Skip to main content

A Synopsis of Emerging Blood Biomarkers in Trauma, Injury Critical Care, and Recovery: General Overview

  • Reference work entry
  • First Online:
Biomarkers in Trauma, Injury and Critical Care

Abstract

In the field of biomarkers nowadays, it is possible to have valid, unbiased detection of novel biomarkers in wide range of clinical research, and from plasma. Researches dealing with biomarkers are mostly focused on detailed exploration of plasma proteome at novel depth and identify the detailed biological insights for emerging biomarker discovery. The emerging biomarkers should provide unbiased analysis with novel depth of many relevant proteins, they should have unmatched specificity and quantitative precision, high capacity, and be easily accessible. Further, they should provide characteristic biological indicators that are used to identify (indirect changes) physical damage or disorders of physiological processes in humans or animals. The enhanced and empowered potentials should be therefore provided in the field of detection, diagnostics, prognostics, and intervention direction should be crucial in the field of trauma, injury critical care, and recovery. Lately, researchers and clinicians have intensively worked on identifying novel biomarkers and consequently testing them for everyday clinical practice use. This chapter presents various definition, classifications, and utilization of emerging biomarkers in trauma, injury critical care, and recovery. The chapter provides an overview of the key features and benefits of next-generation biomarkers discovery solutions in the field of cardiovascular critical care, COVID-19, and biomarkers of infection in critical care. The chapter elaborates on deep level the clinical application possibilities quantification and analysis that can be performed by the emerging biomarkers. Further, the chapter presents how we identify the most promising and actionable biomarkers for research and clinical decision-making. Finally, different types of emerging biomarkers in trauma, injury critical care, and recovery are presented. Clearly, as our knowledge in evidence-based medicine is growing, it is necessary for biomarker research to grow along. Hence, the search for novel biomarkers will continue and intensify and provide new information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE2:

Angiotensin-converting enzyme 2

AMI:

Acute myocardial infarction

cfDNA:

Cell-free DNA

COVID-19:

Coronavirus disease

cTnI:

Cardiac troponin I

DNA:

Deoxyribonucleic acid

GDF-15:

Growth differentiation factor

H3Cit:

Citrullinated histone 3

H-FABP:

Heart-type fatty acid binding protein

HMGB1:

High-mobility group box protein 1

miRNAs:

MicroRNAs

MPO:

DNA complexes

MT:

Metallothioneins

MXR:

Multixenobiotic resistance

NETs:

Neutrophil extracellular traps

PD:

Pharmacodynamic

RNA:

Ribonucleic acid

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SIRS:

Systemic inflammatory response syndrome

sST2:

Soluble suppression of tumorigenicity 2

suPAR:

Soluble urokinase-type plasminogen activator receptor

TREM-1:

Soluble triggering receptor expressed on myeloid cells 1

References

  • Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.

    Article  CAS  PubMed  Google Scholar 

  • Backes Y, van der Sluijs KF, Mackie DP, Tacke F, Koch A, Tenhunen JJ, et al. Usefulness of supar as a biological marker in patients with systemic inflammation or infection: a systematic review. Intensive Care Med. 2012;38(9):1418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer W, Diehl-Wiesenecker E, Ulke J, Galtung N, Havelka A, Hegel JK, et al. Outcome prediction by serum calprotectin in patients with COVID-19 in the emergency department. J Infect. 2021;82(4):84–123.

    Article  CAS  PubMed  Google Scholar 

  • Burke HB. Predicting clinical outcomes using molecular biomarkers. Biomark Cancer. 2016;8.

    Google Scholar 

  • Chen R, Huang Y, Quan J, Liu J, Wang H, Billiar TR, et al. HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon 2020;6(12).

    Google Scholar 

  • Damgaard C. On the distribution of plant abundance data. Eco Inform. 2009;4(2):76–82.

    Article  Google Scholar 

  • Davis JW. Biomarker classification, validation, and what to look for in 2017 and beyond. BJU Int. 2017;119(5):812–4.

    Article  PubMed  Google Scholar 

  • de Gonzalo-Calvo D, Benítez ID, Pinilla L, Carratalá A, Moncusí-Moix A, Gort-Paniello C, et al. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl Res. 2021;236:147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: International guidelines for Management of Severe Sepsis and Septic Shock: 2012. Crit Care Med. 2013;41(2):580–637.

    Article  PubMed  Google Scholar 

  • Donadello K, Scolletta S, Covajes C, Vincent J-L. SuPAR as a prognostic biomarker in sepsis. BMC Med. 2012;10(1)

    Google Scholar 

  • Felizola SJ, Nakamura Y, Arata Y, Ise K, Satoh F, Rainey WE, et al. Metallothionein-3 (MT-3) in the human adrenal cortex and its disorders. Endocr Pathol. 2013;25(3):229–35.

    Article  Google Scholar 

  • Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Stat Med. 2012;31(25):2973–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flier JS, Loscalzo J. Categorizing biomedical research: the basics of translation. FASEB J. 2017;31(8):3210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guéant JL, Fromonot J, Guéant‐Rodriguez RM, Lacolley P, Guieu R, Regnault V. Blood myeloperoxidase‐dna, a biomarker of early response to SARS‐COV‐2 infection? Allergy 2020;76(3):892–896.

    Google Scholar 

  • Huckriede J, Anderberg SB, Morales A, de Vries F, Hultström M, Bergqvist A, et al. Evolution of netosis markers and damps have prognostic value in critically ill covid-19 patients. Sci Rep 2021;11(1).

    Google Scholar 

  • Jain KK. Future of biomarkers. In: The handbook of biomarkers. 2017; p. 733–8.

    Google Scholar 

  • Jiyong J, Tiancha H, Wei C, Huahao S. Diagnostic value of the soluble triggering receptor expressed on myeloid cells-1 in bacterial infection: a meta-analysis. Intensive Care Med. 2008;35(4):587–95.

    Article  PubMed  Google Scholar 

  • Kim D, Kim DW, Lee YH, Park SY, Song YW, Shin H, Yoon HE, Park HS, Choi BS, Kim BS, Ban TH, Shin SJ. Relationships between monocyte count to high-density lipoprotein cholesterol ratio and cardiovascular outcomes in patients commencing dialysis. J Int Med Res. 2021.

    Google Scholar 

  • Li M, Duan L, Cai Y, et al. Prognostic value of soluble suppression of tumorigenesis-2 (sST2) for cardiovascular events in coronary artery disease patients with and without diabetes mellitus. Cardiovasc Diabetol. 2021;20:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebetrau C, Nef HM, Dörr O, Gaede L, Hoffmann J, Hahnel A, et al. Release Kinetics of early ischaemic biomarkers in a clinical model of acute myocardial infarction. Heart. 2014;100(8):652–7.

    Article  PubMed  Google Scholar 

  • Ma L, Sahu SK, Cano M, Kuppuswamy V, Bajwa J, McPhatter JN, et al. Increased complement activation is a distinctive feature of severe SARS-COV-2 infection. 2021.

    Google Scholar 

  • Moksnes MR, Røsjø H, Richmond A, Lyngbakken MN, Graham SE, Hansen AF, Wolford BN, Gagliano Taliun SA, LeFaive J, Rasheed H, Thomas LF, Zhou W, Aung N, Surakka I, Douville NJ, Campbell A, Porteous DJ, Petersen SE, Munroe PB, Welsh P, Sattar N, Smith GD, Fritsche LG, Nielsen JB, Åsvold BO, Hveem K, Hayward C, Willer CJ, Brumpton BM, Omland T. Genome-wide association study of cardiac troponin I in the general population. Hum Mol Genet. 2021;30(21):2027–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy B, Fejes Z, Szentkereszty Z, Sütő R, Várkonyi I, Ajzner É, et al. A dramatic rise in serum ACE2 activity in a critically ill COVID-19 patient. Int J Infect Dis. 2021;103:412–4.

    Article  CAS  PubMed  Google Scholar 

  • Nair V, Robinson-Cohen C, Smith MR, Bellovich KA, Bhat ZY, Bobadilla M, et al. Growth differentiation factor–15 and risk of CKD progression. J Am Soc Nephrol. 2017;28(7):2233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolai L, Leunig A, Brambs S, Kaiser R, Weinberger T, Weigand M, et al. Immunothrombotic dysregulation in covid-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation. 2020;142(12):1176–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preston FW. The commonness, and rarity, of species. Ecology. 1948;29(3):254–83.

    Article  Google Scholar 

  • Ray P, Manach YL, Riou B, Houle TT, Warner DS. Statistical evaluation of a biomarker. Anesthesiology. 2010;112(4):1023–40.

    Article  PubMed  Google Scholar 

  • Rhodes A, Cecconi M. Cell-free DNA and outcome in sepsis. Crit Care. 2012;16(6):170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieder M, Wirth L, Pollmeier L, Jeserich M, Goller I, Baldus N, et al. Serum protein profiling reveals a specific upregulation of the immunomodulatory protein progranulin in coronavirus disease 2019. J Infect Dis. 2020;223(5):775–84.

    Article  Google Scholar 

  • Schernthaner C, Lichtenauer M, Wernly B, Paar V, Pistulli R, Rohm I, et al. Multibiomarker analysis in patients with acute myocardial infarction. Eur J Clin Investig. 2017;47(9):638–48.

    Article  CAS  Google Scholar 

  • Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veras F, Pontelli M, Silva C, Toller-Kawahisa J, de Lima M, Nascimento D, et al. SARS-COV-2 triggered neutrophil extracellular traps (nets) mediate COVID-19 pathology. 2020.

    Google Scholar 

  • Verberk W. Explaining general patterns in species abundance and distributions. Nat Educ Knowl. 2011;3(10):38.

    Google Scholar 

  • Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L-xin. Evidence for serum mir-15a and Mir-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin Chem Lab Med 2012;50(8).

    Google Scholar 

  • Wang W-C, Mao H, Ma D-D, Yang W-X. Characteristics, functions, and applications of metallothionein in aquatic vertebrates. Front Mar Sci 2014;1.

    Google Scholar 

  • West M, Kirby A, Stewart RA, Blankenberg S, Sullivan D, White HD, Hunt D, Marschner I, Janus E, Kritharides L, Watts GF, Simes J, Tonkin AM, LIPID Study Group *. Circulating cystatin C is an independent risk marker for cardiovascular outcomes, Development of Renal Impairment, and Long-Term Mortality in Patients with Stable Coronary Heart Disease: The LIPID Study. J Am Heart Assoc. 2022:e020745. https://doi.org/10.1161/JAHA.121.020745. Epub ahead of print.

  • Wong HR, Lindsell CJ, Lahni P, Hart KW, Gibot S. Interleukin-27 as a sepsis diagnostic biomarker in critically ill adults. Shock 2013;1.

    Google Scholar 

  • Wright DH. Correlations between incidence and abundance are expected by chance. J Biogeogr. 1991;18(4):463.

    Article  Google Scholar 

  • Yeh C-F, Wu C-C, Liu S-H, Chen K-F. Comparison of the accuracy of Neutrophil CD64, procalcitonin, and C-reactive protein for sepsis identification: a systematic review and meta-analysis. Ann Intensive Care. 2019;9(1).

    Google Scholar 

  • Zou Q, Wen W, X-chao Z. Presepsin as a novel sepsis biomarker. World J Emerg Med. 2014;5(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo Y, Zuo M, Yalavarthi S, Gockman K, Madison JA, Shi H, et al. Neutrophil extracellular traps and thrombosis in COVID-19. 2020

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Milic, J., Stankic, D. (2023). A Synopsis of Emerging Blood Biomarkers in Trauma, Injury Critical Care, and Recovery: General Overview. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Biomarkers in Trauma, Injury and Critical Care. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-07395-3_2

Download citation

Publish with us

Policies and ethics