Skip to main content

Role of DNMTs in the Brain

  • Chapter
  • First Online:
DNA Methyltransferases - Role and Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1389))

Abstract

DNA methyltransferases (DNMTs) are widely expressed in the brain, dictating the transcriptional activity of genes through various epigenetic mechanisms. Functional irregularities, alterations in the activity, and aberrant expression levels of DNMTs have been linked to various neurodevelopmental abnormalities, neuropsychiatric disorders, neurodegenerative diseases, and brain cancer. A continuously increasing number of studies address the roles DNMTs have in the brain, to reach a better understanding of their involvement in disease-related pathophysiologies, which in turn is required to dissect their applicability as potential therapeutic targets. This chapter provides an overview of DNMT function in the developing and the adult brain, putting a spotlight on their role in orchestrating diverse aspects of brain development, memory, and aging, followed by a discussion of associated neurodevelopmental and neurodegenerative disorders, and the implications in brain cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-AZA:

5-azacytidine

5-hmC:

5-hydroxymethylcytosine

5-mC:

5-methylcystosinee

Aβ:

Amyloid-beta protein

AD:

Alzheimer’s disease

aIPC:

Apical intermediate progenitor cells

APP:

Amyloid precursor protein

ARC:

Activity regulated cytoskeletal-associated protein

BAX:

Bcl-2-associated X protein

BCL2:

B-cell lymphoma 2

BCL2L2:

Bcl-2-like protein 2

BDNF:

Brain-derived neurotrophic factor

bIPC:

Basal intermediate progenitor cells

BIRC5:

Baculoviral inhibitor of apoptosis repeat-containing 5; Survivin

bRGC:

Basal radial glial cells

cAMP:

Cyclic adenosine monophosphate

CASP8:

Caspase-8

CDK5:

Cyclin-dependent kinase 5

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

CGE:

Caudal ganglionic eminence

CNS:

Central nervous system

CpG:

Cytosine-phosphate-guanine

CREB:

cAMP response element-binding protein

CRISPR:

Clustered regularly interspaced short palindromic repeats

CTCF:

CCCTC-binding factor

CTIP2:

B-cell lymphoma/leukemia 11B

dCGE:

Dorsal caudal ganglionic eminence

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferase

E-LTP:

Early long-term potentiation

EZH2:

Enhancer of zeste homolog 2

GABA:

Gamma aminobutyric acid

GBM:

Glioblastoma

GFAP:

Glial fibrillary acidic protein

GluN2A:

N-methyl d-aspartate receptor subtype 2A

GSK3B:

Glycogen synthase kinase 3 beta

H3K27me3:

Trimethylation of lysine 27 on histone H3

H3K4me3:

Trimethylation of lysine 4 on histone H3

H3K9me3:

Trimethylation of lysine 9 on histone H3

HD:

Huntington’s disease

HIC1:

Hypermethylated in cancer 1 protein

HTT:

Huntingtin protein

ICF:

Immunodeficiency, centromere region instability, facial anomalies syndrome

IDH:

Isocitrate dehydrogenase

IPC:

Intermediate progenitor cells

iPSC:

Induced pluripotent stem cell

iSVZ:

Inner subventricular zone

JAK:

Janus kinase

L-LTP:

Late long-term potentiation

lncRNA:

Long non-coding RNA

LTD:

Long-term depression

LTP:

Long-term potentiation

MAPT:

Microtubule-associated protein TAU

MBD:

Methyl-binding domain

MeCP2:

Methyl-CpG binding protein 2

MGE:

Medial ganglionic eminence

MGMT:

O6-alkylguanine DNA alkyltransferase

mHTT:

Mutant Huntingtin protein

miRNA:

Micro RNA

mRNA:

Messenger RNA

MZ:

Marginal zone

NDD:

Neurodegenerative diseases

NF2:

Neurofibromin 2; Merlin

NFIA:

Nuclear factor 1 A-type

NMDA:

N-methyl-d-aspartic acid

NMDAR:

N-methyl-d-aspartic acid receptor

NPY:

Neuropeptide Y

oSVZ:

Outer subventricular zone

p21:

Cyclin-dependent kinase inhibitor 1

PAK6:

p21 activated kinase 6

PDGFRA:

Platelet-derived growth factor receptor A

PET:

Positron emission tomography

piRNA:

Piwi-interacting RNA

POa:

Pre-optic area

PR C2:

Polycomb repressive complex 2

PSEN:

Presenilin

PTCH1:

Protein patched homolog 1

PV:

Parvalbumin

REST:

RE1-silencing transcription factor

RG108:

N-Phthalyl-l-tryptophan

RGC:

Radial glial cell

RNA:

Ribonucleic acid

SCZ:

Schizophrenia

SFRP:

Secreted frizzled-related protein

SHH:

Sonic-Hedgehog

sncRNA:

Small non-coding RNA

SST:

Somatostatin

STAT:

Signal transducer and activator of transcription

SVZ:

Sub-ventricular zone

TBRS:

Tatton-Brown-Rahman syndrome

TET:

Ten-eleven translocation enzyme

TF:

Transcription factor

TMS1:

PYD and CARD domain containing, transcript variant 1

TMZ:

Temozolomide

VIP:

Vasointestinal peptide

VZ:

Ventricular zone

Wnt:

Wingless and Int-1

ZIF268:

Zinc finger protein 268; Early growth response protein 1

References

  • Abraham WC, Robins A (2005) Memory retention—the synaptic stability versus plasticity dilemma. Trends Neurosci 28(2):73–78

    Article  CAS  PubMed  Google Scholar 

  • Abraham WC, Logan B, Greenwood JM, Dragunow M (2002) Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci 22(21):9626–9634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham WC, Jones OD, Glanzman DL (2019) Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci Learn 4(1):1–10

    Article  Google Scholar 

  • Agirman G, Broix L, Nguyen L (2017) Cerebral cortex development: an outside-in perspective. FEBS Lett 591(24):3978–3992

    Article  CAS  PubMed  Google Scholar 

  • Ambigapathy G, Zheng Z, Keifer J (2015) Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning. Epigenetics 10(10):981–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Ariazi J, Benowitz A, De Biasi V, Den Boer ML, Cherqui S, Cui H, Douillet N, Eugenin EA, Favre D, Goodman S (2017) Tunneling nanotubes and gap junctions—their role in long-range intercellular communication during development, health, and disease conditions. Front Mol Neurosci 10:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashley J, Cordy B, Lucia D, Fradkin LG, Budnik V, Thomson T (2018) Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172(1-2):262–274. e211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann S, Linde J, Bell M, Spehr M, Zempel H, Zimmer-Bensch G (2021) DNA methyltransferase 1 (DNMT1) shapes neuronal activity of human iPSC-derived glutamatergic cortical neurons. Int J Mol Sci 22(4):2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry G, Briggs JA, Hwang DW, Nayler SP, Fortuna PR, Jonkhout N, Dachet F, Maag JL, Mestdagh P, Singh EM (2017) The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett F, Kortmann R, Saran F (2013) Medulloblastoma. Clin Oncol 25(1):36–45

