Skip to main content

Advertisement

Log in

Cenogram analyses as habitat indicators for Paleogene–Neogene mammalian communities across the globe, with an emphasis on the early Eocene Cambay Shale mammalian community from India

El análisis de Cenogramas como indicador del habitat en comunidades de mamíferos del Paleogeno-Neogeno a nivel global, con especial énfasis en la comunidad de mamíferos del Eoceno de Cambay Shale, India

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The present study is an attempt to utilize cenogram methodology (both qualitative and quantitative) to consider mammalian communities from five early to late Eocene localities across the globe (i.e., Polecat Bench, Bighorn Basin, North America; Abbey Wood, Blackheath Formation, UK; Cambay Shale, Cambay Basin, India; Wutu Formation, Wutu Basin, China; Pondaung Formation, Myanmar) so as to provide a comparative palaeohabitat framework. It is also a first attempt to examine the palaeohabitat of an extinct mammalian community (i.e., from Cambay Shale) in India utilizing the cenogram approach. In addition, seven extinct middle-Miocene communities (Laogou, Linxia Basin, China; Estación Imperial, Spain; Paseo de las Acacias, Spain; Arroyo del Olivar-Puente de Vallecas, Spain; Somo-saguas, Spain; Paracuellos 5, Spain; Paracuellos 3, Spain) have also been considered, in order to provide a global perspective to the climatic inferences in a temporal context. The majority of statistical calculations for Paleogene communities expose forested and humid conditions, excluding the Cambay Shale mammalian community of India. A hidden diversity within the medium to large body-size category of mammals (disguising the mammal biodiversity expected in tropical forested habitats) from Cambay Shale (western India) is a plausible cause of digression in the results. This is reflected in the histograms showing relationships between proportions of mammal species in various body-mass categories. Furthermore, the results show that Neogene mammalian communities were sustained in comparatively open habitats. Differences between occidental European and Asian localities in the canopy and humidity of the Neogene environments are also reflected in our analyses.

Resumen

El presente estudio trata de emplear (tanto cualitativa como cuantitativamente) la metodología basada en el estudio de los cenogramas asociados a las comunidades de mamíferos presentes en cinco localidades fósiles del Eoceno inferior a superior (i.e., Polecat Bench, Cuenca de Bighorn, Norte America Abbey Wood, Formación Blackheath, Reino Unido Cambay Shale, Cuenca de Cambay, India Wutu Formation, Cuenca de Wutu, China Formación Pondaung, Myanmar), para establecer un marco comparativo paleoambiental entre ellas. Este trabajo es una primera aproximación para descifrar el paleohábitat de una comunidad de mamíferos extintos (i.e. de Cambay Shale) de la India, mediante el uso de la técnica de los cenogramas. Además, siete comunidades extintas del Mioceno medio, (Laogou, Cuenca de Linxia, China Estación Imperial, España Paseo de las Acacias, España Arroyo del Olivar-Puente de Vallecas, España Somosaguas, España Paracuellos 5, España Paracuellos 3, España) fueron incluidas en los análisis, dando así un contexto global y evolutivo a la inferencia climática del presente trabajo. En general, el análisis estadístico de los datos sugiere que las comunidades de mamíferos del Paleógeno habitaban generalmente en bosques tropicales a subtropicales, a excepción de la comunidad de mamíferos en Cambay Shale en India. Nuestros resultados reflejan una diversidad oculta entre las especies de tamaño medio a grande en la comunidad de mamíferos de Cambay Shale, que parece afectar a la estructura de la comunidad, ocultando la biodiversidad de mamíferos presenten ambientes tropicales boscosos. Esto queda reflejado en los histogramas que muestran el porcentaje de especies dentro de cada categoría de tamaño corporal. Así mismo, nuestros resultados también muestran que las comunidades del Neógeno ocupaban ambientes forestales más abiertos o sabanas. Además, nuestros resultados también arrojan diferencias en el grado de forestalidad y humedad entre las localidades Neógenas de la Europa occidental y las asiáticas

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alroy, J. (2000). New methods for quantifying macroevolutionary patterns and processes. Paleobiology, 26, 707–733.

    Article  Google Scholar 

  • Amezua, L., Salesa, M. J., Pérez, B., Peláez-Campomanes, P., Fraile, S., Morales, J., et al. (2000). Paleoecología. In J. Morales (Ed.), Patrimonio paleontológico de la Comunidad de Madrid (pp. 155–172). Madrid: Consejeríade Educación de la Comunidad de Madrid.

    Google Scholar 

  • Anderson, J. F., Hall-Martin, A., & Russell, D. A. (1985). Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology, 207, 53–61.

    Article  Google Scholar 

  • Andersson, Ki. (2004). Predicting carnivoran body mass from a weight-bearing joint. Journal of Zoology, 262, 161–172.

    Article  Google Scholar 

  • Bai, B., Wang, Y.-Q., & Meng, J. (2018). The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia. Communications Biology, 1, 115. https://doi.org/10.1038/s42003-018-0116-5.

    Article  Google Scholar 

  • Bajpai, S., Das, D. P., Kapur, V. V., Tiwari, B. N., & Srivastava, S. S. (2007a). Early Eocene rodents (Mammalia) from Vastan Lignite Mine, Gujarat, Western India. Gondwana Geological Magazine, 22(2), 91–95.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., Das, D. P., & Tiwari, B. N. (2007b). New early Eocene primate (Mammalia) from Vastan Lignite Mine, District Surat (Gujarat), western India. Journal of Palaeontological Society of India, 52(2), 231–234.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., Das, D. P., Tiwari, B. N., Saravanan, N., & Sharma, R. (2005a). Early Eocene land mammals from Vastan lignite mine, District Surat (Gujarat), western India. Journal of the Palaeontological Society of India, 50(1), 101–113.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., & Thewissen, J. G. M. (2009). Creodont and Condylarth from the Cambay Shale (Early Eocene, ~ 55–54 Ma), Vastan Lignite Mine, Gujarat, Western India. Journal of the Palaeontological Society of India, 54(1), 103–109.

    Google Scholar 

  • Bajpai, S., Kapur, V. V., Thewissen, J. G. M., Tiwari, B. N., Das, D. P., Sharma, R., et al. (2005b). Early Eocene primates from Vastan lignite mine, Gujarat, western India. Journal of Palaeontological Society of India, 50(2), 43–54.

    Google Scholar 

  • Bajpai, S., Kay, R. F., Williams, B. A., Das, D. P., Kapur, V. V., & Tiwari, B. N. (2008). The oldest Asian record of anthropoidea. Proceedings of the National Academy of Sciences, USA, 105, 11093–11098.

    Article  Google Scholar 

  • Bhattarai, K. R., & Pathak, M. L. (2015). A new species of Ziziphus (Rhamnaceae) from Nepal Himalayas. Indian Journal of Plant Sciences, 4(2), 71–77.

    Google Scholar 

  • Bown, T. M., Holroyd, P. A., & Rose, K. D. (1994). Mammal extinctions, body size, and paleotemperature. Proceedings of the National Academy of Sciences, USA, 91, 10403–10406.

    Article  Google Scholar 

  • Christiansen, P. (2004). Body size in Proboscideans, with notes on elephant metabolism. Zoological Journal of the Linnean Society, 140, 523–549.

    Article  Google Scholar 

  • Clementz, M., Bajpai, S., Ravikant, V., Thewissen, J. G. M., Singh, I. B., & Prasad, V. (2011). Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology, 39, 15–18.

    Article  Google Scholar 

  • Cooper, L. N., Seiffert, E. R., Clementz, M., Madar, S. I., Bajpai, S., Hussain, S. T., et al. (2014). Anthracobunids from the Middle Eocene of India and Pakistan are Stem Perissodactyls. PLoS One, 9(10), e109232. https://doi.org/10.1371/journal.pone.0109232.

    Article  Google Scholar 

  • Costeur, L. (2005). Cenogram analysis of the Rudabánya mammalian community: palaeoenvironmental interpretations. Palaeontographica Italica, 90, 303–307.

    Google Scholar 

  • Costeur, L., & Legendre, S. (2008). Mammalian communities document a latitudinal environmental gradient during the Miocene Climatic Optimum in western Europe. Palaios, 23, 280–288. https://doi.org/10.2110/palo.2006.p06-092r.

    Article  Google Scholar 

  • Creighton, G. K. (1980). Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. Journal of Zoology (London), 191, 435–443.

    Article  Google Scholar 

  • Dagosto, M., & Terranova, C. J. (1992). Estimating the body size of Eocene Primates: A comparison of results from dental and postcranial variables. International Journal of Primatology, 13(3), 307–343.

    Article  Google Scholar 

  • Damuth, J., & MacFadden, B. J. (1990). Introduction: Body size and its estimation. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 1–10). Cambridge: Cambridge University Press.

    Google Scholar 

  • Danilo, L., Remy, J. A., Vianey-Liaud, M., Marandat, B., Sudre, J., & Lihoreau, F. (2013). A new Eocene locality in southern France sheds light on the basal radiation of Palaeotheriidae (Mammalia, Perissodactyla, Equoidea). Journal of Vertebrate Paleontology, 33(1), 195–215.

    Article  Google Scholar 

  • Das, D. P. (2007). Early Eocene small mammal fauna from Vastan lignite mine, Gujarat, western India. (Unpublished Ph.D. Thesis) Indian Institute of Technology, Roorkee, India.

  • Deng, T. (2009). Late Cenozoic environmental changes in the Linxia Basin (Gansu, China) as indicated by cenograms of fossil mammals. Vertebrata PalAsiatica, 47(4), 282–298.

    Google Scholar 

  • DeSantis, L. R. G., & MacFadden, B. (2007). Identifying forested environments in Deep Time using fossil tapirs: evidence from evolutionary morphology and stable isotopes. Courier-Forschungsinstitut Senckenberg, 258, 147–157.

    Google Scholar 

  • Domingo, L., Koch, P. L., Hernández Fernández, M., Fox, D. L., Domingo, M. S., & Alberdi, M. T. (2013). Late Neogene and early Quaternary paleoenvironmental and paleoclimatic conditions in southwestern Europe: Isotopic Analyses On Mammalian Taxa. PLoS One, 8(5), e63739. https://doi.org/10.1371/journal.pone.0063739.

    Article  Google Scholar 

  • Dutta, S., Tripathi, S. M., Mallick, M., Mathews, R. P., Greenwood, P. F., Rao, M. R., et al. (2011). Eocene out-of-India dispersal of Asian dipterocarps. Review of Palaeobotany and Palynology, 166, 63–68.

    Article  Google Scholar 

  • Egi, N., Takai, M., Shigehara, N., & Tsubamoto, T. (2004). Body mass estimates for Eocene eosimiid and amphipithecid primates using prosimiansand anthropoid scaling models. International Journal of Primatology, 25, 211–236.

    Article  Google Scholar 

  • Gangopadhyay, M., & Chakrabarty, T. (1997). The family Combretaceae of Indian Subcontinent. Journal of Economic and Taxonomic Botany, 2(2), 281–364.

    Google Scholar 

  • García Yelo, B. A., Gómez Cano, A. R., Cantalapiedra, J. L., Alcalde, G. M., Sanisidro, O., Oliver, A., et al. (2014). Palaeoenvironmental analysis of the Aragonian (middle Miocene) mammalian faunas from the Madrid Basin based on body-size structure. Journal of Iberian Geology, 40(1), 129–140.

    Article  Google Scholar 

  • Garg, R., Ateequzzaman, K., Prasad, V., Tripathi, S. K. M., Singh, I. B., Jauhri, A. K., et al. (2008). Age-diagnostic dinoflagellate cysts from the lignite-bearing sediments of the Vastan lignite mine, Surat District, Gujarat, western India. Journal of the Palaeontological Society of India, 53, 99–105.

    Google Scholar 

  • Gholave, A. R., Kambale, S. S., Lekhak, M. M., & Yadav, S. R. (2015). Combretum shivannae (Combretaceae), a new species from India. Kew Bulletin, 70, 33.

    Article  Google Scholar 

  • Gingerich, P. D. (1989). New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan-Papers on Paleontology, 28, 1–97.

    Google Scholar 

  • Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, University of Michigan, 28(4), 79–92.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., & Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58, 81–100.

