Skip to main content

Liquid Phase Modifications of Carbon Nanostructures

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures

Abstract

Carbon nanostructures have garnered immense attention since time immemorial. Owing to the tunability of these nanostructures, scientists look for various modifications to make them desirable for specific applications. The developed carbon nanostructures range from zero-dimensional to three-dimensional, including carbon dots, carbon nanotubes, carbon nanorods, carbon nanospheres, carbon nanofibers, graphene, graphene oxide, and reduced graphene oxide. Modification of these nanomaterials is extensively reported in the liquid phase due to its ease of synthesis, low energy consumption, reproducibility, and scalability. The wide use of these nanostructures is attributed to their phenomenal properties, such as high thermal and electrical conductivity, tuneable band gap, tensile strength, and biocompatibility. Commonly, carbon-based nanostructures are modified in the liquid phase by a top-down or bottom-up approach. Top-down approach comprises methods like electrochemical oxidation, arc discharge, ultrasonic synthesis, laser ablation, and chemical oxidation. Hydrothermal treatment, microwave synthesis, plasma treatment, and template route are some of the methods used under bottom-up approach. This chapter describes various modifications of carbon nanostructures carried out in the liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CDs:

Carbon dots

CNDs:

Carbon nanodiamonds

CNFs:

Carbon nanofibers

CNHs:

Carbon nanohorns

CNRs:

Carbon nanoribbons

CNTs:

Carbon nanotubes

CQDs:

Carbon quantum dots

g-C3N4:

Graphitic carbon nitride

GO:

Graphene oxide

GOQDs:

Graphene oxide quantum dots

GQDs:

Graphene quantum dots

HRTEM:

High-resolution transmission electron microscopy

MWCNTs:

Multi-walled carbon nanotubes

rGO:

Reduced graphene oxide

SEM:

Scanning electron microscopy

SWCNTs:

Single-walled carbon nanotubes

XPS:

X-ray photoelectron spectroscopy

XRD:

X- ray diffraction

References

  1. Xia, C., Zhu, S., Feng, T., Yang, M., Yang, B.: Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv. Sci. 6 (2019). https://doi.org/10.1002/advs.201901316

  2. Wang, Y., Hu, A.: Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C. 2, 6921–6939 (2014). https://doi.org/10.1039/c4tc00988f

    Article  CAS  Google Scholar 

  3. Bacon, M., Bradley, S.J., Nann, T.: Graphene quantum dots. Part. Part. Syst. Charact. 31, 415–428 (2014). https://doi.org/10.1002/ppsc.201300252

    Article  CAS  Google Scholar 

  4. Liu, B., Xie, J., Ma, H., Zhang, X., Pan, Y., Lv, J., Ge, H., Ren, N., Su, H., Xie, X., Huang, L., Huang, W.: From graphite to graphene oxide and graphene oxide quantum dots. Small. 13, 1–7 (2017). https://doi.org/10.1002/smll.201601001

    Article  CAS  Google Scholar 

  5. Mermoux, M., Crisci, A., Petit, T., Girard, H.A., Arnault, J.: Surface modifications of detonation nanodiamonds probed by multiwavelength raman spectroscopy. J. Phys. Chem. C. 40, 23415–23425 (2014). https://doi.org/10.1021/jp507377z

  6. Shrestha, L.K., Hill, J.P., Tsuruoka, T., Miyazawa, K., Ariga, K.: Surfactant-assisted assembly of fullerene (C 60) nanorods and nanotubes formed at a liquid liquid interface. Langmuir. 24, 7195–7202 (2013). https://doi.org/10.1021/la304549v

  7. Chiu, W., Chang, Y.: Chemical modification of multi-walled carbon nanotube with the liquid phase method. J. Appl. Poly. Sci. 107, 1655–1660 (2007). https://doi.org/10.1002/app.26633

  8. Barhoum, A., Shalan, A.E., El-Hout, S.I., Ali, G.A.M., Abdelbasir, S.M., Abu Serea, E.S., Ibrahim, A.H., Pal, K.: A broad family of carbon nanomaterials: classification, properties, synthesis, and emerging applications. In: Handbook of Nanofibres. Springer Nature (2019). https://doi.org/10.1007/978-3-319-42789-8_59-1

  9. Zaytseva, O., Neumann, G.: Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 3, 1–26 (2016). https://doi.org/10.1186/s40538-016-0070-8

    Article  CAS  Google Scholar 

  10. John, V.L., Nair, Y., Vinod, T.P.: Doping and surface modification of carbon quantum dots for enhanced functionalities and related applications. Part. Part. Syst. Charact. 38, 1–28 (2021). https://doi.org/10.1002/ppsc.202100170

    Article  CAS  Google Scholar 

  11. Meng, W., Bai, X., Wang, B., Liu, Z., Lu, S., Yang, B.: Biomass-derived carbon dots and their applications. ENERGY Environ. Mater. 2, 172–192 (2019). https://doi.org/10.1002/eem2.12038

    Article  CAS  Google Scholar 

  12. Thongsai, N., Tanawannapong, N., Praneerad, J., Kladsomboon, S., Jaiyong, P., Paoprasert, P.: Real-time detection of alcohol vapors and volatile organic compounds via optical electronic nose using carbon dots prepared from rice husk and density functional theory calculation. Colloids Surf. A Physicochem. Eng. Asp. 560, 278–287 (2019). https://doi.org/10.1016/j.colsurfa.2018.09.077

    Article  CAS  Google Scholar 

  13. Miao, P., Han, K., Tang, Y., Wang, B., Lin, T., Cheng, W.: Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 7, 1586–1595 (2015). https://doi.org/10.1039/C4NR05712K

    Article  CAS  Google Scholar 

  14. Jon, C., Meng, L., Li, D.: Trends in Analytical Chemistry Recent review on carbon nanomaterials functionalized with ionic liquids in sample pretreatment application. Trends Anal. Chem. 120, 115641 (2019). https://doi.org/10.1016/j.trac.2019.115641

    Article  CAS  Google Scholar 

  15. Tayyab, S., Naqvi, R., Rasheed, T., Hussain, D., Najam, M., Majeed, S., Ahmed, N., Nawaz, R.: Modification strategies for improving the solubility/dispersion of carbon nanotubes. J. Mol. Liq. 297, 1–12 (2020). https://doi.org/10.1016/j.molliq.2019.111919

    Article  CAS  Google Scholar 

  16. Mantzaris, N.V.: Liquid-phase synthesis of nanoparticles: particle size distribution dynamics and control. Chem. Eng. Sci. 60, 4749–4770 (2005). https://doi.org/10.1016/j.ces.2005.04.012

    Article  CAS  Google Scholar 

  17. Karatutlu, A., Barhoum, A., Sapelkin, A.: Liquid-phase synthesis of nanoparticles and nanostructured materials. In: Emerging Applications of Nanoparticles and Architechture Nanostructures. Elsevier (2018). https://doi.org/10.1016/B978-0-323-51254-1.00001-4

  18. Ahirwar, S., Mallick, S., Bahadur, D.: Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots. ACS Omega. 2, 8343–8353 (2017). https://doi.org/10.1021/acsomega.7b01539

    Article  CAS  Google Scholar 

  19. Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., Müllen, K.: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014). https://doi.org/10.1021/ja5017156

    Article  CAS  Google Scholar 

  20. Qiujun, L., Deng, J., Hou, Y., Wang, H., Li, H., Zhang, Y.: One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and its application to the detection of uric acid. Chem. Comm. 51, 12251–12253 (2015). https://doi.org/10.1039/C5CC04231C

    Article  Google Scholar 

  21. Awasthi, S., Gopinathan, P.S., Rajanikanth, A., Bansal, C.: Current–voltage characteristics of electrochemically synthesized multi-layer graphene with polyaniline. J. Sci. Adv. Mater. Devices. 3, 37–43 (2018). https://doi.org/10.1016/j.jsamd.2018.01.003

    Article  Google Scholar 

  22. Li, Y., Li, S., Wang, Y., Wang, J., Liu, H., Liu, X., Wang, L., Liu, X., Xue, W., Ma, N.: Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Phys. Chem. Chem. Phys. 19, 11631–11638 (2017). https://doi.org/10.1039/C6CP06377B

    Article  CAS  Google Scholar 

  23. Qian, X., Zhong, J., Zhi, J., Heng, F., Wang, X., Zhang, Y.: Electrochemical surface modi fi cation of polyacrylonitrile-based ultrahigh modulus carbon fi bers and its e ff ect on the interfacial properties of UHMCF/EP composites. Compos. Part B: Eng. 164, 476–484 (2019). https://doi.org/10.1016/j.compositesb.2019.01.083

    Article  CAS  Google Scholar 

  24. Frank, E., Ingildeev, D., Buchmeiser, M.R.: High-performance PAN-based carbon fibers and their performance requirements. In: Structure and Properties of High performance Fibers. Elsevier (2017). https://doi.org/10.1016/B978-0-08-100550-7.00002-4

  25. Madhu, R., Dinesh, B., Chen, S.: An electrochemical synthesis strategy for composite based ZnO microspheres – Au nanoparticles on reduced graphene oxide for the sensitive detection of hydrazine in water samples. RSC Adv., 54379–54386 (2015). https://doi.org/10.1039/c5ra05612h

  26. Velusamy, V., Palanisamy, S., Kokulnathan, T., Chen, S., Yang, T.C.K., Banks, C.E., Kumar, S.: Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene- b -cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. J. Colloid Interface Sci. 530, 37–45 (2018). https://doi.org/10.1016/j.jcis.2018.06.056

    Article  CAS  Google Scholar 

  27. Devasenathipathy, R., Tsai, S., Chen, S., Karuppiah, C.: Electrochemical synthesis of b -cyclodextrin functionalized silver nanoparticles and reduced graphene oxide composite for the determination of hydrazine. Electroanalysis. 28(9), 1–8 (2016). https://doi.org/10.1002/elan.201501125

    Article  CAS  Google Scholar 

  28. Muthusankar, G., Sasikumar, R., Chen, S., Gopu, G., Sengottuvelan, N., Rwei, S.: Electrochemical synthesis of nitrogen-doped carbon quantum dots decorated copper oxide for the sensitive and selective detection of non-steroidal anti-inflammatory drug in berries. J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2018.03.095

  29. Cai, Z., Xiong, H., Zhu, Z., Huang, H., Li, L., Huang, Y., Yu, X.: Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications. Synth. Met. 227, 100–105 (2017). https://doi.org/10.1016/j.synthmet.2017.03.012

    Article  CAS  Google Scholar 

  30. Lee, S., Eom, T., Kim, M., Yang, S.: Durable soft neural micro-electrode coating by an electrochemical synthesis of PEDOT: PSS/graphene oxide composites. Electrochim. Acta. 313, 79–90 (2019). https://doi.org/10.1016/j.electacta.2019.04.099

    Article  CAS  Google Scholar 

  31. Abudabbus, M.M., Jevremović, I., Nešović, K., Perić-grujić, A., Rhee, K.Y., Mišković-stanković, V.: In situ electrochemical synthesis of silver-doped poly(vinyl alcohol)/graphene composite hydrogels and their physico-chemical and thermal properties. Compos. Part B. (2018). https://doi.org/10.1016/j.compositesb.2017.12.017

  32. Abraham, P., Mary, S.R.T.E., Anitha, N.V.: Electrochemical synthesis of thin - layered graphene oxide – poly (CTAB) composite for detection of morphine. J. Appl. Electrochem. (2019). https://doi.org/10.1007/s10800-019-01367-2

  33. Devadas, B., Chen, S.: Controlled electrochemical synthesis of yttrium (III) hexacyanoferrate micro flowers and their composite with multi-walled carbon nanotubes, and its application for sensing catechin in tea samples. J. Solid State Electrochem. (2014). https://doi.org/10.1007/s10008-014-2715-5

  34. Bogatyreva, G.P., Marinich, M.A., Ishchenko, E.V., Gvyazdovskaya, V.L.: Application of modified nanodiamonds as catalysts of heterogeneous and electrochemical catalyses. Phys. Solid State. 46, 738–741 (2004)

    Article  CAS  Google Scholar 

  35. Anusha, T., Bhavani, K.S., Kumar, J.V.S., Brahman, P.K.: Designing and fabrication of electrochemical nanosensor employing fullerene-C 60 and bimetallic nanoparticles composite film for the detection of vitamin D 3 in blood samples. Diam. Relat. Mater. 104, 107761 (2020). https://doi.org/10.1016/j.diamond.2020.107761

    Article  CAS  Google Scholar 

  36. Palanisamy, S., Thirumalraj, B., Chen, S.: Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine. J. Colloid Interface Sci. (2015). https://doi.org/10.1016/j.jcis.2015.02.013

  37. Yogesh, G.K., Shukla, S., Sastikumar, D., Koinkar, P.: Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: a review. Appl. Phys. A Mater. Sci. Process. 127, 810 (2021). https://doi.org/10.1007/s00339-021-04951-6

    Article  CAS  Google Scholar 

  38. Fazio, E., Gökce, B., De Giacomo, A., Meneghetti, M., Compagnini, G., Tommasini, M., Waag, F., Lucotti, A., Zanchi, C.G., Ossi, P.M., Dell’Aglio, M., D’Urso, L., Condorelli, M., Scardaci, V., Biscaglia, F., Litti, L., Gobbo, M., Gallo, G., Santoro, M., Trusso, S., Neri, F.: Nanoparticles engineering by pulsed laser ablation in liquids: concepts and applications. Nanomaterials. 10, 2317 (2020). https://doi.org/10.3390/nano10112317

    Article  CAS  Google Scholar 

  39. Xiao, J., Liu, P., Wang, C.X., Yang, G.W.: External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog. Mater. Sci. 87, 140–220 (2017). https://doi.org/10.1016/j.pmatsci.2017.02.004

    Article  CAS  Google Scholar 

  40. Zeng, H., Du, X.-W., Singh, S.C., Kulinich, S.A., Yang, S., He, J., Cai, W.: Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22, 1333–1353 (2012). https://doi.org/10.1002/adfm.201102295

    Article  CAS  Google Scholar 

  41. Wang, W., Longsheng, L., Xie, Y., Mei, X., Tang, Y., Weibin Wu, R.L.: Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors. Appl. Surf. Sci. 504, 144487 (2020). https://doi.org/10.1016/j.apsusc.2019.144487

    Article  CAS  Google Scholar 

  42. Nguyen, V., Zhao, N., Yan, L., Zhong, P., Nguyen, V.C., Le, P.H.: Double-pulse femtosecond laser ablation for synthesis of ultrasmall carbon nanodots. Mater. Res. Express. 7, 015606 (2020). https://doi.org/10.1088/2053-1591/ab6124

    Article  CAS  Google Scholar 

  43. Donnelly, T., Lunney, J.G., Amoruso, S., Bruzzese, R., Wang, X., Ni, X.: Double pulse ultrafast laser ablation of nickel in vacuum. J. Appl. Phys. 106 (2009). https://doi.org/10.1063/1.3159010

  44. Mostafa, A.M., Mwafy, E.A., Awwad, N.S., Ibrahium, H.A.: Synthesis of multi-walled carbon nanotubes decorated with silver metallic nanoparticles as a catalytic degradable material via pulsed laser ablation in liquid media. Colloids Surf. A Physicochem. Eng. Asp. 626, 126992 (2021). https://doi.org/10.1016/j.colsurfa.2021.126992

    Article  CAS  Google Scholar 

  45. Pramanik, A., Karmakar, S., Kumbhakar, P., Biswas, S., Sarkar, R., Kumbhakar, P.: Synthesis of bilayer graphene nanosheets by pulsed laser ablation in liquid and observation of its tunable nonlinearity. Appl. Surf. Sci. 499, 143902 (2019). https://doi.org/10.1016/j.apsusc.2019.143902

    Article  CAS  Google Scholar 

  46. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., Mcgovern, I.T., Holland, B., Byrne, M., Ko, Y.K.G.U.N., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 563–568 (2008). https://doi.org/10.1038/nnano.2008.215

  47. Sadeghi, H., Solati, E., Dorranian, D.: Producing graphene nanosheets by pulsed laser ablation: effects of liquid environment. J. Laser Appl., 042003 (2019). https://doi.org/10.2351/1.5109424

  48. Kang, S., Jeong, Y.K., Jung, K.H., Son, Y., Kim, W.R., Ryu, J.H., Kim, K.M.: One-step synthesis of sulfur-incorporated graphene quantum dots using pulsed laser ablation for enhancing optical properties. Opt. Express. 28, 21659–21667 (2020). https://doi.org/10.1364/OE.398124

    Article  CAS  Google Scholar 

  49. Zhu, C., Dong, X., Mei, X., Gao, M., Wang, K.: General fabrication of metal oxide nanoparticles modified graphene for supercapacitors by laser ablation. Appl. Surf. Sci. 568, 150978 (2021). https://doi.org/10.1016/j.apsusc.2021.150978

    Article  CAS  Google Scholar 

  50. Mwafy, E.A., Mostafa, A.M.: Multi walled carbon nanotube decorated cadmium oxide nanoparticles via pulsed laser ablation in liquid media. Opt. Laser Technol. 111, 249–254 (2019). https://doi.org/10.1016/j.optlastec.2018.09.055

    Article  CAS  Google Scholar 

  51. Huang, K., Ning, H., Hu, N., Liu, F., Wu, X., Wang, S.: Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos. Sci. Technol. 192, 108105 (2020). https://doi.org/10.1016/j.compscitech.2020.108105

    Article  CAS  Google Scholar 

  52. Sharma, N., Yashika, Bhullar, G.K., Saini, A., Nandiny, Sheetal, Nancy: A review based on the synthesis of carbon quantum dots: top-down, bottom-up approaches and their properties. Int. J. Innov. Sci. Res. Technol. 8, 670–681 (2023)

    Google Scholar 

  53. Khayal, A., Dawane, V., Amin, M.A., Tirth, V., Yadav, V.K., Algahtani, A., Khan, S.H., Islam, S., Yadav, K.K., Jeon, B.-H.: Advances in the methods for the synthesis of carbon dots and their emerging applications. Polymers (Basel), 1–31 (2021). https://doi.org/10.3390/polym13183190

  54. Li, H., He, X., Liu, Y., Kang, Z.: One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon N. Y. 49, 605–609 (2010). https://doi.org/10.1016/j.carbon.2010.10.004

    Article  CAS  Google Scholar 

  55. Bora, M., Maria, S., Tamuly, J., Saikia, B.K.: Ultrasonic-assisted chemical synthesis of activated carbon from low-quality subbituminous coal and its preliminary evaluation towards supercapacitor applications. J. Environ. Chem. Eng. 9, 104986 (2021). https://doi.org/10.1016/j.jece.2020.104986

    Article  CAS  Google Scholar 

  56. Wu, Y., Liu, Y., Yin, J., Li, H., Huang, J.: Facile ultrasonic synthesized NH 2 -carbon quantum dots for ultrasensitive Co 2 + ion detection and cell imaging. Talanta. 205, 120121 (2019). https://doi.org/10.1016/j.talanta.2019.120121

    Article  CAS  Google Scholar 

  57. Ma, Z., Ming, H., Huang, H., Liu, Y., Kang, Z.: One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem. 36, 861–864 (2012). https://doi.org/10.1039/c2nj20942j

    Article  CAS  Google Scholar 

  58. Wang, F., Wang, S., Sun, Z., Zhu, H.: Study on ultrasonic single-step synthesis and optical properties of nitrogen-doped carbon fluorescent quantum dots. Fuller. Nanotub. Car. N. 9, 769–776 (2015). https://doi.org/10.1080/1536383X.2014.996287

  59. Mallakpour, S., Behranvand, V.: Synthesis of mesoporous recycled poly(ethylene terephthalate)/MWNT/carbon quantum dot nanocomposite from sustainable materials using ultrasonic waves: application for methylene blue removal. J. Clean. Prod. 190, 525 (2018) Elsevier B.V

    Article  CAS  Google Scholar 

  60. Mallakpour, S.: Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery. Ultrason. Sonochem. 40, 402–409 (2018). https://doi.org/10.1016/j.ultsonch.2017.07.033

    Article  CAS  Google Scholar 

  61. Ding, J., Liu, Q., Zhang, Z., Liu, X., Zhao, J., Cheng, S., Zong, B., Dai, W.: Carbon nitride nanosheets decorated with WO3 nanorods: ultrasonic assisted facile synthesis and catalytic application in the green manufacture of dialdehydes. Appl. Catal. B Environ. (2014). https://doi.org/10.1016/j.apcatb.2014.10.037

  62. Kotsilkova, R., Ivanov, E., Bychanok, D., Paddubskaya, A., Demidenko, M., Macutkevic, J., Maksimenko, S., Kuzhir, P.: Effects of sonochemical modification of carbon nanotubes on electrical and electromagnetic shielding properties of epoxy composites. Compos. Sci. Technol. 106, 85–92 (2015). https://doi.org/10.1016/j.compscitech.2014.11.004

    Article  CAS  Google Scholar 

  63. Li, M., Guo, Q., Nutt, S.: Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol. Energy. 146, 1–7 (2017). https://doi.org/10.1016/j.solener.2017.02.003

    Article  CAS  Google Scholar 

  64. Elfadil, D., Silveri, F., Palmieri, S., Della, F., Sergi, M., Del, M., Amine, A., Compagnone, D.: Talanta Liquid-phase exfoliated 2D graphene nanoflakes electrochemical sensor coupled to molecularly imprinted polymers for the determination of citrinin in food. Talanta. 253, 124010 (2023). https://doi.org/10.1016/j.talanta.2022.124010

    Article  CAS  Google Scholar 

  65. Nikodinovi, J.: Enzymatic functionalization of liquid phase exfoliated graphene using horseradish peroxidase and laccase. Enzym. Microb. Technol. 170 (2023). https://doi.org/10.1016/j.enzmictec.2023.110293

  66. Gharagulyan, H., Melikyan, Y., Hayrapetyan, V., Kirakosyan, K., Ghazaryan, D.A., Yeranosyan, M.: Essential L-amino acid-functionalized graphene oxide for liquid crystalline phase formation. Mater. Sci. Eng. B. 295, 116564 (2023). https://doi.org/10.1016/j.mseb.2023.116564

    Article  CAS  Google Scholar 

  67. Zou, Y., Wang, L., Sun, H., Wang, G., Meng, L., Quinto, M., Li, D.: Nanoconfined liquid phase nanoextraction based on carbon nanofibers. Anal. Chem. 93, 1310–1316 (2021). https://doi.org/10.1021/acs.analchem.0c01462

    Article  CAS  Google Scholar 

  68. Esteves, J.C.G., Gonc, H.M.R.: Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 30, 1327–1336 (2011). https://doi.org/10.1016/j.trac.2011.04.009

    Article  CAS  Google Scholar 

  69. Prasad, K., Kyung, H.: Electrochemical detection of ascorbic acid with chemically functionalized carbon nano fi ber/β -cyclodextrin composite. Chem. Phys. Lett. 757, 137881 (2020). https://doi.org/10.1016/j.cplett.2020.137881

    Article  CAS  Google Scholar 

  70. Thi, H., Le, N., Jeong, H.K.: Cyclodextrin-graphite oxide-carbon nanotube composites for electrochemical supramolecular recognition. Electrochim. Acta. 232, 7–12 (2017). https://doi.org/10.1016/j.electacta.2017.02.119

    Article  CAS  Google Scholar 

  71. Wajs, E., Molina-ontoria, A., Nielsen, T.T., Echegoyen, L., Fragoso, A.: Supramolecular solubilization of cyclodextrin- modified carbon nano-onions by host-guest interactions. Langmuir. (2014). https://doi.org/10.1021/la504065r

  72. Alizadeh, B., Ghorbani, M., Ali, M.: Application of polyrhodanine modi fi ed multi-walled carbon nanotubes for high ef fi ciency removal of Pb (II) from aqueous solution. J. Mol. Liq. 220, 142–149 (2016). https://doi.org/10.1016/j.molliq.2016.04.065

    Article  CAS  Google Scholar 

  73. Kumar, R., Ansari, M.O., Barakat, M.A.: DBSA doped polyaniline/multi walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution. Chem. Eng. J. 228, 748 (2013). https://doi.org/10.1016/j.cej.2013.05.024

    Article  CAS  Google Scholar 

  74. Vukovi, G.D., Risti, M.Ð., Peri, A.A.: Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem. Eng. J. 173, 855–865 (2011). https://doi.org/10.1016/j.cej.2011.08.036

    Article  CAS  Google Scholar 

  75. Ramalingam, M., Ponnusamy, V.K.: A nanocomposite consisting of porous graphitic carbon nitride nanosheets and oxidized multi-walled carbon nanotubes for simultaneous stripping voltammetric determination of cadmium (II), mercury (II), lead (II) and zinc (II). Microchim. Acta. 2, 2–11 (2019)

    Google Scholar 

  76. Fan, Q., Sun, J., Chu, L., Cui, L., Quan, G., Yan, J., Hussain, Q., Iqbal, M.: Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere. (2018). https://doi.org/10.1016/j.chemosphere.2018.05.044

  77. Peixoto, D.A., Silva, S.C., Borges, P.H.S., Lima, R.C., Nossol, E.: Hydrothermal synthesis as a versatile tool for the preparation of metal hexacyanoferrates: a review. J. Mater. Sci. 58, 2993–l3024 (2023). https://doi.org/10.1007/s10853-023-08190-3

  78. Podkolodnaya, Y.A., Kokorina, A.A., Goryacheva, I.Y.: A facile approach to the hydrothermal synthesis of silica nanoparticle/carbon nanostructure luminescent composites. Materials (Basel). 15 (2022). https://doi.org/10.3390/ma15238469

  79. Al-Jubouri, S.M., de Haro-Del Rio, D.A., Alfutimie, A., Curry, N.A., Holmes, S.M.: Understanding the seeding mechanism of hierarchically porous zeolite/carbon composites. Microporous Mesoporous Mater. 268, 109–116 (2018). https://doi.org/10.1016/j.micromeso.2018.04.023

    Article  CAS  Google Scholar 

  80. Yu, W., Zheng, B., Mao, K., Jiang, J., Luo, B., Wu, X., Tao, T., Min, X., Mi, R., Huang, Z., Liu, Y., Fang, M., Zhao, Z.: Interfacial structure and photocatalytic degradation performance of graphene oxide bridged chitin-modified TiO2/carbon fiber composites. J. Clean. Prod. 361, 132261 (2022). https://doi.org/10.1016/j.jclepro.2022.132261

    Article  CAS  Google Scholar 

  81. Sun, B., Zhang, X., Fan, X., Wang, R., Bai, H., Wei, X.: Interface modification based on MnO2@N-doped activated carbon composites for flexible solid-state asymmetric supercapacitors. Energy. 249, 123659 (2022). https://doi.org/10.1016/j.energy.2022.123659

    Article  CAS  Google Scholar 

  82. Liyun, C., Qun, M., Jianfeng Huang, H., Xinping, Y.: Influence of hydrothermal treatment temperature on oxidation modification of C/C composites with aluminum phosphates solution by a microwave hydrothermal process. Corros. Sci. 52, 3757–3762 (2010). https://doi.org/10.1016/j.corsci.2010.07.026

    Article  CAS  Google Scholar 

  83. Nyamori, V.O., Mombeshora, E.T., Muchuweni, E., Davies, M.L., Martincigh, B.S.: Enhanced properties of nitrogen-doped reduced graphene oxide for electrochemical energy storage through hydrothermal treatment and composite formation with polyaniline. SSRN Electron. J. (2022). https://doi.org/10.2139/ssrn.4214069

  84. Ma, H., Yue, L., Yu, C., Dong, X., Zhang, X., Xue, M., Zhang, X., Fu, Y.: Synthesis, characterization and photocatalytic activity of Cu-doped Zn/ZnO photocatalyst with carbon modification. J. Mater. Chem. 22, 23780–23788 (2012). https://doi.org/10.1039/c2jm35110b

    Article  CAS  Google Scholar 

  85. Xi, X., Chen, Y., Wang, J., Li, Y., Shao, X., He, L., Huang, Q., Pei, X.: A multiscale hydrothermal carbon layer modified carbon fiber for composite fabrication. RSC Adv. 8, 23339–23347 (2018). https://doi.org/10.1039/c8ra04064h

    Article  CAS  Google Scholar 

  86. Shi, M., Shen, J., Ma, H., Li, Z., Lu, X., Li, N., Ye, M.: Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Colloids Surf. A Physicochem. Eng. Asp. 405, 30–37 (2012). https://doi.org/10.1016/j.colsurfa.2012.04.031

    Article  CAS  Google Scholar 

  87. Shi, C., Xiang, K., Zhu, Y., Chen, X., Zhou, W., Chen, H.: Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries. Elect. Acta. 246, 1088–1096 (2017). https://doi.org/10.1016/j.electacta.2017.06.109

  88. Chen, Y., Jiang, Y., Chen, B., Ye, F., Duan, H., Cui, H.: Facile fabrication of N-doped carbon quantum dots modified SnO2 composites for improved visible light photocatalytic activity. Vacuum. 191, 110371 (2021). https://doi.org/10.1016/j.vacuum.2021.110371

    Article  CAS  Google Scholar 

  89. Sari, F.N.I., Lin, H.M., Ting, J.M.: Surface modified catalytically grown carbon nanofibers/MnO2 composites for use in supercapacitor. Thin Solid Films. 620, 54–63 (2016). https://doi.org/10.1016/j.tsf.2016.07.085

    Article  CAS  Google Scholar 

  90. Yang, D., Wang, X., Song, G., Zhao, G., Chen, Z., Yu, S., Gu, P., Wang, H., Wang, X.: One-pot synthesis of arginine modified hydroxyapatite carbon microsphere composites for efficient removal of U(VI) from aqueous solutions. Sci. Bull. 62, 1609–1618 (2017). https://doi.org/10.1016/j.scib.2017.10.018

    Article  CAS  Google Scholar 

  91. Huang, Q., Li, M.Y., Wang, L.L., Yuan, H., Wang, M., Wu, Y., Li, T.: Synthesis of novel cyclodextrin-modified reduced graphene oxide composites by a simple hydrothermal method. RSC Adv. 8, 37623–37630 (2018). https://doi.org/10.1039/C8RA07807F

    Article  CAS  Google Scholar 

  92. Joyce, M.J., Mcdermott, S.T., Umaiya, K., Adamson, D.H.: Polyphenol modification of graphene-stabilized emulsions to form electrically conductive polymer spheres. J. Colloid Interface Sci. 653, 327–337 (2024). https://doi.org/10.1016/j.jcis.2023.09.008

    Article  CAS  Google Scholar 

  93. Rinawati, M., Wang, Y.-X., Huang, W.-H., Yu-Ting, W., Cheng, Y.-S., Kurniawan, D., Haw, S.-C., Chiang, W.-H., Su, W.-N., Yeh, M.-H.: Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction. Carbon N. Y. 200, 437–447 (2022). https://doi.org/10.1016/j.carbon.2022.08.067

    Article  CAS  Google Scholar 

  94. Makwana, S., Kumari, P.: Microwave assisted synthesis: a green chemistry approach and future directions. In: The Future of Green Synthesis, pp. 1–60. Nova Science, New York (2023)

    Google Scholar 

  95. Yu, J.G., Huang, K.L., Tang, J.C., Yang, Q., Huang, D.S.: Rapid microwave synthesis of chitosan modified carbon nanotube composites. Int. J. Biol. Macromol. 44, 316–319 (2009). https://doi.org/10.1016/j.ijbiomac.2008.10.009

    Article  CAS  Google Scholar 

  96. Kannan, V.R., Parthipan, P., Bader, O.: Green synthesis of biomass derived carbon dots via the microwave-assisted method for selective detection of Fe3+ ions in an aqueous medium. Inorg. Chem. Commun. 157, 111348 (2023). https://doi.org/10.1016/j.inoche.2023.111348

    Article  CAS  Google Scholar 

  97. Nithya, P., Roumana, C., Velraj, G., Balasubramanian, V., Shkir, M., Reddy, V.R.M.: Biomass-derived carbon (BC) modified CoWO4 nanoparticles composites for improved performance of dye-sensitized solar cells. Chem. Phys. Lett. 803, 139814 (2022). https://doi.org/10.1016/j.cplett.2022.139814

    Article  CAS  Google Scholar 

  98. Wang, S., Zhu, Y., Sun, X., An, S., Cui, J., Zhang, Y., He, W.: Microwave synthesis of N-doped modified graphene/mixed crystal phases TiO2 composites for Na-ion batteries. Colloids Surf. A: Physicochem. Eng. Asp. 615 (2021)

    Google Scholar 

  99. Wei, Z., Sarwar, S., Azam, S., Ahasan, M.R., Voyda, M., Zhang, X., Wang, R.: Ultrafast microwave synthesis of MoTe2@graphene composites accelerating polysulfide conversion and promoting Li2S nucleation for high-performance Li-S batteries. J. Colloid Interface Sci. 635, 391–405 (2023). https://doi.org/10.1016/j.jcis.2022.12.111

    Article  CAS  Google Scholar 

  100. Jalajerdi, R., Ghanbari, D.: Microwave synthesis and magnetic investigation of CuFe2O4 nanoparticles and poly styrene-carbon nanotubes composites. J. Nanostructures. 6, 278–284 (2016). https://doi.org/10.22052/jns.2016.38480

    Article  CAS  Google Scholar 

  101. Wang, S., Zhu, Y., Sun, X., An, S., Cui, J., Zhang, Y., He, W.: Microwave synthesis of Fe-doped anatase TiO2/N-doped modified graphene composites with superior sodium storage properties. Diam. Relat. Mater. 116, 108442 (2021). https://doi.org/10.1016/j.diamond.2021.108442

    Article  CAS  Google Scholar 

  102. Xiong, Y., Cui, X., Zhang, M., Wang, Y., Lou, Z., Shan, W.: Microwave hydrothermal synthesis of gallotannin/carbon nanotube composites for the recovery of gallium ion. Appl. Surf. Sci. 510, 145414 (2020). https://doi.org/10.1016/j.apsusc.2020.145414

    Article  CAS  Google Scholar 

  103. Amri, F., Kasim, W., Rochliadi, A., Patah, A.: Facile one-pot microwave-assisted synthesis of rod-like and hexagonal plate-like AgNP@Ni-BTC composites for a potential salivary glucose sensor. Sens. Actuators Rep. 5, 100141 (2023). https://doi.org/10.1016/j.snr.2023.100141

    Article  Google Scholar 

  104. Kaur, A., Bajaj, B., Kaushik, A., Saini, A., Sud, D.: A review on template assisted synthesis of multi-functional metal oxide nanostructures: status and prospects. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 286, 116005 (2022). https://doi.org/10.1016/j.mseb.2022.116005

    Article  CAS  Google Scholar 

  105. Fan, B., Xing, L., Yang, K., Yang, Y., Zhou, F., Tong, G., Wu, W.: Salt-templated graphene nanosheet foams filled in silicon rubber toward prominent EMI shielding effectiveness and high thermal conductivity. Carbon N. Y. 207, 317–327 (2023). https://doi.org/10.1016/j.carbon.2023.03.022

    Article  CAS  Google Scholar 

  106. Sun, K., Wang, C., Tebyetekerwa, M., Zhao, X.S.: Electrocapacitive desalination with nitrogen-doped hierarchically structured carbon prepared using a sustainable salt-template method. Chem. Eng. J. 446, 137211 (2022). https://doi.org/10.1016/j.cej.2022.137211

    Article  CAS  Google Scholar 

  107. Luan, X., Zhu, K., Zhang, X., Yang, P.: MoS2 nanosheets coupled with double-layered hollow carbon spheres towards superior electrochemical activity. Electrochim. Acta. 407, 139929 (2022). https://doi.org/10.1016/j.electacta.2022.139929

    Article  CAS  Google Scholar 

  108. Mohammed, H.Y., Farea, M.A., Ali, Z.M., Shirsat, S.M., Tsai, M.L., Shirsat, M.D.: Poly(N-methyl pyrrole) decorated rGO nanocomposite: a novel ultrasensitive and selective carbon monoxide sensor. Chem. Eng. J. 441, 136010 (2022). https://doi.org/10.1016/j.cej.2022.136010

    Article  CAS  Google Scholar 

  109. Torregrosa-Rivero, V., Sánchez-Adsuar, M.S., Illán-Gómez, M.J.: Improving the performance of BaMnO3 perovskite as soot oxidation catalyst using carbon black during sol-gel synthesis. Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12020219

  110. Xie, T., Xu, G., Yao, Y., Li, P., Du, W., Ding, H., Jiang, J., Zhang, L.: Self-template synthesis of Fe–Nx doped porous carbon as efficient oxygen reduction reaction catalysts in zinc air batteries. J. Energy Storage. 64, 107239 (2023). https://doi.org/10.1016/j.est.2023.107239

    Article  Google Scholar 

  111. Liu, W., Man, J., Guo, Y., Liu, K., Zhang, H., Sun, J.: Hard template synthesis of Zn, Co co-doping hierarchical porous carbon framework for stable Li metal anodes. Appl. Surf. Sci. 637, 157902 (2023). https://doi.org/10.1016/j.apsusc.2023.157902

    Article  CAS  Google Scholar 

  112. Alam, A., Wan, C., McNally, T.: Surface amination of carbon nanoparticles for modification of epoxy resins: plasma-treatment vs. wet-chemistry approach. Eur. Polym. J. 87, 422–448 (2017). https://doi.org/10.1016/j.eurpolymj.2016.10.004

    Article  CAS  Google Scholar 

  113. Moreto, J.A., Silva, P.H.S., de Moraes Moura, G., da Silva, C.C., Ferreira, D.C., da Cunha, T.H.R., Silva, G.G., Rouxinol, F., de Siervo, A., Gelamo, R.V.: The effect of plasma treatment on flexible self-standing supercapacitors composed by carbon nanotubes and multilayer graphene composites. J. Mater. Sci. 57, 8779–8799 (2022). https://doi.org/10.1007/s10853-022-07162-3

    Article  CAS  Google Scholar 

  114. Kumar, P.S., Jayanarayanan, K., Balachandran, M.: High-performance thermoplastic polyaryletherketone/carbon fiber composites: comparison of plasma, carbon nanotubes/graphene nano-anchoring, surface oxidation techniques for enhanced interface adhesion and properties. Compos. Part B Eng. 253, 110560 (2023). https://doi.org/10.1016/j.compositesb.2023.110560

    Article  CAS  Google Scholar 

  115. Gillet, C., Hassoune-Rhabbour, B., Poncin-Epaillard, F., Tchalla, T., Nassiet, V.: Contributions of atmospheric plasma treatment on a hygrothermal aged carbon/epoxy 3D woven composite material. Polym. Degrad. Stab. 202, 1–11 (2022). https://doi.org/10.1016/j.polymdegradstab.2022.110023

    Article  CAS  Google Scholar 

  116. Haji, M., Haddadi-Asl, V., Jouibari, I.S.: Carbon nanotube/polyurethane nanocomposites with surface-modified nanostructures. Iran. Polym. J. 31, 1173–1182 (2022). https://doi.org/10.1007/s13726-022-01066-4

    Article  CAS  Google Scholar 

  117. Li, J., Yang, Z., Huang, X., Zhao, Y., Li, X., Wei, W., Li, H., Wu, G.: Interfacial reinforcement of composites by the electrostatic self-assembly of graphene oxide and NH3 plasma-treated carbon fiber. Appl. Surf. Sci. 585, 152717 (2022). https://doi.org/10.1016/j.apsusc.2022.152717

    Article  CAS  Google Scholar 

  118. Xiao, J., Zhang, X., Zhao, Z., Liu, J., Chen, Q., Wang, X.: Rapid and continuous atmospheric plasma surface modification of PAN-based carbon fibers. ACS Omega. 7, 10963–10969 (2022). https://doi.org/10.1021/acsomega.1c06818

    Article  CAS  Google Scholar 

  119. Joshi, P., Gupta, S., Riley, P.R., Narayan, R.J., Narayan, J.: Liquid phase regrowth of 〈110〉 nanodiamond film by UV laser annealing of PTFE to generate dense CVD microdiamond film. Diam. Relat. Mater. 117, 108481 (2021). https://doi.org/10.1016/j.diamond.2021.108481

    Article  CAS  Google Scholar 

  120. Bogdanowicz, R.: Functionalized nanodiamonds as a perspective green carbo-catalyst for removal of emerging organic pollutants. Curr. Opin. Solid State Mater. Sci. 26, 100991 (2022). https://doi.org/10.1016/j.cossms.2022.100991

    Article  CAS  Google Scholar 

  121. Haleem, Y.A., He, Q., Liu, D., Wang, C., Xu, W., Gan, W., Zhou, Y., Wu, C., Ding, Y., Song, L.: Facile synthesis of mesoporous detonation nanodiamond-modified layers of graphitic carbon nitride as photocatalysts for the hydrogen evolution reaction. RSC Adv. 7, 15390–15396 (2017). https://doi.org/10.1039/c7ra02178j

    Article  CAS  Google Scholar 

  122. Unni, S.M., Ramadas, S., Illathvalappil, R., Bhange, S.N., Kurungot, S.A.: Surface modified single wall carbon nanohorn as an efficient electrocatalyst for platinum-free fuel cell cathode. J. Mater. Chem. A. (2015). https://doi.org/10.1039/b000000x

  123. Chen, X., Li, W., Lu, C., Chu, J., Lin, R., Wang, P., Xie, G., Gu, Q., Wu, D., Beibei, C.: Highly sensitive electrochemical detection of carbendazim residues in water by synergistic enhancement of nitrogen-doped carbon nanohorns and polyethyleneimine modified carbon nanotubes. Sci. Total Environ. 851, 158324 (2022)

    Article  CAS  Google Scholar 

  124. Feng, L., Liu, Y., Jiang, Q., Liu, W., Wu, K., Ba, H.: Nanodiamonds @ N, P co-modi fi ed mesoporous carbon supported on macroscopic SiC foam for oxidative dehydrogenation of ethylbenzene. Catal. Today 0–1 (2019). https://doi.org/10.1016/j.cattod.2019.02.046

  125. Pang, T., Aye Chan, T.S., Jande, Y.A.C., Shen, J.: Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method. Chemosphere. 255, 126950 (2020). https://doi.org/10.1016/j.chemosphere.2020.126950

    Article  CAS  Google Scholar 

  126. Duan, X., Ao, Z., Li, D., Sun, H., Zhou, L., Suvorova, A., Saunders, M., Wang, G., Wang, S.: Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon N. Y. 103, 404–411 (2016). https://doi.org/10.1016/j.carbon.2016.03.034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Sunaja Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Anand, S., Madhushree, R., Sunaja Devi, K.R. (2024). Liquid Phase Modifications of Carbon Nanostructures. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics