York, pp 261–269

    Chapter  Google Scholar 

  49. Sanchez-Pomales G, Pagan-Miranda C, Santiago-Rodriguez L, Cabrera CR (2010) DNA-wrapped carbon nanotubes: from synthesis to applications. In: Marulanda JM (ed) Carbon nanotubes. InTech, Vukovar, pp 721–748

    Google Scholar 

  50. Goodwin AP, Tabakman SM, Welsher K et al (2009) Phospholipid-dextran with a single coupling point: a useful amphiphile for functionalization of nanomaterials. J Am Chem Soc 131:289–296

    Article  Google Scholar 

  51. Tasis D, Papagelis K, Douroumis D et al (2008) Diameter-selective solubilization of carbon nanotubes by lipid micelles. J Nanosci Nanotechnol 8:420–423

    Article  Google Scholar 

  52. Zhang J, Wang Q, Wang L, Wang A (2007) Manipulated dispersion of carbon nanotubes with derivatives of chitosan. Carbon 45:1917–1920

    Article  Google Scholar 

  53. Zhang LW, Zeng L, Barron AR et al (2007) Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol 26(2):103–113

    Article  Google Scholar 

  54. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  ADS  Google Scholar 

  55. Lacerda L, Raffa S, Prato M et al (2007) Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2:38–43

    Article  Google Scholar 

  56. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  Google Scholar 

  57. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties and applications. Springer, Berlin

    Book  Google Scholar 

  58. Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomedicine 4(3):173–182

    Google Scholar 

  59. Zhang M, Li J (2009) Carbon nanotube in different shapes. Materials today 12(6):12–18

    Article  Google Scholar 

  60. Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577–581

    Article  Google Scholar 

  61. Raffa V, Ciofani G, Nitodas S et al (2008) Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 46:1600–1610

    Article  Google Scholar 

  62. Bekyarova E, Ni Y, Malarkey EB et al (2005) Applications of carbon nanotubes in biotechnology. J Biomed Nanotechnol 1(1):3–17

    Article  Google Scholar 

  63. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  Google Scholar 

  64. Niyogi S, Hamon MA, Hu H et al (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  Google Scholar 

  65. Chen J, Hamon MA, Hu H et al (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    Article  ADS  Google Scholar 

  66. Flavin K, Kopf I, Del Canto E et al (2011) Controlled carboxylic acid introduction: a route to highly purified oxidised single-walled carbon nanotubes. J Mater Chem 21:17881–17887

    Article  Google Scholar 

  67. Guryanov I, Toma FM, Montellano López A et al (2009) Microwave‐assisted functionalization of carbon nanostructures in ionic liquids. Chem Eur J 15:12837–12845

    Article  Google Scholar 

  68. Strano MS, Dyke CA, Usrey ML et al (2003) Electronic structure control of single-waited carbon nanotube functionalization. Science 301:1519–1522

    Article  ADS  Google Scholar 

  69. Tan JM, Arulselvan P, Fakurazi S et al (2014) A review on characterizations and biocompatibility of functionalized carbon nanotubes in drug delivery design. J Nanomater 2014, 917024, 20 pageshttp://dx.doi.org/10.1155/2014/917024

    Google Scholar 

  70. Darabi HR, Roozkhosh A, Tehrani MJ et al (2014) Characterization of ester- or thioamide-functionalized single-walled carbon nanotube-azithromycin conjugates. Appl Surf Sci 288:122–129

    Article  ADS  Google Scholar 

  71. Ghini G, Trono C, Giannetti A et al (2013) Carbon nanotubes modified with fluorescein derivatives for pH nanosensing. Sens Actuat B 179:163–169

    Article  Google Scholar 

  72. Qi H, Ling C, Huang R et al (2012) Functionalization of single-walled carbon nanotubes with protein by click chemistry as sensing platform for sensitized electrochemical immunoassay. Electrochim Acta 63:76–82

    Article  Google Scholar 

  73. Peretz S, Regev O (2012) Carbon nanotubes as nanocarriers in medicine. Curr Opin Coll Interface Sci 17(6):360–368

    Article  Google Scholar 

  74. Takahashi T, Tsunoda K, Yajima H, Ishii T (2004) Dispersion and purification of single-wall carbon nanotubes using carboxymethylcellulose. Jpn J Appl Phys 43(6A):3636–3639

