Skip to main content

Biomarkers in Oral Submucous Fibrosis

  • Chapter
  • First Online:
Oral Submucous Fibrosis

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

  • 178 Accesses

Abstract

Initiation and progression of oral submucous fibrosis (OSF) and its transformation to oral squamous cell carcinoma (OSCC) involve changes at the cellular, biochemical, molecular, and signalling pathway levels. These changes occur in both epithelial and connective tissue and have the potential to be used as biomarkers that can help in the diagnosis and management of OSF. This chapter describes the biomarkers identified by immunohistochemical methods classified under Epithelial markers, Connective tissue markers, Proliferative markers, Stemness markers, Markers of cell signalling and transcription factors, enzymes, glycoproteins, and metabolic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6(2):140–6. https://doi.org/10.1016/j.molonc.2012.01.010.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256–69.

    PubMed  Google Scholar 

  3. Matos LL, Trufelli DC, de Matos MG, da Silva Pinhal MA. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights. 2010;5:9–20. https://doi.org/10.4137/bmi.s2185.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chong Y, Thakur N, Lee JY, et al. Diagnosis prediction of tumours of unknown origin using ImmunoGenius, a machine learning-based expert system for immunohistochemistry profile interpretation. Diagn Pathol. 2021;16:19. https://doi.org/10.1186/s13000-021-01081-8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shen YW, Shih YH, Fuh LJ, Shieh TM. Oral submucous fibrosis: a review on biomarkers, pathogenic mechanisms, and treatments. Int J Mol Sci. 2020;21(19):7231. https://doi.org/10.3390/ijms21197231.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu W, Zeng L, Li N, Wang F, Jiang C, Guo F, Chen X, Su T, Xu C, Zhang S, Fang C. Quantitative proteomic analysis for novel biomarkers of buccal squamous cell carcinoma arising in background of oral submucous fibrosis. BMC Cancer. 2016;16:584.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bag S, Pal M, Chaudhary A, Das RK, Paul RR, Sengupta S, Chatterjee J. Connecting cyto-nanoarchitectural attributes and epithelial molecular expression in oral submucous fibrosis progression to cancer. J Clin Pathol. 2015;68(8):605–13.

    Article  PubMed  Google Scholar 

  8. Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J. 2012;31(12):2714–36. https://doi.org/10.1038/emboj.2012.150.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chandavarkar V, Mishra MN, Sangeetha R, Premalatha BR. The current understanding on Langerhans' cells and its role in oral lesions. Contemp Clin Dent. 2020;11:211–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lombardi T, Hauser C, Budtz-Jörgensen E. Langerhans cells: structure, function and role in oral pathological conditions. J Oral Pathol Med. 1993;22:193–202.

    Article  PubMed  Google Scholar 

  11. Narayanan B, Narasimhan M. Langerhans cell expression in oral submucous fibrosis: an immunohistochemical analysis. J Clin Diagn Res. 2015;9(7):ZC39–41.

    PubMed  PubMed Central  Google Scholar 

  12. da Silva LC, Fonseca FP, de Almeida OP, de Almeida Mariz BAL, Lopes MA, Radhakrishnan R, Sharma M, Kowalski LP, Vargas PA. CD1A+ and CD207+ cells are reduced in oral submucous fibrosis and oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal. 2020;25(1):e49–55.

    Article  PubMed  Google Scholar 

  13. De Monte A, Olivieri CV, Vitale S, Bailleux S, Castillo L, Giordanengo V, Maryanski JL, Segura E, Doglio A. CD1c-related DCs that express CD207/Langerin, but are distinguishable from Langerhans cells, are consistently present in human tonsils. Front Immunol. 2016;7:197. https://doi.org/10.3389/fimmu.2016.00197.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pellicioli ACA, Bingle L, Farthing P, Lopes MA, Martins MD, Vargas PA. Immunosurveillance profile of oral squamous cell carcinoma and oral epithelial dysplasia through dendritic and T-cell analysis. J Oral Pathol Med. 2017;46(10):928–33. https://doi.org/10.1111/jop.12597.

    Article  PubMed  Google Scholar 

  15. Nyachhyon R, Nagraj SK, Ongole R. Expression of CD1a by Langerhans cells in oral mucosa of submucous fibrosis patients and arecanut/gutkha chewers. J Nepal Dental Assoc. 2014;14(2):1.

    Google Scholar 

  16. Öhman J, Magnusson B, Telemo E, Jontell M, Hasséus B. Langerhans cells and T cells sense cell dysplasia in oral leukoplakias and oral squamous cell carcinomas--evidence for immunosurveillance. Scand J Immunol. 2012;76(1):39–48. https://doi.org/10.1111/j.1365-3083.2012.02701.x.

    Article  PubMed  Google Scholar 

  17. Belaldavar C, Mane DR, Hallikerimath S, Kale AD. Cytokeratins: its role and expression profile in oral health and disease. J Oral Maxillofacial Surg Med Pathol. 2016;28:77–84.

    Article  Google Scholar 

  18. Ranganathan K, Kavitha R, Sawant SS, Vaidya MM. Cytokeratin expression in oral submucous fibrosis--an immunohistochemical study. J Oral Pathol Med. 2006;35(1):25–32. https://doi.org/10.1111/j.1600-0714.2005.00366.x.

    Article  PubMed  Google Scholar 

  19. Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214(4):516–59. https://doi.org/10.1111/j.1469-7580.2009.01066.x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jacques CM, Pereira AL, Maia V, Cuzzi T, Ramos-e-Silva M. Expression of cytokeratins 10, 13, 14 and 19 in oral lichen planus. J Oral Sci. 2009;51(3):355–65. https://doi.org/10.2334/josnusd.51.355.

    Article  PubMed  Google Scholar 

  21. Frohwitter G, Buerger H, VAN Diest PJ, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12(1):107–13. https://doi.org/10.3892/ol.2016.4588.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nanda KD, Ranganathan K, Devi U, Joshua E. Increased expression of CK8 and CK18 in leukoplakia, oral submucous fibrosis, and oral squamous cell carcinoma: an immunohistochemistry study. Head Neck Pathol. 2012;6(3):314–21.

    Google Scholar 

  23. Vaidya MM, Sawant SS, Borges AM, Ogale SB, Bhisey AN. Cytokeratin expression in precancerous lesions of the human oral cavity. Oral Oncol. 1998;34(4):261–4.