    Article  CAS  Google Scholar 

  • Bartsch D, Ghirardi M, Skehel PA, Karl KA, Herder SP, Chen M, Bailey CH, Kandel ER (1995) Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83(6):979–992

    Article  CAS  PubMed  Google Scholar 

  • Baumann V, Wiesbeck M, Breunig CT, Braun JM, Köferle A, Ninkovic J, Götz M, Stricker SH (2019) Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat Commun 10(1):1–12

    Article  CAS  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development, vol 1. Raven, New York

    Google Scholar 

  • Bayraktar G, Yuanxiang P, Confettura AD, Gomes GM, Raza SA, Stork O, Tajima S, Suetake I, Karpova A, Yildirim F (2020) Synaptic control of DNA methylation involves activity-dependent degradation of DNMT3A1 in the nucleus. Neuropsychopharmacology 45(12):2120–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19(1):437–462

    Article  CAS  PubMed  Google Scholar 

  • Bédécarrats A, Chen S, Pearce K, Cai D, Glanzman DL (2018) RNA from trained Aplysia can induce an epigenetic engram for long-term sensitization in untrained Aplysia. eneuro 5(3)

    Google Scholar 

  • Bekinschtein P, Katche C, Slipczuk L, Gonzalez C, Dorman G, Cammarota M, Izquierdo I, Medina JH (2010) Persistence of long-term memory storage: new insights into its molecular signatures in the hippocampus and related structures. Neurotox Res 18(3):377–385

    Article  CAS  PubMed  Google Scholar 

  • Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm. Cancer Res 77(15):3965–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt DH, Zhang S, Gan W-B (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282

    Article  CAS  PubMed  Google Scholar 

  • Biel D, Brendel M, Rubinski A, Buerger K, Janowitz D, Dichgans M, Franzmeier N (2021) Tau-PET and in vivo Braak-staging as prognostic markers of future cognitive decline in cognitively normal to demented individuals. Alzheimers Res Ther 13(1):137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biergans SD, Galizia CG, Reinhard J, Claudianos C (2015) Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees. Sci Rep 5(1):1–15

    Article  Google Scholar 

  • Blaeschke F, Paul MC, Schuhmann MU, Rabsteyn A, Schroeder C, Casadei N, Matthes J, Mohr C, Lotfi R, Wagner B (2019) Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy. Cytotherapy 21(9):973–986

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  • Borrell V (2019) Recent advances in understanding neocortical development. F1000Research 8

    Google Scholar 

  • Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol 220(2):e202009045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E (2010) The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis 39(1):28–39

    Article  CAS  PubMed  Google Scholar 

  • Cambruzzi E (2018) Medulloblastoma, WNT-activated/SHH-activated: clinical impact of molecular analysis and histogenetic evaluation. Childs Nerv Syst 34(5):809–815

    Article  PubMed  Google Scholar 

  • Carlevaro-Fita J, Johnson R (2019) Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell 73(5):869–883

    Article  CAS  PubMed  Google Scholar 

  • Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395(6697):89–93

    Article  CAS  PubMed  Google Scholar 

  • Cheng C-H, Lin Y-Y (2013) Aging-related decline in somatosensory inhibition of the human cerebral cortex. Exp Brain Res 226(1):145–152

    Article  CAS  PubMed  Google Scholar 

  • Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31(46):16619–16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chivet M, Javalet C, Laulagnier K, Blot B, Hemming FJ, Sadoul R (2014) Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles 3(1):24722

    Article  PubMed  Google Scholar 

  • Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(7):24–29

    Article  Google Scholar 

  • Civiero L, Cirnaru MD, Beilina A, Rodella U, Russo I, Belluzzi E, Lobbestael E, Reyniers L, Hondhamuni G, Lewis PA (2015) Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain. J Neurochem 135(6):1242–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark BC, Taylor JL (2011) Age-related changes in motor cortical properties and voluntary activation of skeletal muscle. Curr Aging Sci 4(3):192–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Clements EG, Mohammad HP, Leadem BR, Easwaran H, Cai Y, Van Neste L, Baylin SB (2012) DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes. Nucleic Acids Res 40(10):4334–4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen LD, Zuchman R, Sorokina O, Müller A, Dieterich DC, Armstrong JD, Ziv T, Ziv NE (2013) Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS One 8(5):e63191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa MR, Müller U (2015) Specification of excitatory neurons in the developing cerebral cortex: progenitor diversity and environmental influences. Front Cell Neurosci 8:449

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui D, Xu X (2018) DNA methyltransferases, DNA methylation, and age-associated cognitive function. Int J Mol Sci 19(5):1315

    Article  PubMed Central  Google Scholar 

  • Cummings JA, Mulkey RM, Nicoll RA, Malenka RC (1996) Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16(4):825–833

    Article  CAS  PubMed  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson PSR, Glisky EL (2002) Neuropsychological correlates of recollection and familiarity in normal aging. Cogn Affect Behav Neurosci 2(2):174–186

    Article  PubMed  Google Scholar 

  • Day JJ, Sweatt JD (2010) DNA methylation and memory formation. Nat Neurosci 13(11):1319–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993

    Article  CAS  PubMed  Google Scholar 

  • Ding E, Liu J, Guo H, Shen H, Zhang H, Gong W, Song H, Zhu B (2018) DNMT1 and DNMT3A haplotypes associated with noise-induced hearing loss in Chinese workers. Sci Rep 8(1):1–10

    Article  Google Scholar 

  • Donnelly CJ, Fainzilber M, Twiss JL (2010) Subcellular communication through RNA transport and localized protein synthesis. Traffic 11(12):1498–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Johnson LM, Jacobsen SE, Patel DJ (2015) DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 16(9):519–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duke CG, Kennedy AJ, Gavin CF, Day JJ, Sweatt JD (2017) Experience-dependent epigenomic reorganization in the hippocampus. Learn Mem 24(7):278–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easwaran H, Baylin SB (2019) Origin and mechanisms of DNA methylation dynamics in cancers. In: The DNA, RNA, and histone methylomes. Springer, pp 27–52

    Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455–455

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M, Lacey M (2013) DNA hypomethylation and hemimethylation in cancer. Epigenetic Alterations Oncogenesis 31–56

    Google Scholar 

  • Eichenbaum H, Otto T, Cohen NJ (1992) The hippocampus—what does it do? Behav Neural Biol 57(1):2–36