    Article  ADS  Google Scholar 

  75. Bilalis P, Katsigianopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4:2911–2934

    Article  Google Scholar 

  76. Bianco A (2004) Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin Drug Deliv 1(1):57–65

    Article  Google Scholar 

  77. Kam NWS, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026

    Article  Google Scholar 

  78. Mu Q, Broughton DL, Yan B (2009) Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett 9(12):4370–4375

    Article  ADS  Google Scholar 

  79. Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2:837–846

    Article  Google Scholar 

  80. Park C, Lee S, Lee JH et al (2007) Controlled assembly of carbon nanotubes encapsulated with amphiphilic block copolymer. Carbon 45(10):2072–2078

    Article  Google Scholar 

  81. Tu W, Lei J, Ju H (2009) Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: Direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid. Chem Eur J 15:779–784

    Article  Google Scholar 

  82. Kim SW, Kim T, Kim YS et al (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50(1):3–33

    Article  Google Scholar 

  83. Moore VC, Strano MS, Haroz EH et al (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3(10):1379–1382

    Article  ADS  Google Scholar 

  84. Attal S, Thiruvengadathan R, Regev O (2006) Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy. Anal Chem 78:8098–8104

    Article  Google Scholar 

  85. Islam MF, Rojas E, Bergey DM et al (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273

    Article  ADS  Google Scholar 

  86. Yan Y, Cui J, Potschke P, Voit B (2012) Dispersion of pristine singlewalled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites. Carbon 48(9):2603–2612

    Article  Google Scholar 

  87. Ding K, Hu B, Xie Y et al (2009) A simple route to coat mesoporous SiO2 layer on carbon nanotubes. J Mater Chem 19(22):3725–3731

    Article  Google Scholar 

  88. Kang YK, Lee O-S, Deria P et al (2009) Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett 9(4):1414–1418

    Article  ADS  Google Scholar 

  89. Kang Y, Taton TA (2003) Micelle-encapsulated carbon nanotubes: a route to nanotube composites. J Am Chem Soc 125(19):5650–5651

    Article  Google Scholar 

  90. Zhao W, Liu YT, Feng QP et al (2008) Dispersion and noncovalent modification of multiwalled carbon nanotubes by various polystyrene-based polymers. J Appl Polym Sci 109(6):3525–3532

    Article  Google Scholar 

  91. Crescenzo A, Ettorre V, Fontana A (2014) Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol 5:1675–1690

    Article  Google Scholar 

  92. O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342(3–4):265–271

    Article  ADS  Google Scholar 

  93. Harris JM, Zalipsky S (1997) Poly(ethylene glycol): chemistry and biological application. In: Szycher M (ed) Biocompatible polymers, metals and composites (1983). Am Chem Soc, Technomic, Washington, DC

    Google Scholar 

  94. Lacerda L, Russier J, Pastorin G et al (2012) Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 33(11):3334–3343

    Article  Google Scholar 

  95. Holder PG, Francis MB (2007) Integration of a self-assembling protein scaffold with water-soluble single-walled carbon nanotubes. Angew Chem Int Ed 46:4370–4373

    Article  Google Scholar 

  96. Dolatabadi JEN, Omidi Y, Losic D (2011) Carbon nanotubes as an advanced drug and gene delivery nanosystem. Curr Nanosci 7:297–314

    Article  ADS  Google Scholar 

  97. Orellana W, Correa JD (2014) Noncovalent functionalization of carbon nanotubes and graphene with tetraphenylporphyrins: Stability and optical properties from ab-initio calculations. J Mater Sci 50:898–905, arXiv:1506.00282

    Article  ADS  Google Scholar 

  98. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839

    Article  Google Scholar 

  99. Shim M, Kam NWS, Chen RJ et al (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    Article  ADS  Google Scholar 

  100. Teker K, Sirdeshmukh R, Sivakumar K et al (2005) Applications of carbon nanotubes for cancer research. NanoBiotechnol 1:171–182

    Article  Google Scholar 

  101. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56

    Article  Google Scholar 

  102. Fernando KAS, Lin Y, Wang W et al (2004) Diminished band-gap transitions of single-walled carbon nanotubes in complexation with aromatic molecules. J Am Chem Soc 126(33):10234–10235

    Article  Google Scholar 

  103. Heister E, Neves V, Tilmaciu C et al (2009) Triple functionalization of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47(9):2152–2160

    Article  Google Scholar 

  104. Lemasson F, Tittmann J, Hennrich F et al (2011) Debundling, selection and release of SWNTs using fluorene-based photocleavable polymers. Chem Commun 47:7428–7430

    Article  Google Scholar 

  105. Alpatova AL, Shan W, Babica P et al (2010) Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Res 44(2):505–520

    Article  Google Scholar 

  106. Chen Y, Liu H, Ye T et al (2007) DNA-directed assembly of single-wall carbon nanotubes. J Am Chem Soc 129:8696–8697

    Article  Google Scholar 

  107. Filip J, Sefcovicova J, Tomcik P et al (2011) A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta 84(2):355–361