    Article  Google Scholar 

  • Gómez Cano, A. R., García Yelo, B. A., & Hernández Fernández, M. (2006). Cenogramas, análisis bioclimático y muestreoen faunas de mamíferos: Implicaciones para la aplicación demétodos de análisis paleoecológico. Estudios Geológicos, 62, 135–144.

    Article  Google Scholar 

  • Gomez-Navarro, C., Jaramillo, C., Herrera, F., Wing, S. L., & Callejas, R. (2009). Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. American Journal of Botany, 96(7), 1300–1312.

    Article  Google Scholar 

  • Hernández Fernández, M. (2001). Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecology and Biogeography, 10, 189–204.

    Article  Google Scholar 

  • Hernández Fernández, M., Alberdi, M. T., Azanza, B., Montoya, P., Morales, J., Nieto, M., et al. (2006). Identification problems of arid environments in the Neogene–Quaternary mammal record of Spain. Journal of Arid Environments, 66, 585–608.

    Article  Google Scholar 

  • Holling, C. S. (1992). Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs, 62(4), 447–502.

    Article  Google Scholar 

  • Hooker, J. J. (2010). The mammal fauna of the early Eocene blackheath formation of Abbey Wood, London. Monograph of the Palaeontographical Society, London, 165, 1–162.

    Google Scholar 

  • Kapur, V. V. (2006). Eocene vertebrates from lignite mines of Gujarat (western India) with emphasis on mammals. (Unpublished Ph.D. Thesis) Indian Institute of Technology, Roorkee, India.

  • Kapur, V. V. (2020). Size variation amongst the non-volant mammals from the early Eocene Cambay Shale deposits of western India: Palaeobiogeographic implications. In: G. V. R. Prasad, & R. Pattnaik (Eds.), Biological consequences of plate tectonics: New perspectives on Post-Gondwanaland Break-up. Vertebrate Paleobiology and Paleoanthropology Series. Springer International Publishing. (in press).

  • Kapur, V. V., & Bajpai, S. (2015). Oldest South Asian tapiromorph (Perissodactyla, Mammalia) from the Cambay Shale Formation, western India, with comments on its phylogenetic position and biogeographic implications. The Palaeobotanist, 64, 95–103.

    Google Scholar 

  • Kapur, V. V., Das, D. P., Bajpai, S., & Prasad, G. V. R. (2017a). First mammal of Gondwanan lineage in the early Eocene of India. Comptes Rendus Palevol, 16, 721–737.

    Article  Google Scholar 

  • Kapur, V. V., Das, D. P., Bajpai, S., & Prasad, G. V. R. (2017b). Corrigendum to “First mammal of Gondwanan lineage in the early Eocene of India”. Comptes Rendus Palevol, 16, 820.

    Article  Google Scholar 

  • Kapur, V. V., Pickford, M., Chauhan, G., & Thakkar, M. G. (2019). A Middle Miocene (~ 14 Ma) vertebrate assemblage from Palasava, Rapar Taluka, Kutch (Kachchh) District, Gujarat State, western India. Historical Biology.. https://doi.org/10.1080/08912963.2019.1648451.

    Article  Google Scholar 

  • Kay, R. F. (1975). The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 43, 195–216.

    Article  Google Scholar 

  • King, S. R. B. (2002). Home range and habitat use of free-ranging Przewalski horses at Hustai National Park, Mongolia. Applied Animal Behaviour Science, 78, 103–113.

    Article  Google Scholar 

  • Kumar, K., & Jolly, A. (1986). Earliest artiodactyl (Diacodexis, Dichobunidae: Mammalia) from the Eocene of Kalakot, northwestern Himalaya, India. Indian Society of Geoscientists Bulletin, 2, 20–30.

    Google Scholar 

  • Kumar, K., Rose, K. D., Rana, R. S., Singh, L., Smith, T., & Sahni, A. (2010). Early Eocene artiodactyls (Mammalia) from western India. Journal of Vertebrate Paleontology, 30(4), 1245–1274.

    Article  Google Scholar 

  • Kumar, K., & Sahni, A. (1985). Eocene mammals from the UpperSubathu Group, Kashmir Himalaya, India. Journal of Vertebrate Paleontology, 5, 153–168.

    Article  Google Scholar 

  • Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata, 16, 191–212.

    Google Scholar 

  • Legendre, S. (1987). Les communautés de mammifères d’Europe occidentale de l’Eocene supérieur et Oligocène: structures et milieux. Münchner Geowissenschaftliche Abhandlungen, A10, 301–312.

    Google Scholar 

  • Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: structures, milieu et évolution. Münchner Geowissenschaftliche Abhandlungen, A16, 1–110.

    Google Scholar 

  • Legendre, S., & Roth, C. (1988). Correlation of carnassial tooth size and body weight in Recent carnivores (mammalia). Historical Biology, 1, 85–98.

    Article  Google Scholar 

  • Martinez, J. N., & Sudre, J. (1995). The astragalus of Paleogene artiodactyls: comparative morphology, variability and prediction of body mass. Lethaia, 28, 197–209.

    Article  Google Scholar 

  • Mendoza, M., Janis, C. M., & Palmqvist, P. (2006). Estimating the body mass of extinct ungulates: a study on the use of multiple regression. Journal of Zoology, 270, 90–101.

    Google Scholar 

  • Millien, V., & Bovy, H. (2010). When teeth and bones disagree: Body mass estimation of a giant extinct rodent. Journal of Mammalogy, 91(1), 11–18.

    Article  Google Scholar 

  • Mitchell, G., & Lust, A. (2008). The carotid rete and artiodactyl success. Biology Letters, 4, 415–418.

    Article  Google Scholar 

  • Myers, T. J. (2001). Prediction of marsupial body mass. Australian Journal of Zoology, 49, 99–118.

    Article  Google Scholar 

  • Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. (2009). Agroforestree Database: A tree reference and selection guide, v4.0. https://www.worldagroforestry.org/af/treedb. Accessed 7 May 2019.

  • Pemberton, R. W., & Ferriter, A. P. (1998). Old World climbing fern (Lygodium microphyllum), a dangerous invasive weed in Florida. American Fern Journal, 88(4), 165–175.

    Article  Google Scholar 

  • Pineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. Paleobiology, 42(4), 659–669.

    Article  Google Scholar 

  • Prasad, V., Singh, I. B., Bajpai, S., Garg, R., Thakur, B., Singh, A., et al. (2013a). Palynofacies and sedimentology based high-resolution sequence stratigraphy of the lignite-bearing muddy coastal deposits (early Eocene) in the Vastan Lignite Mine, Gulf of Cambay, India. Facies, 59(4), 737–761.

    Article  Google Scholar 

  • Prasad, M., Singh, H., Singh, S. K., Mukherjee, D., & Ruiz, E. E. (2013b). Early Eocene arecoid palm wood, Palmoxylon vastanensis n.sp. from Vastan lignite, Gujarat, India: Its palaeoenvironmental implications. Journal of the Palaeontological Society of India, 58(1), 115–123.

    Google Scholar 

  • Rana, R. S., Kumar, K., Escarguel, G., Sahni, A., Rose, K. D., Smith, T., et al. (2008). An ailuravine rodent from the lower Eocene Cambay Formation at Vastan, western India, and its palaeobiogeographic implications. Acta Palaeontologica Polonica, 53(1), 1–14.

    Article  Google Scholar 

  • Retallack, G. J., Bajpai, S., Liu, X., Kapur, V. V., & Pandey, S. K. (2018). Advent of strong South Asian monsoon by 20 million years ago. The Journal of Geology, 126, 1–24.

    Article  Google Scholar 

  • Rodríguez, J. (1999). Use of cenograms in mammalian palaeocology: A critical review. Lethaia, 32, 331–347.

    Article  Google Scholar 

  • Rose, K. D., Holbrook, L. T., Rana, R. S., Kumar, K., Katrina, E. J., Heather, E. S., et al. (2014). Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nature Communications, 5(5570), 1–9.

    Google Scholar 

  • Rose, K. D., Kumar, K., Rana, R. S., Sahni, A., & Smith, T. (2013). New Hypsodont Tillodont (Mammalia, Tillodontia) from the Early Eocene of India. Journal of Palaeontology, 87, 842–853.