    Article  CAS  PubMed  Google Scholar 

  • Fan G, Beard C, Chen RZ, Csankovszki G, Sun Y, Siniaia M, Biniszkiewicz D, Bates B, Lee PP, Kühn R (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21(3):788–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L, Hattori D, Ge W, Shen Y, Wu H (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132(15):3345–3356

    Article  CAS  PubMed  Google Scholar 

  • Fasolino M, Liu S, Wang Y, Zhou Z (2017) Distinct cellular and molecular environments support aging-related DNA methylation changes in the substantia nigra. Epigenomics 9(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Faux C, Rakic S, Andrews W, Britto JM (2012) Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 20(3):168–189

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Chang H, Li E, Fan G (2005) Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79(6):734–746

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Fouse S, Fan G (2007) Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res 61(7):58–63

    Article  Google Scholar 

  • Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13(4):423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishell G (2008) Perspectives on the developmental origins of cortical interneuron diversity. In: Cortical development: genes and genetic abnormalities, pp 21–34

    Google Scholar 

  • Fishman E (2017) Risk of developing dementia at older ages in the United States. Demography 54(5):1897–1919

    Article  PubMed  Google Scholar 

  • Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suvà ML, Bernstein BE (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584):110–114

    Article  CAS  PubMed  Google Scholar 

  • Franco SJ, Müller U (2013) Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 77(1):19–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friocourt GM, Parnavelas JG (2011) Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation. Front Cell Neurosci 5:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Moreno F, Vasistha NA, Trevia N, Bourne JA, Molnar Z (2012) Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent. Cereb Cortex 22(2):482–492

    Article  PubMed  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300(5618):489–492

    Article  CAS  PubMed  Google Scholar 

  • Gelman DM, Martini FJ, Nóbrega-Pereira S, Pierani A, Kessaris N, Marín O (2009) The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 29(29):9380–9389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelman D, Griveau A, Dehorter N, Teissier A, Varela C, Pla R, Pierani A, Marín O (2011) A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci 31(46):16570–16580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glisky EL (2007) Changes in cognitive function in human aging. Brain Aging 3–20

    Google Scholar 

  • Goldie BJ, Dun MD, Lin M, Smith ND, Verrills NM, Dayas CV, Cairns MJ (2014) Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res 42(14):9195–9208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto K, Numata M, Komura J-I, Ono T, Bestor TH, Kondo H (1994) Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 56(1-2):39–44

    Article  CAS  PubMed  Google Scholar 

  • Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer’s disease. J Alzheimers Dis 4(3):179–189

    Article  PubMed  Google Scholar 

  • Greenberg MVC (2020) Get Out and Stay Out: New Insights Into DNA Methylation Reprogramming in Mammals. Front Cell Dev Biol 8:1721

    Google Scholar 

  • Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD (2013) Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 14(11):755–769

    Article  CAS  PubMed  Google Scholar 

  • Grinman E, Nakahata Y, Avchalumov Y, Espadas I, Swarnkar S, Yasuda R, Puthanveettil SV (2021) Activity-regulated synaptic targeting of lncRNA ADEPTR mediates structural plasticity by localizing Sptn1 and AnkB in dendrites. Sci Adv 7(16):eabf0605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulisano W, Maugeri D, Baltrons MA, Fà M, Amato A, Palmeri A, D’Adamio L, Grassi C, Devanand D, Honig LS (2018) Role of amyloid-β and tau proteins in Alzheimer’s disease: confuting the amyloid cascade. J Alzheimers Dis 64(s1):S611–S631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Anton E (2014) Decision making during interneuron migration in the developing cerebral cortex. Trends Cell Biol 24(6):342–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JU, Ma DK, Mo H, Ball MP, Jang M-H, Bonaguidi MA, Balazer JA, Eaves HL, Xie B, Ford E (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14(10):1345–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, Yan J, Ren X, Lin S, Li J (2014) The DNA methylation landscape of human early embryos. Nature 511(7511):606–610

    Article  CAS  PubMed  Google Scholar 

  • Hahn A, Pensold D, Bayer C, Tittelmeier J, González-Bermúdez L, Marx-Blümel L, Linde J, Groß J, Salinas-Riester G, Lingner T et al (2020) DNA methyltransferase 1 (DNMT1) function is implicated in the age-related loss of cortical interneurons. Front Cell Dev Biol 8:639

    Article  PubMed  PubMed Central  Google Scholar 

  • Halder R, Hennion M, Vidal RO, Shomroni O, Rahman R-U, Rajput A, Centeno TP, Van Bebber F, Capece V, Vizcaino JCG (2016) DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 19(1):102–110

    Article  CAS  PubMed  Google Scholar 

  • Haltom AR, Toll SA, Cheng D, Maegawa S, Gopalakrishnan V, Khatua S (2020) Medulloblastoma epigenetics and the path to clinical innovation. J Neurooncol 1–12

    Google Scholar 

  • Hashimoto H, Horton JR, Zhang X, Cheng X (2009) UHRF1, a modular multi-domain protein, regulates replication-coupled crosstalk between DNA methylation and histone modifications. Epigenetics 4(1):8–14. https://doi.org/10.4161/epi.4.1.7370

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y, Zhu Y, Torigoe M, Kita Y, Murakami F (2016) From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc Jpn Acad Ser B 92(1):1–19

    Article  Google Scholar 

  • Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett 133(2):257–261

    Article  CAS  PubMed  Google Scholar 

  • Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, De Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  • Hervouet E, Vallette F, Cartron P (2010) Impact of the DNA methyltransferases expression on the methylation status of apoptosis-associated genes in glioblastoma multiforme. Cell Death Dis 1(1):e8–e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higa GSV, de Sousa E, Walter LT, Kinjo ER, Resende RR, Kihara AH (2014) MicroRNAs in neuronal communication. Mol Neurobiol 49(3):1309–1326

    CAS  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol 210(5-6):411

    Article  Google Scholar 

  • Hofman MA (2014) Evolution of the human brain: when bigger is better. Front Neuroanat 8:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Holliday R (1999) Is there an epigenetic component in long-term memory? J Theor Biol 200(3):339–341

    Article  CAS  PubMed  Google Scholar 

  • Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM III, Jaenisch R (2005) Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 8(4):275–285

    Article  CAS  PubMed  Google Scholar 

  • Hu X-L, Chen G, Zhang S, Zheng J, Wu J, Bai Q-R, Wang Y, Li J, Wang H, Feng H (2017) Persistent expression of VCAM1 in radial glial cells is required for the embryonic origin of postnatal neural stem cells. Neuron 95(2):309-325. e306

    Article  Google Scholar 

  • Huang ZJ, Paul A (2018) Diversity of GABAergic interneurons and diversification of communication modules in cortical networks. bioRxiv. https://doi.org/10.1101/490797

  • Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7(5):582–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur K, Cejas P, Feliu J, Moreno-Rubio J, Burgos E, Boland CR, Goel A (2014) Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63(4):635–646

    Article  CAS  PubMed  Google Scholar 

  • Hutnick LK, Golshani P, Namihira M, Xue Z, Matynia A, Yang XW, Silva AJ, Schweizer FE, Fan G (2009) DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum Mol Genet 18(15):2875–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inano K, Suetake I, Ueda T, Miyake Y, Nakamura M, Okada M, Tajima S (2000) Maintenance-type DNA methyltransferase is highly expressed in post-mitotic neurons and localized in the cytoplasmic compartment. J Biochem 128(2):315–321

    Article  CAS  PubMed  Google Scholar 

  • Jain AK, Xi Y, McCarthy R, Allton K, Akdemir KC, Patel LR, Aronow B, Lin C, Li W, Yang L (2016) LncPRESS1 is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56. Mol Cell 64(5):967–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesus-Ribeiro J, Pires LM, Melo JD, Ribeiro IP, Rebelo O, Sales F, Freire A, Melo JB (2021) Genomic and epigenetic advances in focal cortical dysplasia types I and II: a scoping review. Front Neurosci 14:1412

    Article  Google Scholar 

  • Jin J, Maren S (2015) Prefrontal-hippocampal interactions in memory and emotion. Front Syst Neurosci 9:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, Fields CR, Delmas AL, Liu X, Qiu J (2008) DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet 17(5):690–709

    Article  CAS  PubMed  Google Scholar 

  • Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, De Magalhaes JP (2012) The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 15(5):483–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EG (2009) The origins of cortical interneurons: mouse versus monkey and human. Cereb Cortex 19(9):1953–1956

    Article  PubMed  Google Scholar 

  • Kadriu B, Guidotti A, Chen Y, Grayson DR (2012) DNA methyltransferases1 (DNMT1) and 3a (DNMT3a) colocalize with GAD67-positive neurons in the GAD67-GFP mouse brain. J Comp Neurol 520(9):1951–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5(1):1–12

    Article  Google Scholar 

  • Keihani S, Kluever V, Mandad S, Bansal V, Rahman R, Fritsch E, Gomes LC, Gärtner A, Kügler S, Urlaub H (2019) The long noncoding RNA neuroLNC regulates presynaptic activity by interacting with the neurodegeneration-associated protein TDP-43. Sci Adv 5(12):eaay2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6(7):553–564

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Jang WY, Kang M-C, Jeong J, Choi M, Sung Y, Park S, Kwon W, Jang S, Kim MO (2016) TET1 contributes to neurogenesis onset time during fetal brain development in mice. Biochem Biophys Res Commun 471(4):437–443

    Article  CAS  PubMed  Google Scholar 

  • Kirkbride JB, Susser E, Kundakovic M, Kresovich JK, Davey Smith G, Relton CL (2012) Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics 4(3):303–315

    Article  CAS  PubMed  Google Scholar 

  • Klein CJ, Botuyan M-V, Wu Y, Ward CJ, Nicholson GA, Hammans S, Hojo K, Yamanishi H, Karpf AR, Wallace DC (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 43(6):595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Bobek MP, Kuick R, Lamb B, Zhu X, Narayan A, Bourc’his D, Viegas-Péquignot E, Ehrlich M, Hanash SM (2000) Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet 9(4):597–604

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Yu M, Zhang M, Wei C, Gu H, Yu S, Sun W, Li N, Zhou Y (2020) Conditional Dnmt3b deletion in hippocampal dCA1 impairs recognition memory. Mol Brain 13(1):1–4

    Article  Google Scholar 

  • Kongkham P, Northcott P, Croul S, Smith C, Taylor M, Rutka J (2010) The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene 29(20):3017–3024

    Article  CAS  PubMed  Google Scholar 

  • Korolev IO, Symonds LL, Bozoki AC, Herholz K (2016) Alzheimer’s Disease Neuroimaging Initiative. Predicting progression from mild cognitive impairment to alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification. PLoS One 11:e0138866

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krienen FM, Goldman M, Zhang Q, Del Rosario RC, Florio M, Machold R, Saunders A, Levandowski K, Zaniewski H, Schuman B (2020) Innovations present in the primate interneuron repertoire. Nature 586(7828):262–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Sanawar R, Li X, Li F (2017) Structure, biochemistry, and biology of PAK kinases. Gene 605:20–31

    Article  CAS  PubMed  Google Scholar 

  • La Joie R, Visani AV, Baker SL, Brown JA, Bourakova V, Cha J, Chaudhary K, Edwards L, Iaccarino L, Janabi M (2020) Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med 12(524)

    Google Scholar 

  • Lane C, Tatton-Brown K, Freeth M (2020) Tatton-Brown-Rahman syndrome: cognitive and behavioural phenotypes. Dev Med Child Neurol 62(8):993–998

    Article  PubMed  Google Scholar 

  • Larsen C (2010) Genetic and molecular abnormalities of glioblastomas (GBM). Bull Cancer 97(11):1389–1407

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Hwang YJ, Kim KY, Kowall NW, Ryu H (2013) Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 10(4):664–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13(14):1192–1200. https://doi.org/10.1016/S0960-9822(03)00432-9

    Article  CAS  PubMed  Google Scholar 

  • Leung AK (2015) The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol 25(10):601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levenson JM, Roth TL, Lubin FD, Miller CA, Huang I-C, Desai P, Malone LM, Sweatt JD (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281(23):15763–15773

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li J, Liu L, Li W, Yang Y, Yuan J (2013) MicroRNA in human glioma. Cancers 5(4):1306–1331

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhang C, Zi X, Tu Q, Guo K (2015) Epigenetic modulation of Cdk5 contributes to memory deficiency induced by amyloid fibrils. Exp Brain Res 233(1):165–173

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Dong C, Cui J, Wang Y, Hong X (2018) Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. J Exp Clin Cancer Res 37(1):1–15

    Article  CAS  Google Scholar 

  • Lim L, Mi D, Llorca A, Marín O (2018) Development and functional diversification of cortical interneurons. Neuron 100(2):294–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linde J, Zimmer-Bensch G (2020) DNA methylation-dependent dysregulation of GABAergic interneuron functionality in neuropsychiatric diseases. Front Neurosci 14:982

    Article  Google Scholar 

  • Lindsey JC, Lusher ME, Anderton JA, Bailey S, Gilbertson RJ, Pearson AD, Ellison DW, Clifford SC (2004) Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis 25(5):661–668

    Article  CAS  PubMed  Google Scholar 

  • Lisman JE (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci USA 82(9):3055–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Mukamel EA (2015) Turning over DNA methylation in the mind. Front Neurosci 9:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146)

    Google Scholar 

  • Liu L, van Groen T, Kadish I, Tollefsbol TO (2009) DNA methylation impacts on learning and memory in aging. Neurobiol Aging 30(4):549–560

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li C, Zhang R, Xiao W, Niu X, Ye X, Li Z, Guo Y, Tan J, Li Y (2018) The EZH2-H3K27me3-DNMT1 complex orchestrates epigenetic silencing of the wwc1 gene, a Hippo/YAP pathway upstream effector, in breast cancer epithelial cells. Cell Signal 51:243–256. https://doi.org/10.1016/j.cellsig.2018.08.011

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, Tao J, Li W, Yin X, Xu W (2019) The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 18(1):1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodato S, Rouaux C, Quast KB, Jantrachotechatchawan C, Studer M, Hensch TK, Arlotta P (2011) Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 69(4):763–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bendito G, Sturgess K, Erdélyi F, Szabó G, Molnár Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14(10):1122–1133

    Article  PubMed  Google Scholar 

  • López-otín C, Blasco M, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging longevity. Cell 153:1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovrečić L, Maver A, Zadel M, Peterlin B (2013) The role of epigenetics in neurodegenerative diseases. Neurodegener Dis IntechOpen 345–365

    Google Scholar 

  • Lowel S, Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255(5041):209–212

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, Chen L, Lyu X, Shi Z, Yan W (2020) DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer 19(1):1–19

    Article  CAS  Google Scholar 

  • MacDonald JL, Gin CS, Roskams AJ (2005) Stage-specific induction of DNA methyltransferases in olfactory receptor neuron development. Dev Biol 288(2):461–473

    Article  CAS  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marie SKN, Shinjo SMO (2011) Metabolism and brain cancer. Clinics 66:33–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Marín O, Plump AS, Flames N, Sánchez-Camacho C, Tessier-Lavigne M, Rubenstein JL (2003) Directional guidance of interneuron migration to the cerebral cortex relies on subcortical Slit1/2-independent repulsion and cortical attraction. Development 130(9):1889–1901

    Article  PubMed  Google Scholar 

  • Marín O, Valiente M, Ge X, Tsai L-H (2010) Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2(2):a001834

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, Bailey CH, Kandel ER (1997) Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91(7):927–938

    Article  CAS  PubMed  Google Scholar 

  • Martynoga B, Drechsel D, Guillemot F (2012) Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 4(10):a008359

    Article  PubMed  PubMed Central  Google Scholar 

  • Matrisciano F, Tueting P, Dalal I, Kadriu B, Grayson DR, Davis JM, Nicoletti F, Guidotti A (2013) Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology 68:184–194

    Article  CAS  PubMed  Google Scholar 

  • McKinney BC, Lin C-W, Rahman T, Oh H, Lewis DA, Tseng G, Sibille E (2019) DNA methylation in the human frontal cortex reveals a putative mechanism for age-by-disease interactions. Transl Psychiatry 9(1):1–10

    Article  CAS  Google Scholar 

  • Merry CR, Forrest ME, Sabers JN, Beard L, Gao X-H, Hatzoglou M, Jackson MW, Wang Z, Markowitz SD, Khalil AM (2015) DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet 24(21):6240–6253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53(6):857–869

    Article  CAS  PubMed  Google Scholar 

  • Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A, Yancey CR, Rivera IM, Rubio MD, Rumbaugh G, Sweatt JD (2010) Cortical DNA methylation maintains remote memory. Nat Neurosci 13(6):664–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miniou P, Jeanpierre M, Bourc’his D, Barbosa ACC, Blanquet V, Viegas-Péquignot E (1997) α-Satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Hum Genet 99(6):738–745

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi G, Young A, Petros T, Karayannis T, Chang MM, Lavado A, Iwano T, Nakajima M, Taniguchi H, Huang ZJ (2015) Prox1 regulates the subtype-specific development of caudal ganglionic eminence-derived GABAergic cortical interneurons. J Neurosci 35(37):12869–12889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno K, Dempster E, Mill J, Giese K (2012) Long-lasting regulation of hippocampal Bdnf gene transcription after contextual fear conditioning. Genes Brain Behav 11(6):651–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, Urich MA, Nery JR, Sejnowski TJ, Lister R (2015) Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86(6):1369–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monsey MS, Ota KT, Akingbade IF, Hong ES, Schafe GE (2011) Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One 6(5):e19958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38

    Article  CAS  PubMed  Google Scholar 

  • Morrell F (1991) Introduction: the legacy of Graham Goddard. In: Kindling and synaptic plasticity. Birkhauser, Boston

    Google Scholar 

  • Morris MJ, Monteggia LM (2014) Role of DNA methylation and the DNA methyltransferases in learning and memory. Dialogues Clin Neurosci 16(3):359

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris MJ, Adachi M, Na ES, Monteggia LM (2014) Selective role for DNMT3a in learning and memory. Neurobiol Learn Mem 115:30–37

    Article  CAS  PubMed  Google Scholar 

  • Morris MJ, Na ES, Autry AE, Monteggia LM (2016) Impact of DNMT1 and DNMT3a forebrain knockout on depressive-and anxiety like behavior in mice. Neurobiol Learn Mem 135:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyon S, Huynh JL, Dutta D, Zhang F, Ma D, Yoo S, Lawrence R, Wegner M, John GR, Emery B (2016) Functional characterization of DNA methylation in the oligodendrocyte lineage. Cell Rep 15(4):748–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhtar T, Taylor V (2018) Untangling cortical complexity during development. J Exp Neurosci 12:1179069518759332

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz P, Estay C, Díaz P, Elgueta C, Ardiles ÁO, Lizana PA (2016) Inhibition of DNA methylation impairs synaptic plasticity during an early time window in rats. Neural Plast. https://doi.org/10.1155/2016/4783836

  • Murao N, Noguchi H, Nakashima K (2016) Epigenetic regulation of neural stem cell property from embryo to adult. Neuroepigenetics 5:1–10

    Article  Google Scholar 

  • Murley AG, Coyle-Gilchrist I, Rouse MA, Jones PS, Li W, Wiggins J, Lansdall C, Rodríguez PV, Wilcox A, Tsvetanov KA (2020) Redefining the multidimensional clinical phenotypes of frontotemporal lobar degeneration syndromes. Brain 143(5):1555–1571

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, Belforte JE (2012) GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62(3):1574–1583

    Article  CAS  PubMed  Google Scholar 

  • Namihira M, Kohyama J, Semi K, Sanosaka T, Deneen B, Taga T, Nakashima K (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16(2):245–255

    Article  CAS  PubMed  Google Scholar 

  • Nery S, Fishell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5(12):1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Ng H-H, Jeppesen P, Bird A (2000) Active repression of methylated genes by the chromosomal protein MBD1. Mol Cell Biol 20(4):1394–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng CW, Yildirim F, Yap YS, Dalin S, Matthews BJ, Velez PJ, Labadorf A, Housman DE, Fraenkel E (2013) Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc Natl Acad Sci U S A 110(6):2354–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolia V, Ciraci V, Cavallaro RA, Ferrer I, Scarpa S, Fuso A (2017) GSK3β 5′-flanking DNA methylation and expression in Alzheimer’s disease patients. Curr Alzheimer Res 14(7):753–759

    Google Scholar 

  • Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang K, Kang C, Zhang Q (2015) DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett 359(2):198–205

    Article  CAS  PubMed  Google Scholar 

  • Noguchi H, Kimura A, Murao N, Matsuda T, Namihira M, Nakashima K (2015) Expression of DNMT1 in neural stem/precursor cells is critical for survival of newly generated neurons in the adult hippocampus. Neurosci Res 95:1–11

    Article  CAS  PubMed  Google Scholar 

  • Noguchi H, Murao N, Kimura A, Matsuda T, Namihira M, Nakashima K (2016) DNA methyltransferase 1 is indispensable for development of the hippocampal dentate gyrus. J Neurosci 36(22):6050–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolde SF, Johnson MK, D’Esposito M (1998) Left prefrontal activation during episodic remembering: An event-related fMRI study. Neuroreport 9(15):3509–3514

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AM, Hemstedt TJ, Bading H (2012) Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nat Neurosci 15(8):1111–1113

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Daito T, Sasaki Y, Chung YH, Xing X, Pondugula S, Swamidass SJ, Wang T, Kim AH, Yano H (2016) Inhibition of DNA methyltransferases blocks mutant huntingtin-induced neurotoxicity. Sci Rep 6:31022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu I-M, Gallia GL, Olivi A, Mclendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SKN, Shinjo SMO, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC-H, Boca SM, Carter H, Samayoa J, Bettegowda C (2011) The genetic landscape of the childhood cancer medulloblastoma. Science 331(6016):435–439

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401

    Article  CAS  PubMed  Google Scholar 

  • Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV, McCormick J, Yoder N, Belnap DM, Erlendsson S, Morado DR (2018) The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer. Cell 172(1-2):275-288. e218

    Article  Google Scholar 

  • Pearce K, Cai D, Roberts AC, Glanzman DL (2017) Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Elife 6:e18299

    Article  PubMed  PubMed Central  Google Scholar 

  • Penisson M, Ladewig J, Belvindrah R, Francis F (2019) Genes and mechanisms involved in the generation and amplification of basal radial glial cells. Front Cell Neurosci 13:381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pensold D, Symmank J, Hahn A, Lingner T, Salinas-Riester G, Downie BR, Ludewig F, Rotzsch A, Haag N, Andreas N (2017) The DNA methyltransferase 1 (DNMT1) controls the shape and dynamics of migrating POA-derived interneurons fated for the murine cerebral cortex. Cereb Cortex 27(12):5696–5714

    Article  PubMed  Google Scholar 

  • Pensold D, Reichard J, Van Loo KM, Ciganok N, Hahn A, Bayer C, Liebmann L, Groß J, Tittelmeier J, Lingner T (2020) DNA methylation-mediated modulation of endocytosis as potential mechanism for synaptic function regulation in murine inhibitory cortical interneurons. Cereb Cortex 30(7):3921–3937

    Article  PubMed  PubMed Central  Google Scholar 

  • Petanjek Z, Berger B, Esclapez M (2009) Origins of cortical GABAergic neurons in the cynomolgus monkey. Cereb Cortex 19(2):249–262

    Article  PubMed  Google Scholar 

  • Pócza T, Krenács T, Turányi E, Csáthy J, Jakab Z, Hauser P (2016) High expression of DNA methyltransferases in primary human medulloblastoma. Folia Neuropathol 54(2):105–113

    Article  PubMed  Google Scholar 

  • Pritchard JI, Olson JM (2008) Methylation of PTCH1, the Patched-1 gene, in a panel of primary medulloblastomas. Cancer Genet Cytogenet 180(1):47–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purkait S, Sharma V, Kumar A, Pathak P, Mallick S, Jha P, Sharma MC, Suri V, Julka PK, Suri A (2016) Expression of DNA methyltransferases 1 and 3B correlates with EZH2 and this 3-marker epigenetic signature predicts outcome in glioblastomas. Exp Mol Pathol 100(2):312–320

    Article  CAS  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13(8):528–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racine R, Milgram N, Hafner S (1983) Long-term potentiation phenomena in the rat limbic forebrain. Brain Res 260(2):217–231

    Article  CAS  PubMed  Google Scholar 

  • Raff MC (1992) Social controls on cell survival and cell death. Nature 356(6368):397–400

    Article  CAS  PubMed  Google Scholar 

  • Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T, Kandel ER (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149(3):693–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran G, Shanmuganandam K, Bendre A, Mujumdar D, Goel A, Shiras A (2011) Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. J Neurooncol 104(2):483–494

    Article  CAS  PubMed  Google Scholar 

  • Raveendra BL, Swarnkar S, Avchalumov Y, Liu X-A, Grinman E, Badal K, Reich A, Pascal BD, Puthanveettil SV (2018) Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function. Proc Natl Acad Sci UUUSA 115(43):E10197–E10205

    CAS  Google Scholar 

  • Reichard J, Zimmer-Bensch G (2021) The epigenome in neurodevelopmental disorders. Front Neurosci 1415

    Google Scholar 

  • Rhee K, Yu J, Zhao C, Fan G, Yang X (2012) Dnmt1-dependent DNA methylation is essential for photoreceptor terminal differentiation and retinal neuron survival. Cell Death Dis 3(11):e427–e427

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu G-Q, Mucke L (2007) Reducing endogenous tau ameliorates amyloid ß-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, Glanzman DL (2003) Learning in Aplysia: looking at synaptic plasticity from both sides. Trends Neurosci 26(12):662–670

    Article  CAS  PubMed  Google Scholar 

  • Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1839(12):1362–1372

    Article  CAS  Google Scholar 

  • Rowbotham DA, Marshall EA, Vucic EA, Kennett JY, Lam WL, Martinez VD (2015) Epigenetic changes in aging and Age-related disease. J Aging Sci 3:130

    Article  Google Scholar 

  • Rozycka A, Liguz-Lecznar M (2017) The space where aging acts: focus on the GABA ergic synapse. Aging Cell 16(4):634–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph J, Zimmer G, Steinecke A, Barchmann S, Bolz J (2010) Ephrins guide migrating cortical interneurons in the basal telencephalon. Cell Adh Migr 4(3):400–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolph J, Gerstmann K, Zimmer G, Steinecke A, Döding A, Bolz J (2014) A dual role of EphB1/ephrin-B3 reverse signaling on migrating striatal and cortical neurons originating in the preoptic area: should I stay or go away? Front Cell Neurosci 8:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Salameh Y, Bejaoui Y, El Hajj N (2020) DNA methylation biomarkers in aging and age-related diseases. Front Genet 11:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saper CB, Lowell BB (2014) The hypothalamus. Curr Biol 24(23):R1111–R1116

    Article  CAS  PubMed  Google Scholar 

  • Schuman EM (1997) Synapse specificity and long-term information storage. Neuron 18(3):339–342

    Article  CAS  PubMed  Google Scholar 

  • Scourzic L, Mouly E, Bernard OA (2015) TET proteins and the control of cytosine demethylation in cancer. Genome Med 7(1):1–16

    Article  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ, Lansbury PJ Jr (1999) Alzheimer’s disease is the most common neurodegenerative disorder. Basic Neurochem Mol Cell Med Aspect 6:101–102

    Google Scholar 

  • Seong IS, Woda JM, Song J-J, Lloret A, Abeyrathne PD, Woo CJ, Gregory G, Lee J-M, Wheeler VC, Walz T, Kingston RE, Gusella JF, Conlon RA, MacDonald ME (2009) Huntingtin facilitates polycomb repressive complex 2. Hum Mol Genet 19(4):573–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Sexton-Oates A, MacGregor D, Dodgshun A, Saffery R (2015) The potential for epigenetic analysis of paediatric CNS tumours to improve diagnosis, treatment and prognosis. Ann Oncol 26(7):1314–1324

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Klein SL, Barboza L, Lodhi N, Toth M (2016) Principles governing DNA methylation during neuronal lineage and subtype specification. J Neurosci 36(5):1711–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd GM (2004) The synaptic organization of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Sherman SM, Guillery RW (2006) Exploring the thalamus and its role in cortical function. MIT Press, Cambridge, MA

    Google Scholar 

  • Shetty AK, Turner DA (1998) Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. J Comp Neurol 394(2):252–269

    Article  CAS  PubMed  Google Scholar 

  • Simmons RK, Stringfellow SA, Glover ME, Wagle AA, Clinton SM (2013) DNA methylation markers in the postnatal developing rat brain. Brain Res 1533:26–36

    Article  CAS  PubMed  Google Scholar 

  • Smallwood A, Estève P-O, Pradhan S, Carey M (2007) Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 21(10):1169–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So A-Y, Jung J-W, Lee S, Kim H-S, Kang K-S (2011) DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6(5):e19503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somasundaram S, Forrest ME, Moinova H, Cohen A, Varadan V, LaFramboise T, Markowitz S, Khalil AM (2018) The DNMT1-associated lincRNA DACOR1 reprograms genome-wide DNA methylation in colon cancer. Clin Epigenetics 10(1):1–15

    Article  Google Scholar 

  • Song J-H, Yu J-T, Tan L (2015) Brain-derived neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol Neurobiol 52(3):1477–1493

    Article  CAS  PubMed  Google Scholar 

  • Song C, Xiong Y, Liao W, Meng L, Yang S (2019) Long noncoding RNA ATB participates in the development of renal cell carcinoma by downregulating p53 via binding to DNMT1. J Cell Physiol 234(8):12910–12917

    Article  CAS  PubMed  Google Scholar 

  • Southwell DG, Paredes MF, Galvao RP, Jones DL, Froemke RC, Sebe JY, Alfaro-Cervello C, Tang Y, Garcia-Verdugo JM, Rubenstein JL (2012) Intrinsically determined cell death of developing cortical interneurons. Nature 491(7422):109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel AM, Sewal AS, Rapp PR (2014) Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan. Learn Mem 21(10):569–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley DP, Shetty AK (2004) Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. J Neurochem 89(1):204–216

    Article  CAS  PubMed  Google Scholar 

  • Stewart DJ, Issa J-P, Kurzrock R, Nunez MI, Jelinek J, Hong D, Oki Y, Guo Z, Gupta S, Wistuba II (2009) Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res 15(11):3881–3888

    Article  CAS  PubMed  Google Scholar 

  • Subramanian L, Calcagnotto ME, Paredes MF (2020) Cortical malformations: lessons in human brain development. Front Cell Neurosci 13:576

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultan KT, Shi SH (2018) Generation of diverse cortical inhibitory interneurons. Wiley Interdiscip Rev Dev Biol 7(2):e306

    Article  Google Scholar 

  • Sun T, Hevner RF (2014) Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 15(4):217–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L, Zhang S (2017) Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2. J Exp Clin Cancer Res 36(1):1–13

    Article  CAS  Google Scholar 

  • Sweatt JD (2016) Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. J Neurochem 137(3):312–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symmank J, Bayer C, Schmidt C, Hahn A, Pensold D, Zimmer-Bensch G (2018) DNMT1 modulates interneuron morphology by regulating Pak6 expression through crosstalk with histone modifications. Epigenetics 13(5):536–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Symmank J, Gölling V, Gerstmann K, Zimmer G (2019) The transcription factor LHX1 regulates the survival and directed migration of POA-derived cortical interneurons. Cereb Cortex 29(4):1644–1658

    Article  PubMed  Google Scholar 

  • Symmank J, Bayer C, Reichard J, Pensold D, Zimmer-Bensch G (2020) Neuronal Lhx1 expression is regulated by DNMT1-dependent modulation of histone marks. Epigenetics 15(11):1259–1274

    Article  PubMed  PubMed Central  Google Scholar 

  • Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, Yanagisawa M, Fujita N, Nakao M, Taga T (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1(6):749–758

    Article  CAS  PubMed  Google Scholar 

  • Tanaka DH, Nakajima K (2012) GABA ergic interneuron migration and the evolution of the neocortex. Dev Growth Differ 54(3):366–372

    Article  CAS  PubMed  Google Scholar 

  • Tanila H (2017) The role of BDNF in Alzheimer’s disease. Neurobiol Dis 97(Pt B):114–118

    Article  CAS  PubMed  Google Scholar 

  • Thomas EA (2016) DNA methylation in Huntington’s disease: Implications for transgenerational effects. Neurosci Lett 625:34–39

    Article  CAS  PubMed  Google Scholar 

  • Thompson RF (1986) The neurobiology of learning and memory. Science 233(4767):941–947

    Article  CAS  PubMed  Google Scholar 

  • Tobin AJ, Signer ER (2000) Huntington’s disease: the challenge for cell biologists. Trends Cell Biol 10(12):531–536

    Article  CAS  PubMed  Google Scholar 

  • Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999a) Reduction with age in methylcytosine in the promoter region− 224∼− 101 of the amyloid precursor protein gene in autopsy human cortex. Mol Brain Res 70(2):288–292

    Article  CAS  PubMed  Google Scholar 

  • Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y (1999b) The methylation status of cytosines in a τ gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett 275(2):89–92

    Article  CAS  PubMed  Google Scholar 

  • Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Curr Opin Neurobiol 35:101–109

    Article  CAS  PubMed  Google Scholar 

  • Veldic M, Guidotti A, Maloku E, Davis JM, Costa E (2005) In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 102(6):2152–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4(5):365–375

    Article  CAS  PubMed  Google Scholar 

  • Villar-Menéndez I, Blanch M, Tyebji S, Pereira-Veiga T, Albasanz JL, Martín M, Ferrer I, Pérez-Navarro E, Barrachina M (2013) Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease. Neuromol Med 15(2):295–309

    Article  Google Scholar 

  • Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874. https://doi.org/10.1016/j.bbagrm.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  • von Bueren AO, Bacolod MD, Hagel C, Heinimann K, Fedier A, Kordes U, Pietsch T, Koster J, Grotzer MA, Friedman HS (2012) Mismatch repair deficiency: a temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours. Br J Cancer 107(8):1399–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wamsley B, Fishell G (2017) Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci 18(5):299–309

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Yang Y, Lin X, Wang JQ, Wu YS, Xie W, Wang D, Zhu S, Liao YQ, Sun Q, Yang YG, Luo HR, Guo C, Han C, Tang TS (2013) Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet 22(18):3641–3653

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao Y, Bao X, Zhu X, Kwok YK-Y, Sun K, Chen X, Huang Y, Jauch R, Esteban MA (2015) LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res 25(3):335–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Wang Q, Liu B, Mei L, Ma S, Wang S, Wang R, Zhang Y, Niu C, Xiong Z (2021) The long noncoding RNA Synage regulates synapse stability and neuronal function in the cerebellum. Cell Death Differ 1–17

    Google Scholar 

  • Watanabe D, Suetake I, Tada T, Tajima S (2002) Stage-and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118(1-2):187–190

    Article  CAS  PubMed  Google Scholar 

  • Wei J-W, Huang K, Yang C, Kang C-S (2017) Non-coding RNAs as regulators in epigenetics. Oncol Rep 37(1):3–9

    Article  PubMed  Google Scholar 

  • Wong FK, Marín O (2019) Developmental cell death in the cerebral cortex. Annu Rev Cell Dev Biol 35:523–542

    Article  CAS  PubMed  Google Scholar 

  • Wood H (2013) Neurodegenerative disease: altered DNA methylation and RNA splicing could be key mechanisms in Huntington disease. Nat Rev Neurol 9(3):119

    Article  PubMed  Google Scholar 

  • Wu J, Shuang Z, Zhao J, Tang H, Liu P, Zhang L, Xie X, Xiao X (2018) Linc00152 promotes tumorigenesis by regulating DNMTs in triple-negative breast cancer. Biomed Pharmacother 97:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Kuang W, Lu S, Guo H, Wu M, Ye M, Wu L (2018) Long noncoding RNA HOXB 13-AS 1 regulates HOXB 13 gene methylation by interacting with EZH 2 in glioma. Cancer Med 7(9):4718–4728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G-L, Wong J (2015) Oxidative DNA demethylation mediated by Tet enzymes. Natl Sci Rev 2(3):318–328

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Miura M (2015) Programmed cell death in neurodevelopment. Dev Cell 32(4):478–490

    Article  CAS  PubMed  Google Scholar 

  • Yokoi T, Enomoto Y, Naruto T, Kurosawa K, Higurashi N (2020) Tatton-Brown-Rahman syndrome with a novel DNMT3A mutation presented severe intellectual disability and autism spectrum disorder. Human genome variation 7(1):1–3

    Article  Google Scholar 

  • Yu C-C, Jiang T, Yang A-F, Du Y-J, Wu M, Kong L-H (2019) Epigenetic modulation on tau phosphorylation in Alzheimer’s disease. Neural Plast. https://doi.org/10.1155/2019/6856327

  • Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow EM (2013) Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32(22):2920–2937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Hu X (2019) Downregulated long noncoding RNA LINC00313 inhibits the epithelial–mesenchymal transition, invasion, and migration of thyroid cancer cells through inhibiting the methylation of ALX4. J Cell Physiol 234(11):20992–21004

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sun H, Wang H (2016) Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci 6(1):1–6

    Article  Google Scholar 

  • Zhou D, Wan Y, Xie D, Wang Y, Wei J, Yan Q, Lu P, Mo L, Xie J, Yang S (2015) DNMT1 mediates chemosensitivity by reducing methylation of miRNA-20a promoter in glioma cells. Exp Mol Med 47(9):e182

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmer G, Kästner B, Weth F, Bolz J (2007) Multiple effects of ephrin-A5 on cortical neurons are mediated by SRC family kinases. J Neurosci 27(21):5643–5653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer G, Schanuel SM, Bürger S, Weth F, Steinecke A, Bolz J, Lent R (2010) Chondroitin sulfate acts in concert with semaphorin 3A to guide tangential migration of cortical interneurons in the ventral telencephalon. Cereb Cortex 20(10):2411–2422

    Article  PubMed  Google Scholar 

  • Zimmer G, Rudolph J, Landmann J, Gerstmann K, Steinecke A, Gampe C, Bolz J (2011) Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence-and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci 31(50):18364–18380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer-Bensch G (2018) Diverse facets of cortical interneuron migration regulation—implications of neuronal activity and epigenetics. Brain Res 1700:160–169

    Article  CAS  PubMed  Google Scholar 

  • Zimmer-Bensch G (2019a) Emerging roles of long non-coding RNAs as drivers of brain evolution. Cells 8(11):1399

    Article  CAS  PubMed Central  Google Scholar 

  • Zimmer-Bensch G (2019b) Functional implications of dynamic DNA methylation for the developing, aging and diseased brain. In: The DNA, RNA, and histone methylomes. Springer, pp 141–163

    Chapter  Google Scholar 

  • Zimmer-Bensch G (2020) Epigenomic remodeling in Huntington’s disease—master or servant? Epigenomes 4(3):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer-Bensch G, Zempel H (2021) DNA methylation in genetic and sporadic forms of neurodegeneration: lessons from Alzheimer’s, related tauopathies and genetic tauopathies. Cells 10(11):3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

All figures were generated with https://BioRender.com with a respective publication license provided by the Biology department of the RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine Zimmer-Bensch .

Editor information

Editors and Affiliations

Ethics declarations

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—368482240/GRK2416DFG; DFG ZI1224/8-1; DFG ZI1224/13-1.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yildiz, C.B., Zimmer-Bensch, G. (2022). Role of DNMTs in the Brain. In: Jeltsch, A., Jurkowska, R.Z. (eds) DNA Methyltransferases - Role and Function. Advances in Experimental Medicine and Biology, vol 1389. Springer, Cham. https://doi.org/10.1007/978-3-031-11454-0_15

Download citation

Publish with us

Policies and ethics