Skip to main content

Emerging Nanomaterials as Radio-Sensitizer in Radiotherapy

  • Chapter
  • First Online:
Harnessing Materials for X-ray Based Cancer Therapy and Imaging

Abstract

Radiotherapy has been involved in treating 50% of the cancer patients in the world and is based on the direct energy deposition into tumor tissues. The major constraint in radiotherapy is the adverse effect of deposited energy on the surrounded healthy tissues. The improved radiotherapeutic tactics involve the use of novel nanoparticles as radio-sensitizers. The nanoparticles, due to their high biocompatibility and optical properties, provide the enhanced localized damaging effect with the radiations targeted on the tumor site. There are different nanomaterials which offered enormous potential as radio-sensitizer and showed enhanced response with radiotherapy. In this chapter, we have discussed radio-sensitizing mechanisms and then different emerging nanomaterials being used as radio-sensitizer agents in radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malik A et al (2016) Role of natural radiosensitizers and cancer cell radioresistance: an update Anal Cell Pathol (Amst). 2016:6146595

    Google Scholar 

  2. Shetake NG, Kumar A, Pandey BN (1863) Iron-oxide nanoparticles target intracellular HSP90 to induce tumor radio-sensitization. Biochimica et Biophysica Acta (BBA) General Subjects 1863(5):857–869

    Google Scholar 

  3. Shinde NC, Keskar NJ, Argade PD (2012) Nanoparticles: advances in drug delivery systems. Res J Pharm Biol Chem Sci 3:922–929

    CAS  Google Scholar 

  4. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  Google Scholar 

  5. Shirai H et al (2013) Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation. Biochem Biophys Res Commun 435(1):100–106

    Article  CAS  Google Scholar 

  6. Yallapu MM et al (2010) Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 3(1):1–12

    Article  Google Scholar 

  7. Al Zaki A et al (2017) Increasing the therapeutic efficacy of radiotherapy using nanoparticles. Increasing the therapeutic ratio of radiotherapy. Springer, pp 241–265

    Chapter  Google Scholar 

  8. Zabihzadeh M, Arefian S (2015) Tumor dose enhancement by nanoparticles during high dose rate 192 Ir brachytherapy. J Canc er Res Therap 11(4):752

    Article  CAS  Google Scholar 

  9. Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood–brain barrier by nanoparticles. J Control Rel 161(2):264–273

    Article  CAS  Google Scholar 

  10. Gobet F et al (2006) Absolute energy distribution of hard x rays produced in the interaction of a kilohertz femtosecond laser with tantalum targets. Rev Sci Instrum 77(9):093302

    Article  Google Scholar 

  11. Choi J et al (2020) Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnol 18(1):1–23

    Article  Google Scholar 

  12. Fink R et al (1966) Atomic fluorescence yields. Rev Mod Phys 38(3):513

    Article  CAS  Google Scholar 

  13. Lu L et al (2021) High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy. Nano Energy 79:105437

    Article  CAS  Google Scholar 

  14. Begum M et al (2017) The effect of different dopant concentration of tailor-made silica fibers in radiotherapy dosimetry. Radiat Phys Chem 141:73–77

    Article  CAS  Google Scholar 

  15. Brivio D, Sajo E, Zygmanski P (2021) Gold nanoparticle detection and quantification in therapeutic MV beams via pair production. Phys Med Biol 66(6):064004

    Article  CAS  Google Scholar 

  16. Fathy MM (2020) Biosynthesis of silver nanoparticles using thymoquinone and evaluation of their radio-sensitizing activity. Bio Nano Science 10(1):260–266

    Google Scholar 

  17. Xu L et al (2020) Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10(20):8996–9031

    Article  CAS  Google Scholar 

  18. Yuan Y-G et al (2018) Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev 2018:6121328

    Article  Google Scholar 

  19. Pelletier M L et al (2018), Gold Nanoparticles in Radiotherapy and Recent Progress in Nanobrachytherapy. Adv. Healthcare Mater. 7(16): 1701460

    Google Scholar 

  20. Burrows ND et al (2016) Surface chemistry of gold nanorods. Langmuir 32(39):9905–9921

    Article  CAS  Google Scholar 

  21. Dinda E, Biswas M, Mandal TK (2011) morphological transition during reversible aqueous and organic phase transfer of gold nanostructures synthesized by tyrosine-based amphiphiles. J Phys Chem C 115(38):18518–18530

    Article  CAS  Google Scholar 

  22. Aizpurua J et al (2003) Optical properties of gold nanorings. Phys Rev Lett 90(5):057401

    Article  CAS  Google Scholar 

  23. Pedrosa P et al (2015) Gold nanotheranostics: proof-of-concept or clinical tool? Nanomaterials 5(4):1853–1879

    Article  CAS  Google Scholar 

  24. Mir M et al (2017) Nanotechnology: from In Vivo imaging system to controlled drug delivery. Nanoscale Res Lett 12(1):500

    Article  Google Scholar 

  25. Picardi G et al (2016) Spectral shift of the plasmon resonance between the optical extinction and absorption of gold and aluminum nanodisks. J Phys Chem C 120(45):26025–26033

    Article  CAS  Google Scholar 

  26. Carpin LB et al (2011) Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res Treat 125(1):27–34

    Article  CAS  Google Scholar 

  27. Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources. Phys Med Biol 54(16):4889–4905

    Article  CAS  Google Scholar 

  28. Alamzadeh Z et al (2020) Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur J Pharm Sci 145:105235

    Article  CAS  Google Scholar 

  29. Zhang X-D et al (2009) Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomed 4:165

    Article  CAS  Google Scholar 

  30. Hainfeld JF et al (2013) Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine 8(10):1601–1609

    Article  CAS  Google Scholar 

  31. Zhang Y et al (2019) Enhanced radiosensitization by gold nanoparticles with acid-triggered aggregation in cancer radiotherapy. Adv Sci 6(8):1801806

    Article  Google Scholar 

  32. Kotval PS, Venables JD, Calder RW (1972) The role of hafnium in modifying the microstructure of cast nickel-base superalloys. Metall Mater Trans B 3(2):457–462

    Article  Google Scholar 

  33. Chajon E et al (2018) A phase I/II trial of hafnium oxide nanoparticles activated by radiotherapy in hepatocellular carcinoma and liver metastasis. Ann Oncol 29:v92

    Article  Google Scholar 

  34. Kang AY, Lenahan PM, Conley JF (2002) The radiation response of the high dielectric-constant hafnium oxide/silicon system. IEEE Trans Nucl Sci 49(6):2636–2642

    Article  CAS  Google Scholar 

  35. Vargas M, Murphy NR, Ramana CV (2014) Tailoring the index of refraction of nanocrystalline hafnium oxide thin films. Appl Phys Lett 104(10):101907

    Article  Google Scholar 

  36. Modreanu M et al (2006) Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films. Appl Surf Sci 253(1):328–334

    Article  CAS  Google Scholar 

  37. Fadel M et al (1998) A study of some optical properties of hafnium dioxide (HfO2) thin films and their applications. Appl Phys A 66(3):335–343

    Article  CAS  Google Scholar 

  38. Curtis CE, Doney LM, Johnson JR (1954) Some properties of hafnium oxide, hafnium silicate, calcium hafnate, and hafnium carbide. J Am Ceramic Soc 37(10): 458–465

    Google Scholar 

  39. Babaei M, Ganjalikhani M (2014) The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. Bioimpacts 4(1):15–20

    CAS  Google Scholar 

  40. Bonvalot S et al (2019) NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol 20(8):pp 1148–1159

    Google Scholar 

  41. Buchwald ZS et al (2020) Tumor-draining lymph node is important for a robust abscopal effect stimulated by radiotherapy. J Immunother Cancer 8(2):e000867

    Article  Google Scholar 

  42. Shiryaeva ES et al (2019) Hafnium oxide as a nanoradiosensitizer under x-ray irradiation of aqueous organic systems: a model study using the spin-trapping technique and monte carlo simulations. J Phys Chem C 123(45):27375–27384

    Article  CAS  Google Scholar 

  43. Marill J, Mohamed Anesary N, Paris S (2019) DNA damage enhancement by radiotherapy-activated hafnium oxide nanoparticles improves cGAS-STING pathway activation in human colorectal cancer cells. Radiother Oncol 141: 262–266

    Google Scholar 

  44. Li Y et al (2020) Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. Biomaterials 226:119538

    Article  CAS  Google Scholar 

  45. Maggiorella L et al (2012) Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol 8(9):1167–1181

    Article  CAS  Google Scholar 

  46. Zhang P et al (2020) Radiotherapy-activated hafnium oxide nanoparticles produce abscopal effect in a mouse colorectal cancer model. Int J Nanomed 15:3843

    Article  CAS  Google Scholar 

  47. Le Tourneau C et al (2020) Phase I trial of hafnium oxide nanoparticles activated by radiotherapy in cisplatin-ineligible locally advanced HNSCC patients. American Society of Clinical Oncology

    Google Scholar 

  48. Chen R et al (2015) Parallel comparative studies on mouse toxicity of oxide nanoparticle- and gadolinium-based t1 mri contrast agents. ACS Nano 9(12):12425–12435

    Article  CAS  Google Scholar 

  49. Trapasso G et al (2021) What do we know about the ecotoxicological implications of the rare earth element gadolinium in aquatic ecosystems? Sci Total Environ 781:146273

    Article  CAS  Google Scholar 

  50. Che Ani N et al (2016) Investigation of the structural, optical and electrical properties of gadolinium-doped zinc oxide films prepared by sol-gel method. Adv Mater Res 1133:424–428

    Article  Google Scholar 

  51. Shamshad L et al (2017) A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Prog Nucl Energy 97:53–59

    Article  CAS  Google Scholar 

  52. Hammami S, Boudjada NC, Megriche A (2018) Structural study of europium doped gadolinium polyphosphates LiGd(PO3)4 and its effect on their spectroscopic, thermal, magnetic, and optical properties. Int J Anal Che 4371064

    Google Scholar 

  53. Ghaghada KB et al (2009) New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS ONE 4(10):e7628

    Article  Google Scholar 

  54. Liu A et al (2016) Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovas Imaging 9(1):27–36

    Google Scholar 

  55. Hao Y et al (2015) Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation. Phys Med Biol 60(18):7035–7043

    Article  CAS  Google Scholar 

  56. Arifin DR et al (2011) Trimodal gadolinium-gold microcapsules containing pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using US, CT, and positive-contrast MR imaging. Radiology 260(3):790–798

    Article  Google Scholar 

  57. Li F et al (2019) Ultra-small gadolinium oxide nanocrystal sensitization of non-small-cell lung cancer cells toward X-ray irradiation by promoting cytostatic autophagy. Int J Nanomed 14:2415–2431

    Article  CAS  Google Scholar 

  58. Kanick SC, Eiseman JL, Parker RS (2008) Pharmacokinetic modeling of motexafin gadolinium disposition in mouse tissues using optical pharmacokinetic system measurements. Photodiagn Photodyn Ther 5(4):276–284

    Article  CAS  Google Scholar 

  59. Kotb S et al (2016) Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: proof of concept before phase I trial. Theranostics 6(3):418–427

    Article  CAS  Google Scholar 

  60. Wu C et al (2020) Hyaluronic acid-functionalized gadolinium oxide nanoparticles for magnetic resonance imaging-guided radiotherapy of tumors. Nanoscale Res Lett 15(1):94

    Article  CAS  Google Scholar 

  61. BurduÈ™ A-C et al (2018) Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8(9):681

    Article  Google Scholar 

  62. Santoro CM, Duchsherer NL, Grainger DW (2007) Minimal in vitro antimicrobial efficacy and ocular cell toxicity from silver nanoparticles. NanoBiotechnology 3(2):55–65

    Article  CAS  Google Scholar 

  63. Pinchuk A et al (2004) Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15(12):1890–1896

    Article  CAS  Google Scholar 

  64. Wulandari P et al (2018) Surface plasmon resonance effect of silver nanoparticles on the enhanced efficiency of inverted hybrid organic–inorganic solar cell. J Nonlinear Opt Phys Mater 27(02):1850017

    Article  CAS  Google Scholar 

  65. Liu Z et al (2018) Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cells. Artificial Cells Nanomed Biotechnol 46(3):S922–S930

    Article  CAS  Google Scholar 

  66. Soliman YS (2014) Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat Phys Chem 102:60–67

    Article  CAS  Google Scholar 

  67. Salih NA (2013) The enhancement of breast cancer radiotherapy by using silver nanoparticles with 6 MeV gamma photons. Synthesis 26

    Google Scholar 

  68. Abdulwahid TA, Ali IJA (2019) Investigation the effect of silver nanoparticles on sensitivity enhancement ratio in improvement of adipose tissue radiotherapy using high energy photons. In: IOP conference series: materials science and engineering. IOP Publishing

    Google Scholar 

  69. Ruan J et al (2018) Graphene quantum dots for radiotherapy. ACS Appl Mater Interfaces 10(17):14342–14355

    Article  CAS  Google Scholar 

  70. Zhou T et al (2020) Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Appl Catal B 269:118776

    Article  CAS  Google Scholar 

  71. Li M et al (2019) Review of carbon and graphene quantum dots for sensing. ACS Sensors 4(7):1732–1748

    Article  CAS  Google Scholar 

  72. Iravani S, Varma RS (2020) Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots a review. Environm Chem Lett 18(3):703–727

    Article  CAS  Google Scholar 

  73. Wang J et al (2016) MoS2 quantum dot@ polyaniline inorganic–organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy. ACS Appl Mater Interfaces 8(37):24331–24338

    Article  CAS  Google Scholar 

  74. Juzenas P et al (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60(15):1600–1614

    Article  CAS  Google Scholar 

  75. Du F et al (2017) Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials 121:109–120

    Article  CAS  Google Scholar 

  76. Yong Y et al (2015) Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 9(12):12451–12463

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naveed Akhtar Shad or Yasir Javed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiran, I. et al. (2022). Emerging Nanomaterials as Radio-Sensitizer in Radiotherapy. In: Sharma, S.K., Nosrati, H., Kavetskyy, T. (eds) Harnessing Materials for X-ray Based Cancer Therapy and Imaging. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-031-04071-9_3

Download citation

Publish with us

Policies and ethics