    Article  Google Scholar 

  • Rose, K. D., Rana, R. S., Sahni, A., Kumar, K., Singh, L., & Smith, T. (2009). First tillodont from India: Additional evidence for an early Eocene faunal connection between Europe and India? Acta Palaeontologica Polonica, 54, 351–355.

    Article  Google Scholar 

  • Rose, K. D., Rana, R. S., Sahni, A., & Smith, T. (2007). A new adapoidprimate from the early Eocene of India. Contributions from the Museum of Paleontology, University of Michigan, 31, 379–385.

    Google Scholar 

  • Rosenberger, A. L., & Hartwig, W. C. (2013). Primates (lemurs, lorises, tarsiers, monkeys and apes). Chichester: Wiley.

    Book  Google Scholar 

  • Russell, D. E., Thewissen, J. G. M., & Russell, D. S. (1983). A new dichobunid artiodactyl (Mammalia) from the Eocene of North-west Pakistan. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Serie B, 86, 285–300.

    Google Scholar 

  • Saarikko, J. (1989). Foraging behaviour of shrews. Annales Zoologici Fennici, 26, 411–423.

    Google Scholar 

  • Shukla, A., & Mehrotra, R. C. (2016). Holigarna (Anacardiaceae) from the Early Eocene of Western India and its Palaeogeographical and Palaeoclimatological Significance. Journal Geological Society of India, 87, 520–524.

    Article  Google Scholar 

  • Smith, T., Kumar, K., Rana, R. S., Folie, A., Solé, F., Noiret, C., et al. (2016). New early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwanan affinities. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2016.05.001.

    Article  Google Scholar 

  • Smith, T., Solé, F., Missiaen, P., Rana, R. S., Kumar, K., Sahni, A., et al. (2015). First early Eocene tapiroid from India and its implication for the paleobiogeographic origin of perissodactyls. Palaeovertebrata, 39(2), e5. https://doi.org/10.18563/pv.39.2.e5.

    Article  Google Scholar 

  • Soler, R. M., Pastur, G. M., Lencinas, M. V., & Borrelli, L. (2013). Seasonal diet of Lama guanicoe (Camelidae: Artiodactyla) in a heterogeneous landscape of South Patagonia. Bosque, 34(2), 129–141.

    Article  Google Scholar 

  • Thewissen, J. G. M., Russell, D. E., Gingerich, P. D., & Hussain, S. T. (1983). A new dichobunid artiodactyl (Mammalia) from the Eocene of North-West Pakistan, Dentition and Classification. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Serie B, 86(2), 153–180.

    Google Scholar 

  • Tobler, M. (2002). Habitat use and diet of Baird’s Tapirs (Tapirus bairdii) in a Montane Cloud Forest of the Cordillera de Talamance, Costa Rica. Biotropica, 34(3), 468–474.

    Article  Google Scholar 

  • Travouillon, K. J., & Legendre, S. (2009). Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 69–84.

    Article  Google Scholar 

  • Travouillon, K. J., Legendre, S., Archer, M., & Hand, S. A. (2009). Palaeoecological analyses of Riversleigh’s Oligo-Miocene sites: Implications for Oligo-Miocene climate change in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 24–37.

    Article  Google Scholar 

  • Tripathi, S. K. M., & Srivastava, D. (2012). Palynology and palynofacies of the early Palaeogene lignite bearing succession of Vastan, Cambay Basin, Western India. Acta Palaeobotanica, 52(1), 157–175.

    Google Scholar 

  • Tsubamoto, T. (2014). Estimating body mass from the astragalus in mammals. Acta Palaeontologica Polonica, 59(2), 259–265.

    Google Scholar 

  • Tsubamoto, T., Egi, N., Takai, M., Sein, C., & Maung, M. (2005). Middle Eocene ungulate mammals from Myanmar: A review with description of new specimens. Acta Palaeontologica Polonica, 50(1), 117–138.

    Google Scholar 

  • Valverde, J. A. (1964). Remarques sur la structure et l’évolution des communautés de vertebras terrestres. 1. Structure d’unecommunauté 2, Rapport entre prédateurs et proies. La Terre et la Vie, 111, 121–154.

    Google Scholar 

  • Valverde, J. A. (1967). Estructura de unacommunidad de vertebrados terrestres. Monografíasde la Estación Biológica de Doñana, 1, 1–129.

    Google Scholar 

  • Villanueva-Hernández, A. I., Delgado-Zamora, D. A., Heynes-Silerio, S. A., Ruacho-González, L., & López-González, C. (2016). Habitat selection by rodents at the transition between the Sierra Madre Occidental and the Mexican Plateau, México. Journal of Mammalogy, 1, 12. https://doi.org/10.1093/jmammal/gyw173.

    Article  Google Scholar 

  • Croft, D. A. (2001). Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions, 7, 271–287. https://doi.org/10.1046/j.1366-9516.2001.00117.x.

    Article  Google Scholar 

  • Nieto, M., & Rodríguez, J. (2003). Inferencia paleoecológica en mamíferos cenozoicos: limitaciones metodológicas. Coloquios de Paleontología, 1, 459–474.

    Google Scholar 

  • Scotese, C. R. (2016). Continental flooding & orography. Evanston, IL: PALEOMAP Project. https://doi.org/10.13140/RG.2.2.10331.36649. https://www.youtube.com/watch?v=yQh1Zp9WoM.

  • Tong, Y., & Wang, J. (2006). Fossil mammals from the early eocene wutu formation of Shandong Province. Palaeontologica Sinica, New Series C, 192(28), 1–195.

    Google Scholar 

Download references

Acknowledgements

VVK acknowledges the use of the infra-structural facilities at Birbal Sahni Institute of Palaeosciences (BSIP), Lucknow, India and thanks the Director (BSIP) for constant encouragement and necessary permissions. VVK also acknowledges funding support from BSIP in the form of in-house projects 2.17 (2017–2019) and 3.9 (2019–2021). VVK sincerely acknowledges Prof. Serge Legendre [Director of Research (DR1)—CNRS, Laboratoire de Géologie de Lyon Terre, Planétes, Environnement, France] for critically going through an earlier version of this manuscript, and for discussing the cenogram methodology. VVK would also like to thank Prof. Daryl Paul Domning (Howard University, Washington DC, USA) for valuable discussions on the manuscript. VVK also acknowledges Mr. Simon Knight (Hertfordshire, UK) for providing grammatical enhancements. This is a contribution of the PMMV Team (Palaeoecology, Macroecology and Macroevolution of Vertebrates (http://pmmv.com.es) as part of the research group UCM-910607 on Evolution of Cenozoic Mammals and Continental Palaeoenvironments. This work was also supported by projects of the Spanish Ministries of Education, Science and Innovation (PGC2018-094122-B-I00; PGC2018-094955-A-I00) to BAGY. BAGY also sincerely acknowledges the help of Professor Oscar Sanisidro (Departamento de Ciencias de la Vida, Universidad de Alcalá) during the statistical analyses and fruitful discussions. VVK would like to sincerely acknowledge Professor Philip Gingerich (Department of Earth and Environmental Sciences, Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA), Professor Mee-man Chang (Institute of Vertebrate Paleontology and Palaeoanthropology, Chinese Academy of Sciences, China), Suyin Ting (China), Editor-in-Chief of the journal “The Palaeobotanist” and Elsevier (license nos. 4276990115111 and 4276990516061) for granting permission(s) to reuse and redraw illustrations. The authors sincerely thank the Editor-in-Chief (Professor José López-Gómez), the Associate Editor (Professor Laura Domingo) for initial scrutiny of the manuscript. We also thank the Associate Editor (Professor Laura Domingo) and the anonymous reviewers for their constructive and insightful commentaries that helped us improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vivesh V. Kapur or Blanca A. García Yelo.

Ethics declarations

Conflict of interest

We have no potential conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapur, V.V., A. García Yelo, B. & Morthekai, P. Cenogram analyses as habitat indicators for Paleogene–Neogene mammalian communities across the globe, with an emphasis on the early Eocene Cambay Shale mammalian community from India. J Iber Geol 46, 291–310 (2020). https://doi.org/10.1007/s41513-020-00131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00131-2

Keywords

Palabras clave

Navigation