    Article  PubMed  Google Scholar 

  24. Lalli A, Tilakaratne WM, Ariyawardana A, Fitchett C, Leigh IM, Hagi-Pavli E, Cruchley AT, Parkinson EK, Teh MT, Fortune F, Waseem A. An altered keratinocyte phenotype in oral submucous fibrosis: correlation of keratin K17 expression with disease severity. J Oral Pathol Med. 2008;37(4):211–20. https://doi.org/10.1111/j.1600-0714.2007.00609.x.

    Article  PubMed  Google Scholar 

  25. Sharada P, Swaminathan U, Nagamalini BR, Kumar KV, Ashwini BK, Lavanya V. Coalition of E-cadherin and vascular endothelial growth factor expression in predicting malignant transformation in common oral potentially malignant disorders. Asian Pac J Cancer Prev. 2018;19(4):1075–80.

    Google Scholar 

  26. Sridevi U, Jain A, Nagalaxmi V, Kumar UV, Goyal S. Expression of E-cadherin in normal oral mucosa, in oral precancerous lesions and in oral carcinomas. Eur J Dent. 2015;9(3):364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yadav A, Desai RS, Bhuta BA, Singh JS, Mehta R, Nehete AP. Altered immunohistochemical expression of mast cell tryptase and chymase in the pathogenesis of oral submucous fibrosis and malignant transformation of the overlying epithelium. J Investig Clin Dent. 2014;5(3):214–9.

    Google Scholar 

  28. Nayak S, Goel MM, Chandra S, Bhatia V, Mehrotra D, Kumar S, Makker A, Rath SK, Agarwal SP. VEGF-A immunohistochemical and mRNA expression in tissues and its serum levels in potentially malignant oral lesions and oral squamous cell carcinomas. Oral Oncol. 2012;48:233–9.

    Article  PubMed  Google Scholar 

  29. Meka JN, Ugrappa S, Velpula N, Kumar S, Maloth KN, Kodangal S, Lalitha CH, Goyal S. Quantitative Immunoexpression of EGFR in Oral potentially malignant disorders: oral leukoplakia and oral submucous fibrosis. J Dent Res Dent Clin Dent Prospect. 2015;9(3):166–74.

    Article  Google Scholar 

  30. Nithya S, Joshua E, K R, Thavarajah R, Rao UK. Loricrin expression and its implication in oral submucous fibrosis, hyperkeratosis and normal mucosa with association to habits—an immunohistochemical study. J Oral Biol Craniofac Res. 2019;9(3):226–231.

    Google Scholar 

  31. Nithya S, Radhika T, Jeddy N. Loricrin: an overview. J Oral Maxillofac Pathol. 2015;19(1):64–8. https://doi.org/10.4103/0973-029X.157204.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Angadi PV, Kale AD, Hallikerimath S. Evaluation of myofibroblasts in oral submucous fibrosis: correlation with disease severity. Natl J Maxillofac Surg. 2011;2(1):38–46.

    Google Scholar 

  33. Sarode G, Sarode SC, Deshmukh R, Raktade P, Patil S. Myofibroblasts could be recruited in a chemokine (C-C motif) ligand 2-dependent manner in the pathogenesis of oral submucous fibrosis. J Oral Maxillofac Pathol. 2016;20(3):445–52.

    Google Scholar 

  34. Gupta K, Metgud R, Gupta J. Evaluation of stromal myofibroblasts in oral leukoplakia, oral submucous fibrosis, and oral squamous cell carcinoma--an immunohistochemical study. Indian J Cancer. 2015;52(1):87–92.

    Google Scholar 

  35. Anura A, Das D, Pal M, Paul RR, Das S, Chatterjee J. Nanomechanical signatures of oral submucous fibrosis in sub-epithelial connective tissue. J Oral Pathol Med. 2017;46(6):431–8.

    Google Scholar 

  36. Jayaraj G, Sherlin HJ, Ramani P, Premkumar P, Natesan A. Stromal myofibroblasts in oral squamous cell carcinoma and potentially malignant disorders. J Oral Biol Craniofac Res. 2015;5(3):165–72.

    Google Scholar 

  37. Son GM, Kwon MS, Shin DH, Shin N, Ryu D, Kang CD. Comparisons of cancer-associated fibroblasts in the intratumoral stroma and invasive front in colorectal cancer. Medicine (Baltimore). 2019;98(18):e15164. https://doi.org/10.1097/MD.0000000000015164.

    Article  PubMed  Google Scholar 

  38. Chang YC, Tsai CH, Lai YL, Yu CC, Chi WY, Li JJ, et al. Arecoline-induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB1. J Cell Mol Med. 2014;18:698–708.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sharma M, Shetty SS, Radhakrishnan R. Oral submucous fibrosis as an overhealing wound: implications in malignant transformation. Recent Pat Anticancer Drug Discov. 2018;13(3):272–91. https://doi.org/10.2174/1574892813666180227103147.

    Article  PubMed  Google Scholar 

  40. Wadhwan V, Venkatesh A, Reddy V, Malik S. The role of myofibroblasts in the progression of oral submucous fibrosis: a systematic review. J Oral Maxillofac Pathol. 2019;23:257–66.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gadbail AR, Chaudhary MS, Sarode SC, Gondivkar SM, Belekar L, Mankar-Gadbail MP, Dande R, Tekade SA, Yuwanati MB, Patil S. Ki67, CD105 and α-smooth muscle actin expression in disease progression model of oral submucous fibrosis. J Investig Clin Dent. 2019;10(4):e12443.

    Article  PubMed  Google Scholar 

  42. Gandhi P, Prasad UC. Evaluation of myofibroblasts in oral submucous fibrosis and oral squamous cell carcinoma: the pathogenesis and correlation. Dent Res J (Isfahan). 2017;14(5):314–20.

    Article  PubMed  Google Scholar 

  43. Khan I, Agarwal P, Thangjam GS, Radhesh R, Rao SG, Kondaiah P. Role of TGF-b and BMP7 in the pathogenesis of oral submucous fibrosis. Growth Factors. 2011;29(4):119–27.

    Article  PubMed  Google Scholar 

  44. Desai RS, Mamatha GS, Khatri MJ, Shetty SJ. Immunohistochemical expression of CD34 for characterization and quantification of mucosal vasculature and its probable role in malignant transformation of atrophic epithelium in oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(2):257–67.

