Skip to main content

Strategies of Polypharmacology

  • Chapter
  • First Online:
Polypharmacology

Abstract

In Chap. 1, we have learned that the modern pharmacological therapy of human disease and new drug discovery are based primarily on four major strategies/modality: the STD strategy, the CDT strategy, the FDC strategy, and the MTD strategy. In addition, the “Natural Multicomponent Medicine” is in its widespread use either as a CAM (complementary and alternative medicine) or a mainstay medicine in some countries and regions. Among these pharmacological strategies for disease therapy and drug development, STD belongs to the Basic and Clinical Pharmacology, and CDT, FDC, and MTD fall into more advanced pharmacology—Polypharmacology and are essentially the applications of polypharmacology to fundamental research and clinical practice. Polypharmacology-based drugs aim to achieve a synergistic effect or target multiple disease-related signaling pathways aiming to ensure more complete and radical therapeutic effects. While the CDT and the FDC strategies are based on the combination of two or more active principles, each with its own specific target, the MTD strategy is focused on the development of a single molecule able to simultaneously interact with multiple different targets. To help better acquire fundamental knowledge and understand clinical applications of Polypharmacology, this chapter provides in-depth interpretations on the three major polypharmacology strategies. Specifically, comparisons of concepts, characteristics, strengths, and weaknesses, and types among CDT, FDC, and MTD are summarized. We proposed some new concepts related to each of the three Polypharmacological approaches and present them in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today. 2016;21(7):1189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ascierto PA, Marincola FM. Combination therapy: the next opportunity and challenge of medicine. J Transl Med. 2011;9:115.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Phougat N, Khatri S, Singh A, et al. Combination therapy: the propitious rationale for drug development. Comb Chem High Throughput Screen. 2014;17(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  4. Xu KJ, Song J, Zhao XM. The drug cocktail network. BMC Syst Biol. 2012;6(Suppl 1):S5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhou H, Tong Z, McLeod JF. “Cocktail” approaches and strategies in drug development: valuable tool or flawed science? J Clin Pharmacol. 2004;44(2):120–34.

    Article  CAS  PubMed  Google Scholar 

  6. Preissner S, Dunkel M, Hoffmann MF, et al. Drug cocktail optimization in chemotherapy of cancer. PLoS One. 2012;7(12):e51020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tomaselli D, Lucidi A, Rotili D, et al. Epigenetic polypharmacology: a new frontier for epi-drug discovery. Med Res Rev. 2020;40(1):190–244.

    Article  CAS  PubMed  Google Scholar 

  8. Steinman MA, Hanlon JT. Managing medications in clinically complex elders: “There’s got to be a happy medium”. JAMA. 2010;304(14):1592–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sutaria A, Liu L, Ahmed Z. Multiple medication (polypharmacy) and chronic kidney disease in patients aged 60 and older: a pharmacoepidemiologic perspective. Ther Adv Cardiovasc Dis. 2016;10(4):242–50.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Keith CT, Borisy AA, Stockwell BR. Multicomponent therapeutics for networked systems. Nat Rev Drug Discov. 2005;4(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  11. McNeil SE. Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(3):264–71.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta AK, Arshad S, Poulter NR. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension. 2010;55(2):399–407.

    Article  CAS  PubMed  Google Scholar 

  13. Sherrill B, Halpern M, Khan S, et al. Single-pill vs free-equivalent combination therapies for hypertension: a meta-analysis of health care costs and adherence. J Clin Hypertens (Greenwich). 2011;13(12):898–909.

    Article  Google Scholar 

  14. Berry DH, Fernbach DJ, Herson J, et al. Comparison of prednisolone, vincristine, methotrexate and 6-mercaptopurine vs. 6-mercaptopurine and prednisone maintenance therapy in childhood acute leukemia: A Southwest Oncology Group Study. Cancer. 1980;46(5):1098–103.

    Article  CAS  PubMed  Google Scholar 

  15. Mihich E, Grindey GB. Multiple basis of combination chemotherapy. Cancer. 1977;40(1 Suppl):534–43.

    Article  CAS  PubMed  Google Scholar 

  16. Van Gaal LF, De Leeuw IH. Rationale and options for combination therapy in the treatment of Type 2 diabetes. Diabetologia. 2003;46(Suppl 1):M44–50.

    Article  PubMed  CAS  Google Scholar 

  17. Welz T, Wyen C, Hensel M. Drug interactions in the treatment of malignancy in HIV-infected patients. Oncol Res Treat. 2017;40(3):120–7.

    Article  CAS  PubMed  Google Scholar 

  18. Aronson J. Serious drug interactions. Practitioner. 1993;237(1531):789–91.

    CAS  PubMed  Google Scholar 

  19. Scheen AJ. Pharmacokinetic characteristics and clinical efficacy of an SGLT2 inhibitor plus DPP-4 Inhibitor combination therapy in type 2 diabetes. Clin Pharmacokinet. 2017 Jul;56(7):703–18.

    Article  CAS  PubMed  Google Scholar 

  20. Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature. 2004;429:464–8.

    Article  CAS  PubMed  Google Scholar 

  21. Tsioufis C, Thomopoulos C. Combination drug treatment in hypertension. Pharmacol Res. 2017;125(Pt B):266–71.

    Article  CAS  PubMed  Google Scholar 

  22. Horn T, Ferretti S, Ebel N, et al. High-order drug combinations are required to effectively kill colorectal cancer cells. Cancer Res. 2016;76(23):6950–63.

    Article  CAS  PubMed  Google Scholar 

  23. Olender S, Wilkin TJ, Taylor BS, Hammer SM. Advances in antiretroviral therapy. Top Antivir Med. 2012;20:61–86.

    PubMed  Google Scholar 

  24. Meng Q, Garcia-Rodriguez C, Manzanarez G, et al. Engineered domain-based assays to identify individual antibodies in oligoclonal combinations targeting the same protein. Anal Biochem. 2012;430:141–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benedetti R, Conte M, Iside C, et al. Epigenetic-based therapy: from single- to multi-target approaches. Int J Biochem Cell Biol. 2015;69:121–31.

    Article  CAS  PubMed  Google Scholar 

  26. Raju TS, Strohl WR. Potential therapeutic roles for antibody mixtures. Expert Opin Biol Ther. 2013;13(10):1347–52.

    Article  CAS  PubMed  Google Scholar 

  27. Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48(21):6523–43.

    Article  CAS  PubMed  Google Scholar 

  28. Ostheimer GW. A comparison of glycopyrrolate and atropine during reversal of nondepolarizing neuromuscular block with neostigmine. Anesth Analg. 1977;56:182–6.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao S, Nishimura T, Chen Y, et al. Systems pharmacology of adverse event mitigation by drug combinations. Sci Transl Med. 2013;5(206):206ra140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mouton JW. Combination therapy as a tool to prevent emergence of bacterial resistance. Infection. 1999;27(Suppl 2):S24–8.

    Article  PubMed  Google Scholar 

  31. Ho PM, Bryson CL, Rumsfeld JS. Medication adherence: its importance in cardiovascular outcomes. Circulation. 2009;119:3028–35.

    Article  PubMed  Google Scholar 

  32. Naderi SH, Bestwick JP, Wald DS. Adherence to drugs that prevent cardiovascular disease: meta-analysis on 376,162 patients. Am J Med. 2012;125:882–7.

    Article  PubMed  Google Scholar 

  33. Chowdhury R, Khan H, Heydon E, et al. Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. Eur Heart J. 2013;34:2940–8.

    Article  CAS  PubMed  Google Scholar 

  34. Moja L, Tagliabue L, Balduzzi S, et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev. 2012;2012(4):CD006243.

    PubMed Central  Google Scholar 

  35. Bellos I, Karageorgiou V, Pergialiotis V, et al. Acute kidney injury following the concurrent administration of antipseudomonal beta-lactams and vancomycin: a network meta-analysis. Clin Microbiol Infect. 2020;26(6):696–705.

    Article  CAS  PubMed  Google Scholar 

  36. Rosenstock J, Handelsman Y, Vidal J, et al. Propensity-score-matched comparative analyses of simultaneously administered fixed-ratio insulin glargine 100 U and lixisenatide (iGlarLixi) vs sequential administration of insulin glargine and lixisenatide in uncontrolled type 2 diabetes. Diabetes Obes Metab. 2018;20(12):2821–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Niquet J, Lumley L, Baldwin R, et al. Rational polytherapy in the treatment of cholinergic seizures. Neurobiol Dis. 2020;133:104537.

    Article  CAS  PubMed  Google Scholar 

  38. Piñero F, Silva M, Iavarone M. Sequencing of systemic treatment for hepatocellular carcinoma: second line competitors. World J Gastroenterol. 2020;26(16):1888–900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Soni KS, Thomas D, Caffrey T, et al. A polymeric nanogel-based treatment regimen for enhanced efficacy and sequential administration of synergistic drug combination in pancreatic cancer. J Pharmacol Exp Ther. 2019;370(3):894–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–81.

    Article  CAS  PubMed  Google Scholar 

  41. Liu H, Ye M, Guo H. An updated review of randomized clinical trials testing the improvement of cognitive function of Ginkgo biloba extract in healthy people and Alzheimer's patients. Front Pharmacol. 2020;10:1688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sierpina VS, Wollschlaeger B, Blumenthal M. Ginkgo biloba. Am Fam Physician. 2003;68(5):923–6.

    PubMed  Google Scholar 

  43. Haurum JS. Recombinant polyclonal antibodies: the next generation of antibody therapeutics? Drug Discov Today. 2006;11:655–60.

    Article  CAS  PubMed  Google Scholar 

  44. Skartved NJ, Jacobsen HJ, Pedersen MW, et al. Preclinical pharmacokinetics and safety of Sym004: a synergistic antibody mixture directed against epidermal growth factor receptor. Clin Cancer Res. 2011;17:5962–72.

    Article  CAS  PubMed  Google Scholar 

  45. Rasmussen SK, Næsted H, Müller C, et al. Recombinant antibody mixtures: production strategies and cost considerations. Arch Biochem Biophys. 2012;526(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  46. Robak T. The emerging therapeutic role of antibody mixtures. Expert Opin Biol Ther. 2013;13(7):953–8.

    Article  CAS  PubMed  Google Scholar 

  47. de Kruif J, Kramer A, Nijhuis R, et al. Generation of stable cell clones expressing mixtures of human antibodies. Biotechnol Bioeng. 2010;106(5):741–50.

    Article  PubMed  CAS  Google Scholar 

  48. Stringberg A, Camden R, Qualls K, et al. Update on dual antiplatelet therapy for secondary stroke prevention. Mo Med. 2019;116(4):303–7.

    PubMed  PubMed Central  Google Scholar 

  49. Van Cutsem E, Cervantes A, Nordlinger B, et al. ESMO Guidelines Working Group. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii1–9.

    PubMed  Google Scholar 

  50. Wald NJ, Law MR. A strategy to reduce cardiovascular disease by more than 80%. BMJ. 2003;326(7404):1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wiley B, Fuster V. The concept of the polypill in the prevention of cardiovascular disease. Ann Glob Health. 2014;80:24–34.

    Article  PubMed  Google Scholar 

  52. Wald DS, Morris JK, Wald NJ. Randomized polypill crossover trial in people aged 50 and over. PLoS One. 2012;7:e41297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thom S, Poulter N, Field J, et al. Effects of a fixed-dose combination strategy on adherence and risk factors in patients with or at high risk of CVD: the UMPIRE randomized clinical trial. JAMA. 2013;310:918–29.

    Article  CAS  PubMed  Google Scholar 

  54. de Cates AN, Farr MRB, Wright N, et al. Fixed-dose combination therapy for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2014;4(4):CD009868.

    Google Scholar 

  55. Sanz G, Fuster V. Fixed-dose combination therapy and secondary cardiovascular prevention: rationale, selection of drugs and target population. Nat Clin Pract Cardiovasc Med. 2009;6:101–10.

    Article  CAS  PubMed  Google Scholar 

  56. Dhillon S. Decitabine/cedazuridine: first approval. Drugs. 2020;80(13):1373–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kang C, Dhillon S, Deeks ED. Trifluridine/tipiracil: a review in metastatic gastric cancer. Drugs. 2019;79(14):1583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Albanna AS, Smith BM, Cowan D, et al. Fixed-dose combination antituberculosis therapy: a systematic review and meta-analysis. Eur Respir J. 2013;42(3):721–32.

    Article  CAS  PubMed  Google Scholar 

  59. Zappulo E, Scotto R, Buonomo AR, et al. Efficacy and safety of a fixed dose combination tablet of asunaprevir + beclabuvir + daclatasvir for the treatment of Hepatitis C. Expert Opin Pharmacother. 2020;21(3):261–73.

    Article  CAS  PubMed  Google Scholar 

  60. Hu J, Zou P, Zhang S, et al. Empagliflozin/metformin fixed-dose combination: a review in patients with type 2 diabetes. Expert Opin Pharmacother. 2016;17(18):2471–7.

    Article  CAS  PubMed  Google Scholar 

  61. Naltrexone/bupropion for obesity. Drug Ther Bull. 2017;55(11):126–9.

    Google Scholar 

  62. Farooq S, Singh SP. Fixed dose-combination products in psychiatry: systematic review and meta-analysis. J Psychopharmacol. 2015;29(5):556–64.

    Article  CAS  PubMed  Google Scholar 

  63. WHO. WHO Expert Committee on specifications for pharmaceutical preparations. WHO technical report series 929. Geneva: 39th Report; 2005. p. 95.

    Google Scholar 

  64. Webster R, Castellano JM, Onuma OK. Putting polypills into practice: challenges and lessons learned. Lancet. 2017;389(10073):1066–74.

    Article  PubMed  Google Scholar 

  65. World Health Organization. Secondary prevention of non-communicable disease in low and middle income countries through community-based and health service interventions. Wellcome Trust meeting report, 1–3 August 2001. Geneva: World Health Organization. p. 2002.

    Google Scholar 

  66. Food and Drug Administration (FDA). Guidance for industry and FDA current good manufacturing practice for combination products. http://www.fda.gov/cder/guidance/OCLove1dft.htm#_ftn2. 20 March 2006.

  67. Committee for Proprietary Medicinal Products (CPMP). Note for guidance on fixed-combination medicinal products. http://www.emea.eu.int/pdfs/human/ewp/024095en.pdf#search=‘note%20for%20guidance%20on%20fixed%20combination%20medicinal%20products’. 20 March 2006.

  68. Giles TD. Rationale for combination therapy as initial treatment for hypertension. J Clin Hypertens. 2003;5:4–11.

    Article  Google Scholar 

  69. Becerra V, Gracia A, Desai K, et al. Cost-effectiveness and public health benefit of secondary cardiovascular disease prevention from improved adherence using a polypill in the UK. BMJ Open. 2015;5:e007111.

    Article  PubMed  PubMed Central  Google Scholar 

  70. WHO. Adherence to long-term therapies: evidence for action. 2003.

    Google Scholar 

  71. Truelove M, Patel A, Bompoint S, et al. The effect of a cardiovascular polypill strategy on pill burden. Cardiovasc Ther. 2015;33:347–52.

    Article  CAS  PubMed  Google Scholar 

  72. Roy A, Naik N, Srinath RK. Strengths and limitations of using the polypill in cardiovascular prevention. Curr Cardiol Rep. 2017;19(5):45.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Baumgartner A, Drame K, Geutjens S, et al. Does the polypill improve patient adherence compared to its individual formulations? A systematic review. Pharmaceutics. 2020;12(2):190.

    Article  CAS  PubMed Central  Google Scholar 

  74. Soliman EZ, Mendis S, Dissanayake WP, et al. A polypill for primary prevention of cardiovascular disease: a feasibility study of the World Health Organization. Trials. 2011;12:3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bramlage P, Sims H, Minguet J, et al. The polypill: an effective approach to increasing adherence and reducing cardiovascular event risk. Eur J Prev Cardiol. 2017;24(3):297–310.

    Article  PubMed  Google Scholar 

  76. Hippisley-Cox J, Coupland C. Effect of combinations of drugs on all cause mortality in patients with ischaemic heart disease: nested case–control analysis. BMJ. 2005;330:1059–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brainin M, Feigin V, Martins S, et al. Cut stroke in half: polypill for primary prevention in stroke. Int J Stroke. 2018;13(6):633–47.

    Article  PubMed  Google Scholar 

  78. Sleight P, Pouleur H, Zannad F. Benefits, challenges, and registerability of the polypill. Eur Heart J. 2006;27(14):1651–6.

    Article  PubMed  Google Scholar 

  79. Rosenthal T. Can a polypill one single tablet combat different cardiovascular risk factors? J Am Soc Hypertens. 2018;12(5):335–9.

    Article  CAS  PubMed  Google Scholar 

  80. Elley CR, Gupta AK, Webster R, et al. The efficacy and tolerability of ‘polypills’: meta-analysis of randomized controlled trials. PLoS One. 2012;7(12):e52145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Selak V, Webster R. Polypills for the secondary prevention of cardiovascular disease: effective in improving adherence but are they safe? Ther Adv Drug Saf. 2018;9(2):157–62.

    Article  PubMed  Google Scholar 

  82. Wertheimer AI. The economics of polypharmacology: fixed dose combinations and drug cocktails. Curr Med Chem. 2013;20(13):1635–8.

    Article  CAS  PubMed  Google Scholar 

  83. Teo KK, Liang Y. Polypill: lights and shadows. Curr Hypertens Rep. 2010;12(4):276–81.

    Article  PubMed  Google Scholar 

  84. Jayasheel BG. Perspect. Clin Res. 2010;1(4):120–3.

    CAS  Google Scholar 

  85. Bhaskar S, Tian F, Stoeger T, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 2010;7(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Drbohlavova J, Chomoucka J, Adam V, et al. Nanocarriers for anticancer drugs-new trends in nanomedicine. Curr Drug Metab. 2013;14(5):547–64.

    Article  CAS  PubMed  Google Scholar 

  87. Su H, Wang Y, Gu Y, et al. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol. 2018;38(1):3–24.

    Article  CAS  PubMed  Google Scholar 

  88. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    Article  CAS  PubMed  Google Scholar 

  89. Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013;7(11):9518–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fisusia FA, Akalaa EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol. 2019;7(3):3–23.

    Article  CAS  Google Scholar 

  91. Ramsay RR, Popovic-Nikolic MR, Nikolic K, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ren J, Fu L, Nile SH, et al. Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Front Pharmacol. 2019;10:753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li ZM, Xu SW, Liu PQ. Salvia miltiorrhiza Burge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin. 2018;39(5):802–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jia Y, Leung SW. How efficacious is Danshen (Salvia miltiorrhiza) dripping pill in treating angina pectoris? Evidence assessment for meta-analysis of randomized controlled trials. J Altern Complement Med. 2017;23(9):676–84.

    Article  PubMed  Google Scholar 

  95. Jalili-Baleh L, Babaei E, Abdpour S, et al. A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease. Eur J Med Chem. 2018;152:570–89.

    Article  CAS  PubMed  Google Scholar 

  96. Sameem B, Saeedi M, Mahdavi M, et al. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur J Med Chem. 2017;128:332–45.

    Article  CAS  PubMed  Google Scholar 

  97. Scotti L, Monteiro AFM, de Oliveira VJ, et al. Multi-target drugs against metabolic disorders. Endocr Metab Immune Disord Drug Targets. 2019;19(4):402–18.

    Article  CAS  PubMed  Google Scholar 

  98. Talevi A. Tailored multi-target agents. Applications and design considerations. Curr Pharm Des. 2016;22(21):3164–70.

    Article  CAS  PubMed  Google Scholar 

  99. Makhoba XH, Viegas C Jr, Mosa RA, et al. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther. 2020;14:3235–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rodríguez-Soacha DA, Scheiner M, Decker M. Multi-target-directed-ligands acting as enzyme inhibitors and receptor ligands. Eur J Med Chem. 2019;180:690–706.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang X, He X, Chen Q, et al. A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer's disease. Bioorg Med Chem. 2018;26(3):543–50.

    Article  CAS  PubMed  Google Scholar 

  102. Gontijo VS, Viegas FPD, Ortiz CJC, et al. Molecular hybridization as a tool in the design of multi-target directed drug candidates for neurodegenerative diseases. Curr Neuropharmacol. 2020;18(5):348–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang HY. One-compound-multiple-targets strategy to combat Alzheimer’s disease. FEBS Lett. 2005;579(24):5260–4.

    Article  CAS  PubMed  Google Scholar 

  104. Antoszczak M, Huczyński A. Salinomycin and its derivatives – a new class of multiple-targeted “magic bullets”. Eur J Med Chem. 2019;176:208–27.

    Article  CAS  PubMed  Google Scholar 

  105. Pereira DM, Rodrigues PM, Borralho PM, et al. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18(5–6):282–9.

    Article  CAS  PubMed  Google Scholar 

  106. Bolognesi ML. Polypharmacology in a single drug: multitarget drugs. Curr Med Chem. 2013;20(13):1639–45.

    Article  CAS  PubMed  Google Scholar 

  107. Bolognesi ML, Cavalli A. Multitarget drug discovery and polypharmacology. ChemMedChem. 2016;11(12):1190–2.

    Article  CAS  PubMed  Google Scholar 

  108. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004;3(4):353–9.

    Article  CAS  PubMed  Google Scholar 

  109. Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today. 2004;9(15):641–51.

    Article  CAS  PubMed  Google Scholar 

  110. Youdim MBH, Buccafusco JJ. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharm Sci. 2005;26(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  111. Talevi A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol. 2015;6:205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lin HH, Zhang LL, Yan R, et al. Network analysis of drug-target interactions: a study on FDA-approved new molecular entities between 2000 to 2015. Sci Rep. 2017;7:12230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lu JJ, Pan W, Hu YJ, et al. Multi-target drugs: the trend of drug research and development. PLoS One. 2012;7(6):e40262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou J, Li Q, Wu M, et al. Progress in the rational design for polypharmacology drug. Curr Pharm Des. 2016;22(21):3182–9.

    Article  CAS  PubMed  Google Scholar 

  115. McKie SA. Polypharmacology: in silico methods of ligand design and development. Future Med Chem. 2016;8(5):579–602.

    Article  CAS  PubMed  Google Scholar 

  116. Reddy AS, Zhang S. Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol. 2013;6(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  117. Al-Ali H, Lee DH, Danzi MC, et al. Rational polypharmacology: systematically identifying and engaging multiple drug targets to promote axon growth. ACS Chem Biol. 2015;10(8):1939–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Struct Biol. 2006;16(1):127–36.

    Article  CAS  PubMed  Google Scholar 

  119. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.

    Article  CAS  PubMed  Google Scholar 

  120. Bottegoni G, Favia AD, Recanatini M, et al. The role of fragment-based and computational methods in polypharmacology. Drug Discov Today. 2012;17(1–2):23–34.

    Article  CAS  PubMed  Google Scholar 

  121. Decker M. Design of hybrid molecules for drug development. Amsterdam: Elsevier; 2017.

    Google Scholar 

  122. Rosini M. Polypharmacology: the rise of multitarget drugs over combination therapies. Future Med Chem. 2014;6:485–7.

    Article  CAS  PubMed  Google Scholar 

  123. de Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitarget drugs. Clin Epigenetics. 2016;8:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Costantino L, Barlocco D. Challenges in the design of multitarget drugs against multifactorial pathologies: a new life for medicinal chemistry? Future Med Chem. 2013;5(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  125. Costantino L, Barlocco D. Designed multiple ligands: basic research vs clinical outcomes. Curr Med Chem. 2012;19(20):3353–87.

    Article  CAS  PubMed  Google Scholar 

  126. Hase T, Tanaka H, Suzuki Y, et al. Structure of protein interaction networks and their implications on drug design. PLoS Comput Biol. 2009;5:e1000550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Lee JA, Uhlik MT, Moxham CM, et al. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J Med Chem. 2012;55(10):4527–38.

    Article  CAS  PubMed  Google Scholar 

  128. Michelini E, Cevenini L, Mezzanotte L, et al. Cell-based assays: fueling drug discovery. Anal Bioanal Chem. 2010;398(1):227–38.

    Article  CAS  PubMed  Google Scholar 

  129. Moffat JG, Rudolph J, Bailey D. Phenotypic screening in cancer drug discovery – past, present and future. Nat Rev Drug Discov. 2014;13(8):588–602.

    Article  CAS  PubMed  Google Scholar 

  130. Hurko O. Target-based drug discovery, genetic diseases, and biologics. Neurochem Int. 2012;61(6):892–8.

    Article  CAS  PubMed  Google Scholar 

  131. Nishio K, Arao T, Shimoyama T, et al. Translational studies for target-based drugs. Cancer Chemother Pharmacol. 2005;56(Suppl 1):90–3.

    Article  PubMed  CAS  Google Scholar 

  132. Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov. 2014;13(8):577–87.

    Article  CAS  PubMed  Google Scholar 

  133. Swinney DC. Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther. 2013;93(4):299–301.

    Article  CAS  PubMed  Google Scholar 

  134. Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res. 2003;110(5–6):255–8.

    Article  CAS  PubMed  Google Scholar 

  135. Simpson MR, Simpson NR, Masheter HC. New drugs. 8. Flufenamic acid in rheumatoid arthritis. Comparison with aspirin and the results of extended treatment. Ann Phys Med. 1966;8(6):208–13.

    CAS  PubMed  Google Scholar 

  136. Berman J, Haffajee CI, Alpert JS. Therapy of symptomatic pericarditis after myocardial infarction: retrospective and prospective studies of aspirin, indomethacin, prednisone, and spontaneous resolution. Am Heart J. 1981;101(6):750–3.

    Article  CAS  PubMed  Google Scholar 

  137. Durongpisitkul K, Gururaj VJ, Park JM, et al. The prevention of coronary artery aneurysm in Kawasaki disease: a meta-analysis on the efficacy of aspirin and immunoglobulin treatment. Pediatrics. 1995;96(6):1057–61.

    Article  CAS  PubMed  Google Scholar 

  138. Grundmann K, Jaschonek K, Kleine B, et al. Aspirin non-responder status in patients with recurrent cerebral ischemic attacks. J Neurol. 2003;250(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  139. Amory JK, Amory DW. Dosing frequency of aspirin and prevention of heart attacks and strokes. Am J Med. 2007;120(4):e5.

    Article  PubMed  Google Scholar 

  140. Daya S. Recurrent spontaneous early pregnancy loss and low dose aspirin. Minerva Ginecol. 2003;55(5):441–9.

    CAS  PubMed  Google Scholar 

  141. Baron JA. Aspirin and cancer: trials and observational studies. J Natl Cancer Inst. 2012;104(16):1199–200.

    Article  CAS  PubMed  Google Scholar 

  142. Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature. 2009;462(7270):175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fouqueray P, Leverve X, Fontaine E, et al. Imeglimin – a new oral anti-diabetic that targets the three key defects of type 2 diabetes. J Diabetes Metab. 2011;2:126.

    Article  Google Scholar 

  144. Vuylsteke V, Chastain LM, Maggu GA, et al. Imeglimin: a potential new multi-target drug for type 2 diabetes. Drugs R&D. 2015;15(3):227–32.

    Article  CAS  Google Scholar 

  145. Pacini G, Mari A, Fouqueray P, et al. Imeglimin increases glucose-dependent insulin secretion and improves β-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(6):541–5.

    Article  CAS  PubMed  Google Scholar 

  146. Pirags V, Lebovitz H, Fouqueray P. Imeglimin, a novel oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes Metab. 2012;14:852–8.

    Article  CAS  PubMed  Google Scholar 

  147. Vial G, Chauvin M-A, Bendridi N, et al. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes. 2015;64(6):2254–64.

    Article  CAS  PubMed  Google Scholar 

  148. Fouqueray P, Leverve X, Fontaine E, et al. Imeglimin – a new oral anti-diabetic that targets the three key defects of type 2 diabetes. J Diabet Metab. 2011;2(4):126.

    Article  Google Scholar 

  149. Lablanche S, Tubbs E, Cottet-Rousselle C, et al. Imeglimin protects INS-1 cells and human islets against high glucose–and high fructose–induced cell death by inhibiting the mitochondrial PTP opening. Diabetes. 2018;67(Suppl1):81.

    Article  Google Scholar 

  150. Bolze S, Fouqueray P, Hallakou-Bozec S. Imeglimin, a new mitochondria-targeted agent for type 2 diabetes treatment. J World Mitochondria Soc. 2015;1(2)

    Google Scholar 

  151. Li J, Yu H, Wang S, et al. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. Drug Des Devel Ther. 2018;12:121–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Habtemariam S. Berberine pharmacology and the gut microbiota: a hidden therapeutic link. Pharmacol Res. 2020;155:104722.

    Article  CAS  PubMed  Google Scholar 

  153. Feng X, Sureda A, Jafari S, et al. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics. Theranostics. 2019;9(7):1923–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): a clinical review. Phytother Res. 2019;33(3):504–23.

    Article  PubMed  Google Scholar 

  155. Dyck GJB, Raj P, Zieroth S, et al. The effects of resveratrol in patients with cardiovascular disease and heart failure: a narrative review. Int J Mol Sci. 2019;20(4):904.

    Article  CAS  PubMed Central  Google Scholar 

  156. Ko JH, Sethi G, Um JY, et al. The role of resveratrol in cancer therapy. Int J Mol Sci. 2017;18(12):2589.

    Article  PubMed Central  CAS  Google Scholar 

  157. Ahmadi R, Ebrahimzadeh MA. Resveratrol – a comprehensive review of recent advances in anticancer drug design and development. Eur J Med Chem. 2020;200:112356.

    Article  CAS  PubMed  Google Scholar 

  158. Wang Z. MicroRNAs and cardiovascular disease. Potomac: Bentham Science Publishers; 2010. eISBN:978-1-60805-184-7

    Google Scholar 

  159. Wang Z. MicroRNA-interference technologies. Heidelberg/New York: Springer; 2009. ISBN-13:978-3-642-00488-9

    Book  Google Scholar 

  160. Zhang Y, Du W, Yang B. Long non-coding RNAs as new regulators of cardiac electrophysiology and arrhythmias: molecular mechanisms, therapeutic implications and challenges. Pharmacol Ther. 2019;203:107389.

    Article  CAS  PubMed  Google Scholar 

  161. Wang Y, Liu B. Circular RNA in diseased heart. Cells. 2020;9(5):1240.

    Article  CAS  PubMed Central  Google Scholar 

  162. Arkin MR, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov. 2004;3(4):301–17.

    Article  CAS  PubMed  Google Scholar 

  163. Arkin MR, Tang Y, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 2014;21(9):1102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Raina K, Crews CM. Targeted protein knockdown using small molecule degraders. Curr Opin Chem Biol. 2017;39:46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Su XD, Shuai Y. Macromolecules and antibody-based drugs. Adv Exp Med Biol. 2020;1248:485–530.

    Article  CAS  PubMed  Google Scholar 

  166. Tyagi P, Santos JL. Macromolecule nanotherapeutics: approaches and challenges. Drug Discov Today. 2018;23(5):1053–61.

    Article  CAS  PubMed  Google Scholar 

  167. Rizvi NF, Smith GF. RNA as a small molecule druggable target. Bioorg Med Chem Lett. 2017;27(23):5083–8.

    Article  CAS  PubMed  Google Scholar 

  168. Xia T, Li J, Cheng H, et al. Small-molecule regulators of microRNAs in biomedicine. Drug Dev Res. 2015;76(7):375–81.

    Article  CAS  PubMed  Google Scholar 

  169. Van Meter EN, Onyango JA, Teske KA. A review of currently identified small molecule modulators of microRNA function. Eur J Med Chem. 2020;188:112008.

    Article  PubMed  CAS  Google Scholar 

  170. Hauser AT, Robaa D, Jung M. Epigenetic small molecule modulators of histone and DNA methylation. Curr Opin Chem Biol. 2018;45:73–85.

    Article  CAS  PubMed  Google Scholar 

  171. Finley A, Copeland RA. Small molecule control of chromatin remodeling. Chem Biol. 2014;21(9):1196–210.

    Article  CAS  PubMed  Google Scholar 

  172. Ganesan A. Multitarget drugs: an epigenetic epiphany. ChemMedChem. 2016;11(12):1227–41.

    Article  CAS  PubMed  Google Scholar 

  173. Franci G, Miceli M, Altucci L. Targeting epigenetic networks with polypharmacology: a new avenue to tackle cancer. Epigenomics. 2010;2(6):731–42.

    Article  CAS  PubMed  Google Scholar 

  174. Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019;25(3):403–18.

    Article  CAS  PubMed  Google Scholar 

  175. Janssens Y, Wynendaele E, Vanden Berghe W, et al. Peptides as epigenetic modulators: therapeutic implications. Clin Epigenetics. 2019;11(1):101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Lu Q, Quinn AM, Patel MP, et al. Perspectives on the discovery of small-molecule modulators for epigenetic processes. J Biomol Screen. 2012;17(5):555–71.

    Article  CAS  PubMed  Google Scholar 

  177. Pachaiyappan B, Woster PM. Design of small molecule epigenetic modulators. Bioorg Med Chem Lett. 2014;24(1):21–32.

    Article  CAS  PubMed  Google Scholar 

  178. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13–25.

    Article  CAS  PubMed  Google Scholar 

  179. Cohen MH, Williams GA, Sridhara R, et al. United States Food and Drug Administration drug approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res. 2004;10(4):1212–8.

    Article  CAS  PubMed  Google Scholar 

  180. Roth BL, Ciaranello RD, Meltzer HY. Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther. 1992;260(3):1361–5.

    CAS  PubMed  Google Scholar 

  181. Roth BL, Meltzer HY, Khan N. Binding of typical and atypical antipsychotic drugs to multiple neurotransmitter receptors. Adv Pharmacol. 1998;42:482–5.

    Article  CAS  PubMed  Google Scholar 

  182. Roth BL, Willins DL, Kristiansen K, et al. 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacol Ther. 1998;79(3):231–57.

    Article  CAS  PubMed  Google Scholar 

  183. Saenz-Méndez P, Eriksson LA. Exploring polypharmacology in drug design. Methods Mol Biol. 2018;1824:229–43.

    Article  PubMed  CAS  Google Scholar 

  184. Niv MY, Rubin H, Cohen J, et al. Sequence-based design of kinase inhibitors applicable for therapeutics and target identification. J Biol Chem. 2004;279(2):1242–55.

    Article  CAS  PubMed  Google Scholar 

  185. Mitra A, Sarkar N. Sequence and structure-based peptides as potent amyloid inhibitors: a review. Arch Biochem Biophys. 2020;695:108614.

    Article  CAS  PubMed  Google Scholar 

  186. Li Q, Lai L. Prediction of potential drug targets based on simple sequence properties. BMC Bioinformatics. 2007;8:353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Bennett CF, Baker BF, Pham N, et al. Pharmacology of antisense drugs. Annu Rev Pharmacol Toxicol. 2017;57:81–105.

    Article  CAS  PubMed  Google Scholar 

  188. Bennett CF, Krainer AR, Cleveland DW. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu Rev Neurosci. 2019;42:385–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bennett CF. Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med. 2019;70:307–21.

    Article  CAS  PubMed  Google Scholar 

  190. Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222–9.

    Article  CAS  PubMed  Google Scholar 

  191. Zhou LY, Qin Z, Zhu YH, et al. Current RNA-based therapeutics in clinical trials. Curr Gene Ther. 2019;19(3):172–496.

    Article  PubMed  CAS  Google Scholar 

  192. Sergeeva OV, Koteliansky VE, Zatsepin TS. mRNA-based therapeutics – advances and perspectives. Biochemistry (Mosc). 2016;81(7):709–22.

    Article  CAS  Google Scholar 

  193. Weng Y, Li C, Yang T, et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv. 2020;40:107534.

    Article  CAS  PubMed  Google Scholar 

  194. Kanasty R, Dorkin JR, Vegas A, et al. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–77.

    Article  CAS  PubMed  Google Scholar 

  195. Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421–46.

    Article  CAS  PubMed  Google Scholar 

  196. Gavrilov K, Saltzman WM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med. 2012;85(2):187–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Velagapudi SP, Gallo SM, Disney MD. Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol. 2014;10(4):291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.

    Article  CAS  PubMed  Google Scholar 

  199. Smith CIE, Zain R. Therapeutic oligonucleotides: state of the art. Annu Rev Pharmacol Toxicol. 2019;59:605–30.

    Article  CAS  PubMed  Google Scholar 

  200. Goodchild J. Therapeutic oligonucleotides. Methods Mol Biol. 2011;764:1–15.

    Article  CAS  PubMed  Google Scholar 

  201. Hecker M, Wagner AH. Transcription factor decoy technology: a therapeutic update. Biochem Pharmacol. 2017;144:29–34.

    Article  CAS  PubMed  Google Scholar 

  202. Mohibi S, Chen X, Zhang J. Cancer the ‘RBP’ eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther. 2019;203:107390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lu Y, Xiao J, Lin H, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res. 2009;37:e24–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Wang Z. New concepts of miRNAi technologies. In: Wang Z, editor. MicroRNA interference technologies. Heidelberg: Springer; 2009.

    Chapter  Google Scholar 

  205. Wang Z. The concept of multiple-target anti-miRNA antisense oligonucleotides technology. Methods Mol Biol. 2011;676:51–7.

    Article  CAS  PubMed  Google Scholar 

  206. Wang Z. The concept of multiple-target anti-miRNA antisense oligonucleotides technology. In: Wu W, editor. MicroRNA and cancer. Totowa: Humana Press; 2011.

    Google Scholar 

  207. Gao H, Xiao J, Yang B, et al. A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anti-cancer effects. Mol Pharmacol. 2006;70:1621–9.

    Article  CAS  PubMed  Google Scholar 

  208. Wang X, Liu Q, Hou B, et al. Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells. PLoS One. 2013;8(9):e73942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Rad SM, Bamdad T, Sadeghizadeh M, et al. Transcription factor decoy against stem cells master regulators, Nanog and Oct-4: a possible approach for differentiation therapy. Tumour Biol. 2015;36(4):2621–9.

    Article  CAS  PubMed  Google Scholar 

  210. Swindell WR, Sarkar MK, Stuart PE, et al. Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clin Transl Med. 2015;4:13.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Johari B, Zargan J. Simultaneous targeted inhibition of Sox2-Oct4 transcription factors using decoy oligodeoxynucleotides to repress stemness properties in mouse embryonic stem cells. Cell Biol Int. 2017;41(12):1335–44.

    Article  CAS  PubMed  Google Scholar 

  212. Bigdelou Z, Mortazavi Y, Saltanatpour Z, et al. Role of Oct4-Sox2 complex decoy oligodeoxynucleotides strategy on reverse epithelial to mesenchymal transition (EMT) induction in HT29-ShE encompassing enriched cancer stem-like cells. Mol Biol Rep. 2020;47(3):1859–69.

    Article  CAS  PubMed  Google Scholar 

  213. Johari B, Rezaeejam H, Moradi M, et al. Increasing the colon cancer cells sensitivity toward radiation therapy via application of Oct4-Sox2 complex decoy oligodeoxynucleotides. Mol Biol Rep. 2020;47(9):6793–805.

    Article  CAS  PubMed  Google Scholar 

  214. Cheng MS, Su MX, Wang MX, et al. Probes and drugs that interfere with protein translation via targeting to the RNAs or RNA-protein interactions. Methods. 2019;167:124–33.

    Article  CAS  PubMed  Google Scholar 

  215. Baker JD, Uhrich RL, Strovas TJ, et al. Targeting pathological tau by small molecule inhibition of the poly(A): MSUT2 RNA-protein interaction. ACS Chem Neurosci. 2020;11(15):2277–85.

    Article  CAS  PubMed  Google Scholar 

  216. DeJong ES, Luy B, Marino JP. RNA and RNA-protein complexes as targets for therapeutic intervention. Curr Top Med Chem. 2002;2(3):289–302.

    Article  CAS  PubMed  Google Scholar 

  217. Hermann T. Strategies for the design of drugs targeting RNA and RNA-protein complexes. Angew Chem Int Ed Engl. 2000;39(11):1890–904.

    Article  CAS  PubMed  Google Scholar 

  218. Zhang Y, Jiao L, Sun L, et al. LncRNA ZFAS1 as a SERCA2a inhibitor to cause intracellular Ca2+ overload and contractile dysfunction in a mouse model of myocardial infarction. Circ Res. 2018;122(10):1354–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Evans BE, Rittle KE, Bock MG, et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem. 1988;31(12):2235–46.

    Article  CAS  PubMed  Google Scholar 

  220. Horton DA, Bourne GT, Smythe ML. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev. 2003;103(3):893–930.

    Article  CAS  PubMed  Google Scholar 

  221. Zhao H, Dietrich J. Privileged scaffolds in lead generation. Expert Opin Drug Discov. 2015;10(7):781–90.

    Article  CAS  PubMed  Google Scholar 

  222. Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol. 2010;14(3):347–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Yendapally R, Sikazwe D, Kim SS, et al. A review of phenformin, metformin, and imeglimin. Drug Dev Res. 2020;81(4):390–401.

    Article  CAS  PubMed  Google Scholar 

  224. Vamos M, Hohnloser SH. Amiodarone and dronedarone: an update. Trends Cardiovasc Med. 2016;26(7):597–602.

    Article  CAS  PubMed  Google Scholar 

  225. Shaveta S, Mishra S, Singh P. Hybrid molecules: the privileged scaffolds for various pharmaceuticals. Eur J Med Chem. 2016;124:500–36.

    Article  CAS  PubMed  Google Scholar 

  226. Li Y, Zhao C, Zhang J, et al. HybridMolDB: a manually curated database dedicated to hybrid molecules for chemical biology and drug discovery. J Chem Inf Model. 2019;59(10):4063–9.

    Article  CAS  PubMed  Google Scholar 

  227. Borsari C, Trader DJ, Tait A, et al. Designing chimeric molecules for drug discovery by leveraging chemical biology. J Med Chem. 2020;63(5):1908–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Meunier B. Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res. 2008;41(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  229. Xue H, Li J, Xie H, et al. Review of drug repositioning approaches and resources. Int J Biol Sci. 2018;14(10):1232–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.

    Article  CAS  PubMed  Google Scholar 

  231. Sertkaya A, Birkenbach A, Berlind A, et al. Examination of clinical trial costs and barriers for drug development, vol. 1. US Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation Report; 2014. p. 1–92.

    Google Scholar 

  232. Yeu Y, Yoon Y, Park S. Protein localization vector propagation: a method for improving the accuracy of drug repositioning. Mol BioSyst. 2015;11(7):2096–102.

    Article  CAS  PubMed  Google Scholar 

  233. Pharmaceutical Research and Manufacturers of America. http://www.phrma.org/sites/default/files/pdf/2015_phrma_profile.pdf.2015

  234. Drug Development Process. https://www.fda.gov/Drugs/default.htm

  235. Drug Approval Process. https://www.fda.gov/Drugs/DevelopmentApprovalProcess/default.htm

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Yang, B. (2022). Strategies of Polypharmacology. In: Polypharmacology. Springer, Cham. https://doi.org/10.1007/978-3-031-04998-9_2

Download citation

Publish with us

Policies and ethics