    Article  Google Scholar 

  108. Gandra N, Chiu PL, Li W et al (2009) Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogs. J Phys Chem 113:5182–5185

    Google Scholar 

  109. Karajanagi SS, Yang H, Asuri P et al (2006) Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 22(4):1392–1395

    Article  Google Scholar 

  110. Kurppa K, Jiang H, Szilvay GR et al (2007) Controlled hybrid nanostructures via protein mediated noncovalent functionalization of carbon nanotubes. Angew Chem Int Ed 46:6446–6449

    Article  Google Scholar 

  111. Witus LS, Rocha JD, Yuwono VM et al (2007) Peptides that non-covalently functionalize single-walled carbon nanotubes to give controlled solubility characteristics. J Mater Chem 17:1909–1915

    Article  Google Scholar 

  112. Yang Q, Shuai L, Pan X (2008) Synthesis of fluorescent chitosan and its application in noncovalent functionalization of carbon nanotubes. Biomacromolecules 9:3422–9326

    Article  Google Scholar 

  113. Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110

    Article  ADS  Google Scholar 

  114. Cheng Q, Debnath S, Gregan E, Byrne HJ (2010) Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent. J Phys Chem C 114:8821–8827

    Article  Google Scholar 

  115. Nakashima N, Okuzono S, Murakami H et al (2003) DNA dissolves single-walled carbon nanotubes in water. Chem Lett 32(5):456–457

    Article  Google Scholar 

  116. Ausman KD, Piner R, Lourie O et al (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104:8911–8915

    Article  Google Scholar 

  117. Bergin SD, Nicolosi V, Streich PV et al (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20:1876–1881

    Article  Google Scholar 

  118. Sharifi S, Behzadi S, Laurent S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    Article  Google Scholar 

  119. Toh RJ, Ambrosi A, Pumera M (2012) Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication. Chemistry 18(37):11593–11596

    Article  Google Scholar 

  120. Battigelli A, Ménard-Moyon C, Da Ros T et al (2013) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Delivery Rev 65:1899–1920

    Article  Google Scholar 

  121. Shakhmaeva II, Bulatov ER, Bondar OV et al (2011) Binding and purification of plasmid DNA using multi-layered carbon nanotubes. J Biotechnol 152:102–107

    Article  Google Scholar 

  122. Li X, Peng Y, Qu X (2006) Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res 34(13):3670–3676

    Article  Google Scholar 

  123. Barisci JN, Tahhan M, Wallace GG et al (2004) Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv Funct Mater 14(2):133–138

    Article  Google Scholar 

  124. Dwyer C, Guthold M, Falvo M et al (2002) DNA-functionalized single-walled carbon nanotubes. Nanotechnology 13:601–604

    Article  ADS  Google Scholar 

  125. Kim JH, Kataoka M, Shimamoto D et al (2009) Defect-enhanced dispersion of carbon nanotubes in DNA solutions. Chem Phys Chem 10(14):2414–2417

    Google Scholar 

  126. Li Z, Wu Z, Li K (2009) The high dispersion of DNA-multiwalled carbon nanotubes and their properties. Anal Biochem 387(2):267–270

    Article  Google Scholar 

  127. Simon S, Biris AR, Lupu DM et al (2009) Dispersion of carbon nanotubes by single-stranded DNA wrapping for advanced biomedical applications. J Phys Conf Ser 182(1):012079

    Article  ADS  Google Scholar 

  128. Wang R, Sun J, Gao L, Zhang J (2010) Dispersion of single-walled carbon nanotubes by DNA for preparing transparent conductive films. J Mater Chem 20(33):6903–6909

    Article  Google Scholar 

  129. Rai M, Bansod S, Bawaskar M et al (2015) Nanoparticles-based delivery systems in plant genetic transformation. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Switzerland, pp 209–239

    Google Scholar 

  130. Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718

    Article  ADS  Google Scholar 

  131. Maji B, Samanta SK, Bhattacharya S (2014) Role of pH controlled DNA secondary structures in the reversible dispersion/precipitation and separation of metallic and semiconducting single-walled carbon nanotubes. Nanoscale 6:3721–3730

    Article  ADS  Google Scholar 

  132. Albertorio F, Hughes ME, Golovchenko JA, Branton D (2009) Base dependent DNA-carbon nanotube interactions: activation enthalpies and assembly-disassembly control. Nanotechnology 20(39):395101

    Article  Google Scholar 

  133. Johnson RR, Johnson ATC, Klein ML (2010) The nature of DNA-base-carbon-nanotube interactions. Small 6(1):31–34

    Article  Google Scholar 

  134. Tu X, Zheng MA (2008) DNA-based approach to the carbon nanotube sorting problem. Nano Res 1:185–194

    Article  Google Scholar 

  135. Furusawa Y, Fujiwara Y, Campbell P et al (2012) DNA double-strand breaks induced by cavitational mechanical effects of ultrasound in cancer cell lines. PLoS One 7(1):e29012

    Article  ADS  Google Scholar 

  136. Xu Y, Pehrsson PE, Chen L et al (2007) Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J Phys Chem C 111:8638–8643

    Article  Google Scholar 

  137. Zheng M, Jagota A, Semke ED et al (2003) DNA assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  ADS  Google Scholar 

  138. Zorbas V, Smith AL, Xie H et al (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127:12323–12328

    Article  Google Scholar 

  139. Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3:1259–1265

    Article  Google Scholar 

  140. Matsuura K, Saito T, Okazaki T et al (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett 429:497–502

    Article  ADS  Google Scholar 

  141. Wang S, Humphreys ES, Chung S-Y et al (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2(3):196–200

    Article  ADS  Google Scholar 

  142. Liu Y, Liang P, Zhang HY, Guo DS (2006) Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small 2(7):874–878

    Article  Google Scholar 

  143. Long D, Wu G, Zhu G (2008) Noncovalently modified carbon nanotubes with carboxymethylated chitosan: a controllable donor-acceptor nanohybrid. Int J Mol Sci 9:120–130

    Article  Google Scholar 

  144. Shieh YT, Wu HM, Twu YK, Chung YC (2010) An investigation on dispersion of carbon nanotubes in chitosan aqueous solutions. Colloid Polym Sci 288(4):377–385

    Article  Google Scholar 

  145. Takahashi T, Luculescu CR, Uchida K et al (2005) Dispersion behavior and spectroscopic properties of singlewalled carbon nanotubes in chitosan acidic aqueous solutions. Chem Lett 34(11):1516–1517

    Article  Google Scholar 

  146. Zheng W, Li Q, Su L et al (2006) Direct electrochemsitry of multi copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives. Electroanalysis 6:587–594

    Article  Google Scholar 

  147. Burlaka OM, Pirko YV, Kolomys OF et al (2015) Functionalization of carbon nanotubes using different biomolecules for stable dispersion in water. Biotechnologia Acta 8(4):71–81

    Article  Google Scholar 

  148. Wang D, Chen L (2007) Temperature and pH-responsive single-walled carbon nanotube dispersions. Nano Lett 7:1480

    Article  ADS  Google Scholar 

  149. Ikeda A, TotsukaY NK, Kikuchi J (2009) Reversible solubilisation and precipitation of carbon nanotubes by temperature and pH control in water. J Mater Chem 19:5785–5789

    Article  Google Scholar 

  150. Shiraki T, Dawn A, Le TNL et al (2011) Heat and light dual switching of a single-walled carbon nanotube/thermo-responsive helical polysaccharide complex: a new responsive system applicable to photodynamic therapy. Chem Commun 47:7065–7067

    Article  Google Scholar 

  151. Fu CL, Meng LJ, Lu QH et al (2007) Large-scale homogeneous helical amylose/SWNTs complexes for biological applications. Macromol Rapid Commun 28:2180–2184

    Article  Google Scholar 

  152. Kim OK, Je J, Baldwin JW et al (2003) Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc 125:4426–4427

    Article  Google Scholar 

  153. Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew Chem Int Ed 41:2508–2512

    Article  Google Scholar 

  154. Zhang X, Meng L, Lu Q (2009) Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes: a quantitative study of the surface properties of biomimetic nanofibrous scaffolds. ACS Nano 3:3200–3206

    Article  Google Scholar 

  155. Cambré S, Wenseleers W (2011) Separation and diameter-sorting of empty (end-capped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation. Angew Chem Int Ed 50:2764–2768

    Article  Google Scholar 

  156. Oh H, Sim J, Ju S-Y (2013) Binding affinities and thermodynamics of noncovalent functionalization of carbon nanotubes with surfactants. Langmuir 29:11154–11162

    Article  Google Scholar 

  157. Ciofani G, Obata Y, Sato I et al (2009) Realization, characterization and functionalization of lipidic wrapped carbon nanotubes. J Nanopart Res 11:477–484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav Blume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Burlaka, O., Yemets, A., Pirko, Y., Blume, Y. (2016). Non-covalent Functionalization of Carbon Nanotubes for Efficient Gene Delivery. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_30

Download citation

Publish with us

Policies and ethics