    Google Scholar 

  45. Pandiar D, Shameena PM. Immunohistochemical expression of CD34 and basic fibroblast growth factor (bFGF) in oral submucous fibrosis. J Oral Maxillofac Pathol. 2014;18:155–61.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pammar C, Nayak RS, Kotrashetti VS, Hosmani J. Comparison of microvessel density using CD34 and CD105 in oral submucous fibrosis and its correlation with clinicopathological features: an immunohistochemical study. J Oral Maxillofac Pathol. 2018;22(2):281.

    Google Scholar 

  47. Sharma E, Tyagi N, Gupta V, Narwal A, Vij H, Lakhnotra D. Role of angiogenesis in oral submucous fibrosis using vascular endothelial growth factor and CD34: an immunohistochemical study. J Cancer Res Ther. 2018;14(6):1180–3.

    Google Scholar 

  48. Tekade SA, Chaudhary MS, Tekade SS, Sarode SC, Wanjari SP, Gadbail AR, Wanjari PV, Gawande MN, Korde-Choudhari S, Zade P. Early stage oral submucous fibrosis is characterized by increased vascularity as opposed to advanced stages. J Clin Diagn Res. 2017;11(5):ZC92–6.

    PubMed  PubMed Central  Google Scholar 

  49. Kalogirou EM, Tosios KI, Christopoulos PF. The role of macrophages in oral squamous cell carcinoma. Front Oncol. 2021;11:611115. https://doi.org/10.3389/fonc.2021.611115.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pereira T, Naik S, Tamgadge A. Quantitative evaluation of macrophage expression using CD68 in oral submucous fibrosis: an Immunohistochemical study. Ann Med Health Sci Res. 2015;5(6):435–41.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bdewi AT, Alkadir Mohamed Labib AA, Drobie BF, Abdullah BH, Omar M. Evaluation of CD68 in oral squamous cell carcinoma and their relation with clinicopathological parameters—an immunohistochemical study. Int J Curr Microbiol Appl Sci. 2020;9(07):3832–9. https://doi.org/10.20546/ijcmas.2020.907.448.

    Article  Google Scholar 

  52. Das RK, Pal M, Barui A, Paul RR, Chakraborty C, Ray AK, Sengupta S, Chatterjee J. Assessment of malignant potential of oral submucous fibrosis through evaluation of p63, E-cadherin and CD105 expression. Oral Oncol. 2010;46(7):553–8.

    Google Scholar 

  53. Sahaf R, Naseem N, Rehman A-U, Anjum R, Nagi AH. EMMPRIN (CD147) as a potential predictor of oral squamous cell carcinoma progression: a study from Pakistan. J Histol Histopathol. 2017;4:8. https://doi.org/10.7243/2055-091X-4-8.

    Article  Google Scholar 

  54. Wang W, Xiong H, Hu Z, Zhao R, Hu Y, Chen W, Han Y, Yang L, Hu X, Wang C, Mao T, Xia K, Su T. Experimental study on TGF-β1-mediated CD147 expression in oral submucous fibrosis. Oral Dis. 2018;24(6):993–1000.

    Article  PubMed  Google Scholar 

  55. Akhtar R, Sherratt MJ, Cruickshank JK, Derby B. Characterizing the elastic properties of tissues. Mater Today (Kidlington). 2011;14(3):96–105. https://doi.org/10.1016/S1369-7021(11)70059-1.

    Article  PubMed  Google Scholar 

  56. Arora KS, Nayyar A, Kaur P, Arora KS, Goel A, Singh S. Evaluation of collagen in leukoplakia, oral submucous fibrosis and oral squamous cell carcinomas using polarizing microscopy and immunohistochemistry. Asian Pac J Cancer Prev. 2018;19(4):1075–80. https://doi.org/10.22034/APJCP.2018.19.4.1075.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Di Martino JS, Nobre AR, Mondal C, et al. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nat Cancer. 2021;3:90. https://doi.org/10.1038/s43018-021-00291-9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective tissue growth factor: from molecular understandings to drug discovery. Front Cell Dev Biol. 2020;8:593269. https://doi.org/10.3389/fcell.2020.593269.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shah AM, Jain K, Desai RS, Bansal S, Shirsat P, Prasad P, Bodhankar K. The role of increased connective tissue growth factor in the pathogenesis of Oral submucous fibrosis and its malignant transformation-an Immunohistochemical study. Head Neck Pathol. 2021;15(3):817–30. https://doi.org/10.1007/s12105-020-01270-9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nayak S, Goel MM, Bhatia V, Chandra S, Makker A, Kumar S, Agrawal SP, Mehrotra D, Rath SK. Molecular and phenotypic expression of decorin as modulator of angiogenesis in human potentially malignant oral lesions and oral squamous cell carcinomas. Dent Res J (Isfahan). 2013;10(3):321–7.

    Google Scholar 

  61. Nayak S, Goel MM, Makker A, Bhatia V, Chandra S, Kumar S, Agarwal SP. Fibroblast growth factor (FGF-2) and its receptors FGFR-2 and FGFR-3 may be putative biomarkers of malignant transformation of potentially malignant Oral lesions into Oral squamous cell carcinoma. PLoS One. 2015;10(10):e0138801.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sundquist E, Kauppila J, Veijola J, et al. Tenascin-C and fibronectin expression divide early stage tongue cancer into low- and high-risk groups. Br J Cancer. 2017;116:640–8. https://doi.org/10.1038/bjc.2016.455.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Parisi L, Toffoli A, Ghezzi B, Mozzoni B, Lumetti S, Macaluso GM. A glance on the role of fibronectin in controlling cell response at biomaterial interface. Jpn Dent Sci Rev. 2020;56(1):50–5. https://doi.org/10.1016/j.jdsr.2019.11.002.

    Article  PubMed  Google Scholar 

  64. Hande AH, Chaudhary MS, Gawande MN, Gadbail AR, Zade PR, Bajaj S, Patil SK, Tekade S. Oral submucous fibrosis: an enigmatic morpho-insight. J Can Res Ther. 2019;15:463–9.

    Article  Google Scholar 

  65. Joseph I, Elizabeth J, Rao UK, Ranganathan K. Study of hypoxia-inducible factor-2 alpha expression in the malignant transformation of Oral submucous fibrosis. J Oral Maxillofac Pathol. 2020;24(1):33–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tilakaratne WM, Iqbal Z, Teh MT, Ariyawardana A, Pitiyage G, Cruchley A, Stewart JE, Hagi-Pavli E, Lalli A, Waseem A, Parkinson EK, Fortune F. Upregulation of HIF-1alpha in malignant transformation of oral submucous fibrosis. J Oral Pathol Med. 2008;37(6):372–7. https://doi.org/10.1111/j.1600-0714.2007.00625.x.

    Article  PubMed  Google Scholar 

  67. Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):192–9. https://doi.org/10.1016/j.oooo.2015.12.018.

    Article  PubMed  Google Scholar 

  68. Chatterjee R, Ghosh B, Mandal M, Nawn D, Banerjee S, Pal M, Paul RR, Banerjee S, Chatterjee J. Pathophysiological relationship between hypoxia associated oxidative stress, epithelial-mesenchymal transition, stemness acquisition and alteration of Shh/ Gli-1 axis during oral sub-mucous fibrosis and oral squamous cell carcinoma. Eur J Cell Biol. 2021;100(1):151146. https://doi.org/10.1016/j.ejcb.2020.151146.

    Article  PubMed  Google Scholar 

  69. Sabarinath B, Sriram G, Saraswathi TR, Sivapathasundharam B. Immunohistochemical evaluation of mast cells and vascular endothelial proliferation in oral submucous fibrosis. Indian J Dent Res. 2011;22(1):116–21. https://doi.org/10.4103/0970-9290.80009.

    Article  PubMed  Google Scholar 

  70. Shrestha A, Carnelio S. Evaluation of matrix metalloproteinases-2 (MMP-2) and tissue inhibitors of metalloproteinases-2 (TIMP-2) in oral submucous fibrosis and their correlation with disease severity. Indian J Pathol Microbiol. 2013;56(3):204–10.

    Google Scholar 

  71. Mishra G, Ranganathan K. Matrix metalloproteinase-1 expression in oral submucous fibrosis: an immunohistochemical study. Indian J Dent Res. 2010;21(3):320–5.

    Article  PubMed  Google Scholar 

  72. Illeperuma RP, Ryu MH, Kim KY, Tilakaratne WM, Kim J. Relationship of fibrosis and the expression of TGF-beta1, MMP-1, and TIMP-1 with epithelial dysplasia in oral submucous fibrosis. Oral Med Pathology. 2010;15:21–8.

    Article  Google Scholar 

  73. Das RK, Anura A, Pal M, Bag S, Majumdar S, Barui A, Chakraborty C, Ray AK, Sengupta S, Paul RR, Chatterjee J. Epithelio-mesenchymal transitional attributes in oral sub-mucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(2):245–53.

    Google Scholar 

  74. Routray S, Kheur SM, Kheur M. Osteopontin: a marker for invasive oral squamous cell carcinoma but not for potentially malignant epithelial dysplasias. Ann Diagn Pathol. 2013;17(5):421–4. https://doi.org/10.1016/j.anndiagpath.2013.03.005.

    Article  PubMed  Google Scholar 

  75. Karunagaran M, Murali P, Palaniappan V, Sivapathasundharam B. Expression and distribution pattern of podoplanin in oral submucous fibrosis with varying degrees of dysplasia – An immunohistochemical study. J Histotechnol. 42(2):80–6.

    Google Scholar 

  76. Deepa AG, Janardanan-Nair B, Varun BR. Podoplanin expression in oral potentially malignant disorders and oral squamous cell carcinoma. J Mech Behav Biomed Mater. 2017;65:705–15.

    Google Scholar 

  77. Yu C-C, Tsai C-H, Hsu H-I, Chang Y-C. Elevation of S100A4 expression in buccal mucosal fibroblasts by Arecoline: involvement in the pathogenesis of Oral submucous fibrosis. PLoS One. 2013;8(1):e55122.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Natarajan J, Hunter K, Mutalik VS, Radhakrishnan R. Overexpression of S100A4 as a biomarker of metastasis and recurrence in oral squamous cell carcinoma. J Appl Oral Sci. 2014;22(5):426–33. https://doi.org/10.1590/1678-775720140133.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kamat SS, Kumar GS, Koshy AV. Immunohistochemical analysis of syndecan-1 in leukoplakia and oral submucous fibrosis. Ann Diagn Pathol. 2013;17(5):421–4.

    Google Scholar 

  80. Tak J, Rao NN, Chandra A, Gupta N. Immunohistochemical analysis of tenascin expression in different grades of oral submucous fibrosis. J Oral Maxillofac Pathol. 2015;19(3):291–6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Luomanen M, Virtanen I. Distribution of tenascin in healing incision, excision and laser wounds. J Oral Pathol Med. 1993;22:41–5.

    Article  PubMed  Google Scholar 

  82. Shrestha P, Sakamoto F, Takagi H, Yamada T, Mori M. Enhanced tenascin immunoreactivity in leukoplakia and squamous cell carcinoma of the oral cavity: an immunohistochemical study. Eur J Cancer B Oral Oncol. 1994;30B:132–7.

    Article  PubMed  Google Scholar 

  83. Yoshida T, Akatsuka T, Imanaka-Yoshida K. Tenascin-C and integrins in cancer. Cell Adhes Migr. 2015;9(1–2):96–104. https://doi.org/10.1080/19336918.2015.1008332.

    Article  Google Scholar 

  84. Kamath VV, Krishnamurthy S, Satelur KP, Rajkumar K. Transforming growth factor-β1 and TGFβ2 act synergistically in the fibrotic pathway in oral submucous fibrosis: an immunohistochemical observation. Indian J Med Paediatr Oncol. 2015;36(2):111–6.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Caja L, Dituri F, Mancarella S, et al. TGF-β and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci. 2018;19(5):1294. https://doi.org/10.3390/ijms19051294.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Eckert RL, Kaartinen MT, Nurminskaya M, et al. Transglutaminase regulation of cell function. Physiol Rev. 2014;94(2):383–417. https://doi.org/10.1152/physrev.00019.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lee SS, Chen YJ, Tsai CH, Huang FM, Chang YC. Elevated transglutaminase-2 expression mediates fibrosis in areca quid chewing-associated oral submucocal fibrosis via reactive oxygen species generation. Clin Oral Investig. 2016;20(5):1029–34.

    Article  PubMed  Google Scholar 

  88. Lim E, Wu CH, Moi SH, Lui MT, Yang CH, Yang CC. The expression of transglutaminase 2 (TG-2) in oral squamous cell carcinoma and its clinical significance. J Chin Med Assoc. 2017;80(8):515–20. https://doi.org/10.1016/j.jcma.2017.05.004.

    Article  PubMed  Google Scholar 

  89. Qin Q, Xu Y, He T, et al. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22:90–106. https://doi.org/10.1038/cr.2011.144.

    Article  PubMed  Google Scholar 

  90. Anura A, Das RK, Pal M, Paul RR, Ray AK, Chatterjee J. Correlated analysis of semi-quantitative immunohistochemical features of E-cadherin, VEGF and CD105 in assessing malignant potentiality of oral submucous fibrosis. PLoS One. 2014;9(5):e98719.

    Google Scholar 

  91. Madhavannirmal R, Veeravarmal V, Bhavani S, Srinivasan P, Austin RD. Evaluation of MicroVessel density (MVD) and vascular endothelial growth factor (VEGF) as possible indicator of malignant transformation in Oral submucous fibrosis. IOSR J Dental Med Sci (IOSR-JDMS). 2016;15(11):72–7.

    Google Scholar 

  92. Nayak MT, Singh A, Desai RS, Vanaki SS. Immunohistochemical analysis of vimentin in oral submucous fibrosis. J Cancer Epidemiol. 2013;2013:549041.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sawant SS, Vaidya MM, Chaukar DA, Alam H, Dmello C, Gangadaran P, Kannan S, Kane S, Dange PP, Dey N, Ranganathan K, D’Cruz AK. Clinical significance of aberrant vimentin expression in oral premalignant lesions and carcinomas. Oral Dis. 2014;20(5):453–65.

    Article  PubMed  Google Scholar 

  94. Ranganathan K, Kavitha R. Proliferation and apoptosis markers in oral submucous fibrosis. Indian J Dent Res. 2011;22(2):362.

    Google Scholar 

  95. Thongsuksai P, Pruegsanusak K, Boonyaphiphat P. Prognostic significance of p16, p53, Bcl-2, and Bax in oral and oropharyngeal squamous cell carcinoma. Asian Biomed. 2014;8(2):255–62.

    Article  Google Scholar 

  96. Hsieh PC, Chen YK, Tsai KB, Shieh TY, Chang YY, Chang JG, Wu HL, Lin SF. Expression of BUBR1 in human oral potentially malignant disorders and squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(2):257–67.

    Article  PubMed  Google Scholar 

  97. Teixeira JH, Silva P, Faria J, Ferreira I, Duarte P, Delgado ML, Queirós O, Moreira R, Barbosa J, Lopes CA, Do Amaral JB, Monteiro LS, Bousbaa H. Clinicopathologic significance of BubR1 and Mad2 overexpression in oral cancer. Oral Dis. 2015;21(6):713–20. https://doi.org/10.1111/odi.12335.

    Article  PubMed  Google Scholar 

  98. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87. https://doi.org/10.1186/1756-9966-30-87.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhu B, Jiang Q, Que G, Dai Z, Wu Y. Role of autophagy and apoptosis in atrophic epithelium in oral submucous fibrosis. J Oral Sci. 2020;62(2):184–8.

    Article  PubMed  Google Scholar 

  100. Veeravarmal V, Austin RD, Siddavaram N, Thiruneelakandan S, Nassar MH. Caspase-3 expression in normal oral epithelium, oral submucous fibrosis and oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2016;20(2):214–8.

    Google Scholar 

  101. Wisdom R, Johnson RS, Moore C. C Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J. 1999;18:188–97.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Shraddha KS, Niranjan KC, Hallikeri K. Immunolocalization of c-Jun in normal mucosa, oral submucous fibrosis, epithelial dysplasia, and oral squamous cell carcinoma: a comparative study. J Can Res Ther. 2018;14:1180–3.

    Article  Google Scholar 

  103. Sun Z, Liu Q, Ye D, Ye K, Yang Z, Li D. Role of c-met in the progression of human oral squamous cell carcinoma and its potential as a therapeutic target. Oncol Rep. 2018;39(1):209–16. https://doi.org/10.3892/or.2017.6073.

    Article  PubMed  Google Scholar 

  104. Brusevold IJ, Soland TM, Khuu C, Christoffersen T, Bryne M. Nuclear and cytoplasmic expression of met in oral squamous cell carcinoma and in an organotypic oral cancer model. Eur J Oral Sci. 2010;118:342–9.

    Article  PubMed  Google Scholar 

  105. Bazarsad S, Zhang X, Kim KY, Illeperuma R, Jayasinghe RD, Tilakaratne WM, Kim J. Identification of a combined biomarker for malignant transformation in oral submucous fibrosis. J Oral Pathol Med. 2017;46(6):431–8.

    Article  PubMed  Google Scholar 

  106. Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008;22(20):2755–66.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Anura A, Kazi A, Pal M, Paul RR, Sengupta S, Chatterjee J. Endorsing cellular competitiveness in aberrant epithelium of oral submucous fibrosis progression: neighborhood analysis of immunohistochemical attributes. Indian J Dent Res. 2018;29(2):171–5.

    Google Scholar 

  108. Wang T, Cai B, Ding M, Su Z, Liu Y, Shen L. C-Myc overexpression promotes Oral cancer cell proliferation and migration by enhancing Glutaminase and glutamine Synthetase activity. Am J Med Sci. 2019;358(3):235–42. https://doi.org/10.1016/j.amjms.2019.05.014.

    Article  PubMed  Google Scholar 

  109. Moharil RB, Khandekar S, Dive A, Bodhade A. Cyclin D1 in oral premalignant lesions and oral squamous cell carcinoma: an immunohistochemical study. J Oral Maxillofac Pathol. 2020;24:397.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hassan MI, Naiyer A, Ahmad F. Fragile histidine triad protein: structure, function, and its association with tumorogenesis. J Cancer Res Clin Oncol. 2010;136(3):333–50. https://doi.org/10.1007/s00432-009-0751-9.

    Article  PubMed  Google Scholar 

  111. Bellon M, Bialuk I, Galli V, Bai XT, Farre L, Bittencourt A, Marçais A, Petrus MN, Ratner L, Waldmann TA, Asnafi V, Gessain A, Matsuoka M, Franchini G, Hermine O, Watanabe T, Nicot C. Germinal epimutation of fragile histidine triad (FHIT) gene is associated with progression to acute and chronic adult T-cell leukemia diseases. Mol Cancer. 2021;20(1):86. https://doi.org/10.1186/s12943-021-01370-2.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Yin X, Wen C, Han Y, Gao Y, Tang Z. Expression of FHIT and MDM2 in oral submucous fibrosis and canceration tissues. Zhong nan Da Xue Xue Bao Yi Xue Ban Chinese. 2010;35(6):572–5. https://doi.org/10.3969/j.issn.1672-7347.2010.06.006.

    Article  Google Scholar 

  113. Raju KL, Haragannavar VC, Patil S, Rao RS, Nagaraj T, Augustine D, Venkatesiah SS, Nambiar S. Expression of hTERT in oral submucous fibrosis and oral squamous cell carcinoma—an Immunohistochemical analysis. Pathol Oncol Res. 2020;26(3):1573–82.

    Article  Google Scholar 

  114. Mishra N, Tandon N, Fatima N, Srivastava AN, Lal N, Kumar V. Immunohistochemical expression of human telomerase reverse transcriptase in oral cancer and precancer: a case–control study. J Oral Maxillofac Pathol. 2019;23:412–7.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhao T, Hu F, Qiao B, et al. Telomerase reverse transcriptase potentially promotes the progression of oral squamous cell carcinoma through induction of epithelial-mesenchymal transition. Int J Oncol. 2015;46:2205–15. https://doi.org/10.3892/ijo.2015.2927.

    Article  PubMed  Google Scholar 

  116. Boscolo-Rizzo P, Da Mosto MC, Rampazzo E, et al. Telomeres and telomerase in head and neck squamous cell carcinoma: from pathogenesis to clinical implications. Cancer Metastasis Rev. 2016;35:457–74. https://doi.org/10.1007/s10555-016-9633-1.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cornejo K, Shi M, Jiang Z. Oncofetal protein IMP3: a useful diagnostic biomarker for leiomyosarcoma. Hum Pathol. 2012;43(10):1567–72. https://doi.org/10.1016/j.humpath.2011.12.020.

    Article  PubMed  Google Scholar 

  118. Li HG, Han JJ, Huang ZQ, Wang L, Chen WL, Shen XM. IMP3 is a novel biomarker to predict metastasis and prognosis of tongue squamous cell carcinoma. J Craniofac Surg. 2011;22(6):2022–5. https://doi.org/10.1097/SCS.0b013e3182319750.

    Article  PubMed  Google Scholar 

  119. Xie C, Feng H, Zhong L, Shi Y, Wei Z, Hua Y, Ji N, Li J, Tang Z, Chen Q. Proliferative ability and accumulation of cancer stem cells in oral submucous fibrosis epithelium. Oral Dis. 2020:1–10.

    Google Scholar 

  120. Dhingra A, Alexander D, Reyes-Reveles J, Sharp R, Boesze-Battaglia K. Microtubule-associated protein 1 light chain 3 (LC3) isoforms in RPE and retina. Adv Exp Med Biol. 2018;1074:609–16. https://doi.org/10.1007/978-3-319-75402-4_74.

    Article  PubMed  Google Scholar 

  121. Li J, Zhao TT, Zhang P, Xu CJ, Rong ZX, Yan ZY, Fang CY. Autophagy mediates oral submucous fibrosis. Exp Ther Med. 2016;11(5):1859–64.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tang JY, Hsi E, Huang YC, Hsu NC, Chu PY, Chai CY. High LC3 expression correlates with poor survival in patients with oral squamous cell carcinoma. Hum Pathol. 2013;44(11):2558–62. https://doi.org/10.1016/j.humpath.2013.06.017.

    Article  PubMed  Google Scholar 

  123. Oliner JD, Saiki AY, Caenepeel S. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb Perspect Med. 2016;6(6):a026336. https://doi.org/10.1101/cshperspect.a026336.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ye C, Tang H, Zhao Z, Lei CT, You CQ, Zhang J, Gao P, He FF, Chen S, Wang YM, Zhang C, Su H. MDM2 mediates fibroblast activation and renal tubulointerstitial fibrosis via a p53-independent pathway. Am J Physiol Renal Physiol. 2017;312(4):F760–8. https://doi.org/10.1152/ajprenal.00528.2016.

    Article  PubMed  Google Scholar 

  125. Sudhakaran A, Hallikeri K, Babu B. p16 as an independent marker for detection of high-risk HPV in oral submucous fibrosis and oral squamous cell carcinoma. Indian J Pathol Microbiol. 2019;62(4):523–8.

    Article  PubMed  Google Scholar 

  126. Humayun S, Prasad VR. Expression of p53 protein and ki-67 antigen in oral premalignant lesions and oral squamous cell carcinomas: an immunohistochemical study. Natl J Maxillofac Surg. 2011;2(1):38–46.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Varun BR, Ranganathan K, Rao UK, Joshua E. Immunohistochemical detection of p53 and p63 in oral squamous cell carcinoma, oral leukoplakia, and oral submucous fibrosis. J Investig Clin Dent. 2014;5(3):214–9. https://doi.org/10.1111/jicd.12038.

    Article  PubMed  Google Scholar 

  128. Liang L, Luo H, He Q, You Y, Fan Y, Liang J. Investigation of cancer-associated fibroblasts and p62 expression in oral cancer before and after chemotherapy. J Craniomaxillofac Surg. 2018;46(4):605–10. https://doi.org/10.1016/j.jcms.2017.12.016.

    Article  PubMed  Google Scholar 

  129. Sinha A, Chandra S, Raj V, Zaidi I, Saxena S, Dwivedi R. Expression of p63 in potentially malignant and malignant oral lesions. Indian J Med Paediatr Oncol. 2015;36(2):111–6.

    Google Scholar 

  130. Kaur M, Saxena S, Bansal P. Expression of proliferating cell nuclear antigen in normal oral mucosa, oral submucous fibrosis and leukoplakia with or without dysplasia. Int J Oral-Med Sci. 2011;10(3):149–55.

    Article  Google Scholar 

  131. Sheelam S, Reddy SP, Kulkarni PG, Nandan S, Keerthi M, Raj GS. Role of cell proliferation and vascularity in malignant transformation of potentially malignant disorders. J Oral Maxillofac Pathol. 2018;22(1):40–7.

    Google Scholar 

  132. de Cárcer G. The mitotic cancer target polo-like kinase 1: oncogene or tumor suppressor? Genes (Basel). 2019;10(3):208. https://doi.org/10.3390/genes10030208.

    Article  PubMed  Google Scholar 

  133. Vittal K, Pandian SS, Joseph LD, Raj SG. Immunohistochemical expression of polo-like kinase 1 in oral squamous cell carcinoma and oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018; pii: S2212–4403(18)30045–2

    Google Scholar 

  134. Liu Z, Sun Q, Wang X. PLK1, a potential target for cancer therapy. Transl Oncol. 2017;10(1):22–32. https://doi.org/10.1016/j.tranon.2016.10.003.

    Article  PubMed  Google Scholar 

  135. Angadi PV, Krishnapillai R. Evaluation of PTEN immunoexpression in oral submucous fibrosis: role in pathogenesis and malignant transformation. J Oral Maxillofac Pathol. 2011;15(2):148–53.

    Google Scholar 

  136. Starzyńska A, Sejda A, Adamska P, et al. Prognostic value of the PIK3CA, AKT, and PTEN mutations in oral squamous cell carcinoma: literature review. Arch Med Sci. 2021;17(1):207–17. https://doi.org/10.5114/aoms.2020.100780.

    Article  PubMed  Google Scholar 

  137. Sekar B, Indrapriyadharshini K, Ambika M, Saranya R, Nirmal M, Manzoor S. Survivin expression in metastatic and nonmetastatic oral squamous cell carcinoma: a comparative study. J Adv Oral Res. 2021;12(1):75–80.

    Article  Google Scholar 

  138. Zhou S, Qu X, Yu Z, Zhong L, Ruan M, Ma C, Wang M, Zhang C, Jian X. Survivin as a potential early marker in the carcinogenesis of oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(4):575–81.

    Article  PubMed  Google Scholar 

  139. Sakthivel R, Ramamoorthy A, Jeddy N, Singaram M. Evaluation and expression of Survivin in potentially malignant lesions and squamous cell carcinoma: a comparative study. Cureus. 2020;12(4):e7551. https://doi.org/10.7759/cureus.7551.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Feng JQ, Xu ZY, Shi LJ, Wu L, Liu W, Zhou ZT. Expression of cancer stem cell markers ALDH1 and Bmi1 in oral erythroplakia and the risk of oral cancer. J Oral Pathol Med. 2013;42(2):148–53. https://doi.org/10.1111/j.1600-0714.2012.01191.x.

    Article  PubMed  Google Scholar 

  141. Rao RS, Raju KL, Augustine D, Patil S. Prognostic significance of ALDH1, Bmi1, and OCT4 expression in Oral epithelial dysplasia and Oral squamous cell carcinoma. Cancer Control. 2020;27(1):1073274820904959. https://doi.org/10.1177/1073274820904959.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Klein IP, Meurer L, Danilevicz CK, Squarize CH, Martins MD, Carrard VC. BMI-1 expression increases in oral leukoplakias and correlates with cell proliferation. J Appl Oral Sci. 2020;28:e20190532. https://doi.org/10.1590/1678-7757-2019-0532.

    Article  PubMed  PubMed Central  Google Scholar 

  143. He Q, Liu Z, Zhao T, Zhao L, Zhou X, Wang A. Bmi1 drives stem-like properties and is associated with migration, invasion, and poor prognosis in tongue squamous cell carcinoma. Int J Biol Sci 2015;11(1):1–10. doi:https://doi.org/10.7150/ijbs.10405.

  144. Yu CC, Hu FW, Yu CH, Chou MY. Targeting CD133 in the enhancement of chemosensitivity in oral squamous cell carcinoma-derived side population cancer stem cells. Head Neck. 2016;38(Suppl. 1):E231–8. https://doi.org/10.1002/hed.23975.

    Article  PubMed  Google Scholar 

  145. Liu W, Wu L, Shen XM, Shi LJ, Zhang CP, Xu LQ, et al. Expression patterns of cancer stem cell markers ALDH1 and CD133 correlate with a high risk of malignant transformation of oral leukoplakia. Int J Cancer. 2013;132(4):868–74. https://doi.org/10.1002/ijc.27720.

    Article  PubMed  Google Scholar 

  146. Ravindran G, Devaraj H. Aberrant expression of CD133 and musashi-1 in preneoplastic and neoplastic human oral squamous epithelium and their correlation with clinicopathological factors. Head Neck. 2012;34(8):1129–35. https://doi.org/10.1002/hed.21896.

    Article  PubMed  Google Scholar 

  147. Yu CC, Yu CH, Chang YC. Aberrant SSEA-4 upregulation mediates myofibroblast activity to promote pre-cancerous oral submucous fibrosis. Sci Rep. 2016;6:37004. https://doi.org/10.1038/srep37004.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Yu CC, Liao YW, Yu CH, Chang YC. STRO-1 confers myofibroblast transdifferentiation in fibroblasts derived from oral submucous fibrosis. J Oral Pathol Med. 2018;47(3):299–305.

    Article  PubMed  Google Scholar 

  149. Katase N, Nagano K, Fujita S. DKK3 expression and function in head and neck squamous cell carcinoma and other cancers. J Oral Biosci. 2020;62(1):9–15. https://doi.org/10.1016/j.job.2020.01.008.

    Article  PubMed  Google Scholar 

  150. Zhou S, Zhu Y, Mashrah M, Zhang X, He Z, Yao Z, Zhang C, Guo F, Hu Y, Zhang C. Expression pattern of DKK3, dickkopf WNT signaling pathway inhibitor 3, in the malignant progression of oral submucous fibrosis. Oncol Rep. 2017;37(2):979–85.

    Article  PubMed  Google Scholar 

  151. Theocharis S, Kotta-Loizou I, Klijanienko J, Giaginis C, Alexandrou P, Dana E, Rodriguez J, Patsouris E, Sastre-Garau X. Extracellular signal-regulated kinase (ERK) expression and activation in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival. Tumour Biol. 2014;35(7):6455–65. https://doi.org/10.1007/s13277-014-1853-9.

    Article  PubMed  Google Scholar 

  152. Avery JT, Zhang R, Boohaker RJ. GLI1: a therapeutic target for cancer. Front Oncol. 2021;11:673154. https://doi.org/10.3389/fonc.2021.673154.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Srinath S, Iyengar AR, Mysorekar V. Sonic hedgehog in oral squamous cell carcinoma: an immunohistochemical study. J Oral Maxillofac Pathol. 2016;20(3):377–83. https://doi.org/10.4103/0973-029X.190906.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Xie J, Huang L, Lu YG, Zheng DL. Roles of the Wnt signaling pathway in head and neck squamous cell carcinoma. Front Mol Biosci. 2021;7:590912. https://doi.org/10.3389/fmolb.2020.590912.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hou X, Liu R, Huang C, Jiang L, Zhou Y, Chen Q. Cyclophilin a was revealed as a candidate marker for human oral submucous fibrosis by proteomic analysis. Cancer Biomark. 2017;20(3):345–56.

    Article  PubMed  Google Scholar 

  156. Baillie R, Tan ST, Itinteang T. Cancer stem cells in Oral cavity squamous cell carcinoma: a review. Front Oncol. 2017;7:112. https://doi.org/10.3389/fonc.2017.00112.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zhou S, Chen L, Mashrah M, Zhu Y, He Z, Hu Y, Xiang T, Yao Z, Guo and Zhang C. Expression and promoter methylation of Wnt inhibitory factor-1 in the development of oral submucous fibrosis. Oncol Rep 2015; 34: 2636–2642.

    Google Scholar 

  158. Almaguel FA, Sanchez TW, Ortiz-Hernandez GL, Casiano CA. Alpha-enolase: emerging tumor-associated antigen, cancer biomarker, and oncotherapeutic target. Front Genet. 2021;11:614726. https://doi.org/10.3389/fgene.2020.614726.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bag S, Dutta D, Chaudhary A, Sing BC, Pal M, Ray AK, Banerjee R, Paul RR, Basak A, Das AK, Chatterjee J. Identification of alpha-enolase as a prognostic and diagnostic precancer biomarker in oral submucous fibrosis. J Clin Pathol. 2018;71(3):228–38.

    Article  PubMed  Google Scholar 

  160. Veeravarmal V, Austin RD, Nagini S, Nassar MHM. Expression of Beta-1 integrin in normal epithelium, oral submucous fibrosis and oral squamous cell carcinoma. Pathol Res Pract. 2018;214(2):273–80.

    Article  PubMed  Google Scholar 

  161. Das T, Prodhan C, Patsa S, Ray JG, Chaudhuri K. Identification of over expressed proteins in oral submucous fibrosis by proteomic analysis. J Cell Biochem. 2018;119(6):4361–71.

    Article  PubMed  Google Scholar 

  162. Rangaswamy S, Chikkalingaiah RG, Sharada P, Kumar VK. Expression of cyclooxygenase 2 in oral submucous fibrosis: an immunohistochemical pilot study. J Oral Maxillofac Pathol. 2019;23(2):301.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zidar N, Odar K, Glavac D, Jerse M, Zupanc T, Stajer D. Cyclooxygenase in normal human tissues--is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J Cell Mol Med. 2009;13(9B):3753–63. https://doi.org/10.1111/j.1582-4934.2008.00430.x.

    Article  PubMed  Google Scholar 

  164. Rai V, Bose S, Mukherjee R, Sarbajna A, Chakraborty C. Evaluation of aberrant metabolism related proteins in oral submucous fibrosis: a pilot study. J Oral Biosci. 2018;60(4):87–91.

    Article  Google Scholar 

  165. Botha H, Farah CS, Koo K, Cirillo N, McCullough M, Paolini R, Celentano A. The role of glucose transporters in Oral squamous cell carcinoma. Biomol Ther. 2021;11(8):1070. https://doi.org/10.3390/biom11081070.

    Article  Google Scholar 

  166. Priyanka KP, Majumdar S, Kotina S, Uppala D, Balla H. Expression of heat shock protein 70 in Oral epithelial dysplasia and Oral squamous cell carcinoma: an Immunohistochemical study. Contemp Clin Dent. 2019;10(2):185–90. https://doi.org/10.4103/ccd.ccd_101_18.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Li WC, Huang CH, Hsieh YT, Chen TY, Cheng LH, Chen CY, Liu CJ, Chen HM, Huang CL, Lo JF, Chang KW. Regulatory role of hexokinase 2 in modulating head and neck tumorigenesis. Front Oncol. 2020;10:176. https://doi.org/10.3389/fonc.2020.00176. Erratum in: Front Oncol. 2020;10:410

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 2015;4:193–9. https://doi.org/10.1016/j.redox.2014.12.011.

    Article  PubMed  Google Scholar 

  169. Kumar MH, Sanjai K, Kumarswamy J, Keshavaiah R, Papaiah L, Divya S. Expression of MUC1 mucin in potentially malignant disorders, oral squamous cell carcinoma and normal oral mucosa: an immunohistochemical study. J Oral Maxillofac Pathol. 2016;20(2):214–8.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Narashiman S, Narasimhan M, Venkatraman G. Expression of mucin 4 in leukoplakia and oral squamous cell carcinoma: an immunohistochemical study. J Oral Maxillofac Pathol. 2014;18(1):25–31. https://doi.org/10.4103/0973-029X.131887.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Hu Y, Qian Y, Lin L, Chen W, Yang L, Hu X, Tian K, Xia K, Su T. Differential expression of organic cation transporter 3 in oral submucous fibrosis-associated buccal squamous cell carcinoma. Pathol Res Pract. 2018;214(2):273–80.

    Article  Google Scholar 

  172. Zhou S, Chen L, Mashrah M, Zhu Y, Liu J, Yang X, He Z, Wang L, Xiang T, Yao Z, Guo F, Yang W, Zhang C. Deregulation of secreted frizzled-related proteins is associated with aberrant β-catenin activation in the carcinogenesis of oral submucous fibrosis. Onco Targets Ther. 2015;8:2923–31.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yuan Y, Hou X, Feng H, Liu R, Xu H, Gong W, Deng J, Sun C, Gao Y, Peng J, Wu Y, Li J, Fang C, Chen Q. Proteomic identification of cyclophilin A as a potential biomarker and therapeutic target in oral submucous fibrosis. Oncotarget. 2016;7(37):60348–65. https://doi.org/10.18632/oncotarget.11254.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Ranganathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranganathan, K., Loganathan, K. (2023). Biomarkers in Oral Submucous Fibrosis. In: Warnakulasuriya, S., Ranganathan, K. (eds) Oral Submucous Fibrosis. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12855-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12855-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12854-7

  • Online ISBN: 978-3-031-12855-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics