Skip to main content

Development of Cenogram Technique Over the Past Six Decades with Some Insights into the Varied Habitats Occupied by Diverse Mammalian Communities Across Spain, China, and India Transiting the Middle Miocene Climatic Optimum

  • Chapter
  • First Online:
Climate Change and Environmental Impacts: Past, Present and Future Perspective

Abstract

The climatic evolution of the Neogene, with long-term cooling disrupted by the Middle Miocene Climatic Optimum (MMCO; ~17–14.75 Ma), arises as a suitable baseline to analyze the effects of these transcendent climatic changes on the mammalian community structures. The present investigation is an attempt to examine the palaeohabitat of a Neogene (Middle Miocene: ~15–11.5 Ma) geographically distant (i.e., from Spain, China, and India) extinct mammalian communities utilizing the cenogram approach (in both qualitative and quantitative framework). The detailed statistical analyses (presented herein) incorporating a total of eight mammalian communities allows us to infer predominance of Tropical Deciduous Forest environments between ~15 and ~11.5 Ma interval, with several pulses of distinctive aridity experienced by some communities thriving within the Iberian region. On the contrary, stable forested conditions were witnessed by the middle Miocene communities of Asia [i.e., the ~11.5 million-year-old mammalian community of Laogou (China), and the ~13.5 million-year-old mammalian community of Ramnagar (north India)]. Our present investigation also infers that additional mammalian remains (particularly of body mass of <35 kg) are warranted to decipher the habitat (based on cenogram approach) of the Middle Miocene (~13 Ma) mammalian community of Kalagarh (Himalayan Foreland Basin, north India) and the Middle Miocene (~14 Ma) mammalian community of Palasava (Kutch Basin, western India). Nonetheless, the Cenogram technique (being continuously developed over the past six decades) may become an important tool to decipher any habitat change(s) of western India’s mammalian communities considering renewed palaeontological efforts within the Neogene of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aiglsstorfer M, Bocherens H, Bӧhme M (2014) Large mammal ecology in the late middle Miocene Gratkorn locality (Austria). Palaeodivers Palaeoenviron 94:189–213. https://doi.org/10.1007/s12549-013-0145-5

    Article  Google Scholar 

  • Alroy J (2000) New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707–733

    Article  Google Scholar 

  • Anderson JF, Hall-Martin A, Russell DA (1985) Long-bone circumference and weight in mammals, birds and dinosaurs. J Zool 207:53–61

    Article  Google Scholar 

  • Andersson K (2004) Predicting carnivoran body mass from a weight-bearing joint. J Zool 262:161–172

    Article  Google Scholar 

  • Barry JC, Morgan ME, Flynn LJ, Pilbeam D, Behrensmeyer AK, Raza SM, Khan IA, Badgley C, Hicks J, Kelley J (2002) Faunal and environmental change in the Late Miocene Siwaliks of northern Pakistan. Paleobiology 28(S2):1–71

    Article  Google Scholar 

  • Becker D, Tissier J (2019) Rhinocerotidae from the early middle Miocene locality Gračanica (Bugojno Basin, Bosnia-Herzegovina). Palaeobiodivers Palaeoenviron. https://doi.org/10.1007/s12549-018-0352-1

  • Bernor RL, Fessaha N (2000) Evolution of late Miocene Hungarian Suinae (Artiodactyla, Suidae). Carolina 58:83–92

    Google Scholar 

  • Bhandari A, Kay RF, Williams BA, Tiwari BN, Bajpai S, Hieronymus T (2018) First record of the Miocene hominoid Sivapithecus from Kutch, Gujarat State, western India. PLoS One 13:e0206314. https://doi.org/10.1371/journal.pone.0206314

    Article  CAS  Google Scholar 

  • Bown TM, Holroyd PA, Rose KD (1994) Mammal extinctions, body size, and paleotemperature. Proc Natl Acad Sci USA 91:10403–10406

    Article  ADS  CAS  Google Scholar 

  • Christiansen P (2004) Body size in proboscideans, with notes on elephant metabolism. Zool J Linnean Soc 140:523–549

    Article  Google Scholar 

  • Costeur L (2005) Cenogram analysis of the Rudabánya mammalian community: palaeoenvironmental interpretations. Palaeontogr Ital 90:303–307

    Google Scholar 

  • Creighton GK (1980) Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. J Zool (Lond) 191:435–443

    Article  Google Scholar 

  • Croft DA (2001) Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Divers Distrib 7:271–287. https://doi.org/10.1046/j.1366-9516.2001.00117.x

    Article  Google Scholar 

  • Dagosto M, Terranova CJ (1992) Estimating the body size of Eocene primates: a comparison of results from dental and postcranial variables. Int J Primatol 13(3):307–343

    Article  Google Scholar 

  • Damuth J, MacFadden BJ (1990) Introduction: body size and its estimation. In: Damuth J, MacFadden BJ (eds) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge, UK, pp 1–10

    Google Scholar 

  • DeSilva JM, Morgan ME, Barry JC, Pilbeam D (2010) A hominoid distal tibia from the Miocene of Pakistan. J Hum Evol 58:147–154

    Article  Google Scholar 

  • Domingo L, Koch PL, Hernández Fernández M, Fox DL, Domingo MS, Alberdi MT (2013) Late Neogene and early quaternary paleoenvironmental and paleoclimatic conditions in southwestern Europe: isotopic analyses on mammalian taxa. PLoS One 8(5):e63739. https://doi.org/10.1371/journal.pone.0063739

    Article  ADS  CAS  Google Scholar 

  • Egi N, Takai M, Shigehara N, Tsubamoto T (2004) Body mass estimates for Eocene eosimiid and amphipithecid primates using prosimians and anthropoid scaling models. Int J Primatol 25:211–236

    Article  Google Scholar 

  • Ferreira GS, Bandyopadhyay S, Joyce WG (2018) A taxonomic reassessment of Piramys auffenbergi, a neglected turtle from the late Miocene of Piram Island, Gujarat, India. PeerJ. https://doi.org/10.7717/peerj.5938

  • Fleagle JG (1978) Size distributions of living and fossil primate faunas. Paleobiology 4:67–76

    Article  Google Scholar 

  • Flower BP, Kennett JP (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555

    Article  Google Scholar 

  • Flynn LJ, Barry JC, Morgan ME, Pilbeam D, Jacobs LL, Lindsay EH (1995) Neogene Siwalik mammalian lineages: species longevities, rates of change, and modes of speciation. In: Badgley C, Behrensmeyer AK (eds) Long records of continental ecosystems. Palaeogeography, palaeoclimatology, palaeoecology, vol 115. Cambridge University Press, Cambridge, pp 249–264

    Google Scholar 

  • García Yelo BA, Gómez Cano AR, Cantalapiedra JL, Alcalde GM, Sanisidro O, Oliver A, Hernández-Ballarín V, López-Guerrero P, Fraile S, Hernández-Fernández M (2014) Palaeoenvironmental analysis of the Aragonian (middle Miocene) mammalian faunas from the Madrid Basin based on body-size structure. J Iber Geol 40(1):129–140

    Article  Google Scholar 

  • Gilbert CC, Patel BA, Singh NP, Campisano CJ, Fleagle JG, Rust KL, Patnaik R (2017) New sivaladapid primate from lower Siwalik deposits surrounding Ramnagar (Jammu and Kashmir State), India. J Hum Evol 102:21–41. https://doi.org/10.1016/j.jhevol.2016.10.001

    Article  Google Scholar 

  • Gilbert CC, Ortiz A, Pugh KD, Campisano CJ, Patel BA, Singh NP, Fleagle JG, Patnaik R (2020) New middle Miocene ape (primates: hylobatidae) from Ramnagar, India fills major gaps in the hominoid fossil record. Proc R Soc B 287. https://doi.org/10.1098/rspb.2020.1655

  • Gingerich PD (1989) New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage, vol 28. University of Michigan, Ann Arbor, pp 1–97

    Google Scholar 

  • Gingerich PD (1990) Prediction of body mass in mammalian species from long bone lengths and diameters. Contrib Mus Paleontol Univ Mich 28(4):79–92

    Google Scholar 

  • Gingerich PD, Smith BH, Rosenberg K (1982) Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am J Phys Anthropol 58:81–100

    Article  CAS  Google Scholar 

  • Gӧhlich UB (2010) The Proboscidea (Mammalia) from the Miocene of Sandelzhaunsen (southern Germany). Paläontol Z 84:163–204. https://doi.org/10.1007/s12542-010-0053-1

    Article  Google Scholar 

  • Gómez Cano AR, García Yelo BA, Hernández Fernández M (2006) Cenogramas, análisis bioclimático y muestreo en faunas de mamíferos: implicacion espara la aplicación de métodos de análisis paleoecológico. Estud Geol 62:135–144

    Article  Google Scholar 

  • Grabowski M, Jungers WL (2017) Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes. Nat Commun. https://doi.org/10.1038/s41467-017-00997-4

  • Guzmán JA (2018) Palaeobiology of tragulids (Mammalia: Artiodactyla: Ruminantia). Dissertation zur Erlangung des Doktorgrades an der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München, pp 1–230

    Google Scholar 

  • Harris EB, Kohn MJ, Strömberg CAE (2020) Stable isotope compositions of herbivore teeth indicate climatic stability leading into the mid-Miocene climatic optimum, in Idaho, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 546:109610. https://doi.org/10.1016/j.palaeo.2020.109610

    Article  Google Scholar 

  • Hernández Fernández M, Alberdi MT, Azanza B, Montoya P, Morales J, Nieto M, Peláez-Campomanes P (2006) Identification problems of arid environments in the neogene–quaternary mammal record of Spain. J Arid Environ 66:585–608

    Article  Google Scholar 

  • Holbourn A, Kuhnt W, Kochhann KGD, Andersen N, Sebastian Meier KJ (2015) Global perturbation of the carbon cycle at the onset of the Miocene climatic optimum. Geology 43:123–126. https://doi.org/10.1130/G36317.1

    Article  ADS  CAS  Google Scholar 

  • Kapur VV, Pickford M, Chauhan G, Thakkar MG (2019) A middle Miocene (~14 Ma) vertebrate assemblage from Palasava, Rapar Taluka, Kutch (Kachchh) district, Gujarat State, western India. Hist Biol. https://doi.org/10.1080/08912963.2019.1648451

  • Kapur VV, GarcíaYelo BA, Morthekai P (2020) Cenogram analyses as habitat indicators for the paleogene-neogene mammalian communities across the globe, with an emphasis on the early Eocene Cambay Shale mammalian community from India. J Iber Geol 46(3):291–310. https://doi.org/10.1007/s41513-020-00131-2

    Article  Google Scholar 

  • Kay RF (1975) The functional adaptations of primate molar teeth. Am J Phys Anthropol 43:195–216

    Article  ADS  CAS  Google Scholar 

  • Larramendi A (2016) Shoulder height, body mass, and shape of proboscideans. Acta Palaeontol Pol 61(3):537–574

    Google Scholar 

  • Legendre S (1986) Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata 16:191–212

    Google Scholar 

  • Legendre S (1987) Les communautés de mammifères d'Europe occidentale de ‘Eocene supérieur et Oligocène: structures et milieux. Münchner Geowissenschaft liche Abhandlungen A10:301–312

    Google Scholar 

  • Legendre S (1989) Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentatructures, milieu et évolution. Münchner Geowissenschaft liche Abhandlungen A16:1–110

    Google Scholar 

  • Legendre S, Roth C (1988) Correlation of carnassial tooth size and body weight in recent carnivores (mammalia). Hist Biol 1:85–98

    Article  Google Scholar 

  • Liu L-P (2003) The Chinese fossil Suoidea: systematics, evolution, and paleoecology. Yliopistopaino, Helsinki, pp 1–41

    Google Scholar 

  • Martinez JN, Sudre J (1995) The astragalus of paleogene artiodactyls: comparative morphology, variability and prediction of body mass. Lethaia 28:197–209

    Article  Google Scholar 

  • Mendoza M, Janis CM, Palmqvist P (2006) Estimating the body mass of extinct ungulates: a study on the use of multiple regression. J Zool 270:90–101

    Article  Google Scholar 

  • Methner K, Campani M, Fiebig J, Löffler N, Kempf O, Mulch A (2020) Middle Miocene long-term continental temperature change in and out of pace with marine climate records. Sci Rep 10:7989. https://doi.org/10.1038/s41598-020-64743-5

    Article  ADS  CAS  Google Scholar 

  • Millien V, Bovy H (2010) When teeth and bones disagree: body mass estimation of a giant extinct rodent. J Mammal 91(1):11–18

    Article  Google Scholar 

  • Myers TJ (2001) Prediction of marsupial body mass. Aust J Zool 49:99–118

    Article  Google Scholar 

  • Nieto M, Rodríguez J (2003) Inferencia paleoecológica en mamíferos cenozoicos: limitaciones metodológicas. Coloquios de Paleontología 1:459–474

    Google Scholar 

  • Parmar V, Prasad GVR, Norboo R (2018) Middle Miocene small mammals from the Siwalik Group of Northwestern India. J Asian Earth Sci 162:84–92. https://doi.org/10.1016/j.jseaes.2017.11.023

    Article  ADS  Google Scholar 

  • Patnaik R, Sharma KM, Mohan L, Williams BA, Kay RF, Chatrath P (2014) Additional vertebrate remains from the early Miocene of Kutch, Gujarat. Spec Publ Paleontol Soc India 5:335–351

    Google Scholar 

  • Prasad KN (1974) The vertebrate fauna from Piram Island, Gujarat, India. Mem Geol Surv India 1974:1–22

    Google Scholar 

  • Retallack GJ, Bajpai S, Liu X, Kapur VV, Pandey SK (2018) Advent of strong south Asian monsoon by 20 million years ago. J Geol 126:1–24

    Article  ADS  Google Scholar 

  • Rodríguez J (1999) Use of cenograms in mammalian palaeocology - a critical review. Lethaia 32:331–347

    Article  Google Scholar 

  • Sahni A, Mishra VP (1975) Lower tertiary vertebrates from western India. Monogr Palaeontol Soc India 3:1–48

    Google Scholar 

  • Sehgal RK (2013) Revised mammalian biostratigraphy of the lower Siwalik sediments of Ramnagar (J. & K.), India and its faunal correlation. J Palaeontol Soc India 58(1):87–92

    Google Scholar 

  • Sehgal RK, Patnaik R (2012) New muroid rodent and Sivapithecus dental remains from the lower Siwalik deposits of Ramnagar (J & K, India): age implication. Quat Int 269:69–73

    Article  Google Scholar 

  • Singh NP, Jukar AD, Patnaik R, Sharma MK, Singh NA, Singh YP (2020) The first specimen of Deinotherium indicum (Mammalia, Proboscidea, Deinotheriidae) from the late Miocene of Kutch, India. J Paleontol. https://doi.org/10.1017/jpa.2020.3

  • Travouillon KJ, Legendre S (2009) Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeogr Palaeoclimatol Palaeoecol 272:69–84

    Article  Google Scholar 

  • Travouillon KJ, Legendre S, Archer M, Hand SA (2009) Palaeoecological analyses of Riversleigh’s oligo-Miocene sites: implications for oligo-Miocene climate change in Australia. Palaeogeogr Palaeoclimatol Palaeoecol 276:24–37

    Article  Google Scholar 

  • Tsubamoto T, Egi N, Takai M, Sein C, Maung M (2005) Middle Eocene ungulate mammals from Myanmar: a review with description of new specimens. Acta Palaeontol Pol 50(1):117–138

    Google Scholar 

  • Valverde JA (1964) Remarquessur la structure et l'évolution des communautés de vertebras terrestres. 1. Structure d'une communauté 2, Rapport entre prédateurs et proies. La Terre et la Vie 111:121–154

    Google Scholar 

  • Valverde JA (1967) Estructura de unacommunidad de vertebra dos terrestres. Monografías de la Estación Biológica de Doñana 1:1–129

    Google Scholar 

  • You Y, Huber M, Müller RD, Poulsen CJ, Ribbe J (2009) Simulation of the middle Miocene climate optimum. Geophys Res Lett 36. https://doi.org/10.1029/2008GL036571

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. https://doi.org/10.1126/science.1059412

    Article  ADS  CAS  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283. https://doi.org/10.1038/nature06588

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

At the onset, VVK acknowledges the use of the infrastructural facilities at Birbal Sahni Institute of Palaeosciences (BSIP), Lucknow, India and is thankful to Dr Vandana Prasad (Director, BSIP) for constant encouragement and necessary permissions (BSIP/RDCC/Publication no. 93/2020-2022). VVK also acknowledges funding support from BSIP in the form of in-house project 4.2 (2019-2021) & project 3 (2021-2025). BAGY acknowledges funding support from Ministerio de Educación, Ciencia e Investigación in the form of supporting projects (PGC2018-094122-B-I00; PGC2018-094955-A-I00). The authors would like to thank the anonymous reviewers and the editor for critical and constructive commentaries that improved the manuscript.

Disclosure Statement

We have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vivesh V. Kapur or Blanca A. García Yelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapur, V.V., García Yelo, B.A., Thakkar, M.G. (2022). Development of Cenogram Technique Over the Past Six Decades with Some Insights into the Varied Habitats Occupied by Diverse Mammalian Communities Across Spain, China, and India Transiting the Middle Miocene Climatic Optimum. In: Phartiyal, B., Mohan, R., Chakraborty, S., Dutta, V., Gupta, A.K. (eds) Climate Change and Environmental Impacts: Past, Present and Future Perspective. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-031-13119-6_3

Download citation

Publish with us

Policies and ethics