Skip to main content

Regenerative Medicine Procedures Under Ultrasound Guidance

  • Chapter
  • First Online:
Musculoskeletal Ultrasound-Guided Regenerative Medicine

Abstract

Regenerative injection therapy is an evolving interventional treatment that provides alternative solutions for different musculoskeletal conditions. Recent advances in research and scientific knowledge  regarding  regenerative therapies for neuromusculoskeletal conditions have evolved from a mere alternative therapy to a more specific treatment of musculoskeletal conditions. In fact, the surge in research on regenerative medicine have shown the varied interest of different specialties on the potential of this treatment. The gap between conservative and surgical options has been bridged with the advent of this technology, allowing physicians to postpone an operative procedure in favor of this intervention with some operative procedures incorporating the use of regenerative therapies either to shorten the time of recovery or return to play especially for some elite athletes. Although this treatment modality has been challenged by some physicians and accepted by others, the amount of progress in the development of new approaches in the preparation, isolation, administration of regenerative products, and the understanding of its biologic mechanisms and molecular components shift the momentum in favor of its use as a modern tool for treating different musculoskeletal injuries. The lack of long-term efficacy of existing therapies also contributes to why there is an increasing interest in its use. In addition, patients and healthcare providers alike raise a common concern about the safety of oral medications for prolonged use in the presence of comorbidities. Thus, regenerative therapies, being an autologous source have the potential of providing the needed answer to these concerns with an added advantage of minimal safety issues, ease of administration and less immune reactions. Additionally, the advent of musculoskeletal ultrasound complements the procedure by its portability and dynamic feature. A better view of the target site makes it a point of care modality assuring both patients and physicians that the intended injection site with the regenerative solutions are precisely delivered. it also ensures that no vital structures were affected during the injection procedure. While it is true that regenerative injection therapy is a modern intervention used in addressing musculoskeletal conditions, the use of ultrasound is a much needed tool to ensure that the solution is delivered appropriately. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finnoff ND, Henning P, Hollman J, Smith J. Accuracy of ultrasound-guided versus unguided pes anserine bursa injections. PM & R. 2010;8:732–9.

    Article  Google Scholar 

  2. Hashiuchi T, Sakurai G, Morimoto M, Komei T, Yoshinori T, Tanaka Y. Accuracy of the biceps tendon sheath injection: ultrasound-guided or unguided injection? A randomized controlled trial. J Shoulder Elb Surg. 2011;20(7):1069–73.

    Article  Google Scholar 

  3. Peck E, Lai JK, Pawlina W, Smith J. Accuracy of ultrasound-guided versus palpation guided acromioclavicular joint injections: a cadaveric study. PM & R. 2010;2(9):817–21.

    Article  Google Scholar 

  4. Daley E, Bajaj S, Bisson L, Cole B. Improving injection accuracy of the elbow, knee, and shoulder; does injection site and imaging make a difference? A systematic review. Am J Sports Med. 2011;39:656–62.

    Article  PubMed  Google Scholar 

  5. Furtado RN, Pereira DF, Rodriguez da Luz K, dos Santos MF, Konal MS, SDV M, Rosenfeld A, ARC F, Natour J. Effectiveness of imaging-guided intraarcticular injection: a comparison study between fluoroscopy and ultrasound. Rev Bras Reumatol. 2013;53(6):476–82.

    Article  PubMed  Google Scholar 

  6. Koski JM, Hammer HB. Ultrasound-guided procedures: techniques and usefulness in controlling inflammation and disease progression. Rheumatology. 2012;51:731–5.

    Article  Google Scholar 

  7. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):638–46.

    Article  CAS  PubMed  Google Scholar 

  8. Anitua E. Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants. 1999;14(4):529–35.

    CAS  PubMed  Google Scholar 

  9. Mishra A, Pavelko T. Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am J Sports Med. 2006;34(11):1774–8.

    Article  PubMed  Google Scholar 

  10. Nguyen RT, Borg-stein J, McInnis K. Applications of platelet-rich plasma in musculoskeletal and sports medicine: an evidence-based approach. PM & R. 2011;3(3):226–50.

    Article  Google Scholar 

  11. Mishra A, Harmon K, Woodall J, Vieira A. Sports medicine applications of platelet-rich plasma. Curr Pharma Biotechnol. 2012;13(7):1185–95.

    Article  CAS  Google Scholar 

  12. Malanga GA, Goldin M. PRP: review of the current evidence for musculoskeletal conditions. Curr Phys Med Rehabil Rep. 2014;2:1–5.

    Article  Google Scholar 

  13. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10(4):225–8.

    Article  CAS  PubMed  Google Scholar 

  14. Cerciello S, Beitzel K, Howlett N, Russell RP, Apostolakos J, McCarthy MB, Cote MP, Mazzocca AD. The use of platelet-rich plasma preparations in the treatment of musculoskeletal injuries in orthopaedic sports medicine. Op Tech Orthop. 2013:23(2):69–74.

    Google Scholar 

  15. Oh JH, Kim W, Park KU, et al. Comparison of the cellular composition and cytokine-release kinetics of various platelet-rich plasma preparations. Am J Sports Med. 2015;43(12):3062–70.

    Article  PubMed  Google Scholar 

  16. Kevy S, Jacobson M, Mandle R. Defining the composition and healing effect of platelet-rich plasma. Presented at the Platelet-rich Plasma Symposium, New York, 5 Aug 2010.

    Google Scholar 

  17. Giusti RA, D’Ascenzo S, Millimaggi D, Pavan A, Dell’Orso L, Dolo V. Identification of an optimal concentration of platelet gel for promoting angiogenesis in human endothelial cells. Transfusion. 2009;49(4):771–8.

    Article  PubMed  Google Scholar 

  18. Foster TE, Puskas BL, Mendelbaum BR, et al. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37:2259–72.

    Article  PubMed  Google Scholar 

  19. Wasterlain AS, Braun HJ, Dragoo JL. Contents and formulations of platelet-rich plasma. Op Tech Orthop. 2012;22(1):33–42.

    Article  Google Scholar 

  20. Anitua E, Sanchez M, Nurden AT, Zalduendo MM, de la Fuente M, Azofra J, Andia I. Platelet-released growth factors enhance the secretion of hyaluronic acid and induce hepatocyte growth factor production by synovial fibroblasts from arthritic patients. Rheumatology. 2007;46(12):1769–72.

    Article  CAS  PubMed  Google Scholar 

  21. Jo CH, Kim JE, Yoon KS, Shin S. Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am J Sports Med. 2012;40(5):1035–45.

    Article  PubMed  Google Scholar 

  22. Braun HJ, Kim HJ, Chu CR, Dragoo JL. The effect of platelet-rich plasma formulations and blood products on human synoviocytes implications for intra-articular injury and therapy. Am J Sports Med. 2014;42(5):1204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fitzpatrick J, Bulsara MK, O’Donnell J, Zheng MH. Leucocyte-rich platelet-rich plasma treatment of gluteus medius and minimus tendinopathy: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med. 2019;47(5):1130–7.

    Article  PubMed  Google Scholar 

  24. Miroshnychenko O, Chang WT, Dragoo JL. The use of platelet-rich plasma and platelet-poor plasma to enhance differentiation of skeletal myoblasts: implications for the use of autologous blood products for muscle regeneration. Am J Sports Med. 2017;45(4):945–53.

    Article  PubMed  Google Scholar 

  25. Hooiveld M, Roosendaal G, Wenting MJG, van den Berg HM. Short-term exposure of cartilage to blood results in chondrocyte apoptosis. Am J Pathol. 2003;162(3):943–51.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roosendaal G, Vianen ME, Marx JJ, et al. Blood-induced joint damage: a human in vitro study. Arthritis Rheuma. 1999;42(5):1025–32.

    Article  CAS  Google Scholar 

  27. DeLong JM, Russell RP, Mazzocca AD. Platelet-rich plasma: the PAW classification system. Arthroscopy. 2012;28(7):998–1009.

    Article  PubMed  Google Scholar 

  28. Mautner K, Malanga GA, Smith J, Shiple B. A call for a standard classification system for future biologic research: the rationale for new PRP nomenclature. PM & R. 2015;7(4 Suppl):S53–9.

    Article  Google Scholar 

  29. Lana JF, Purita J, Paulus C, Huber SC, Rodrigues B, Rodrigues AA, Santana MH, Madureira JL, Luzo ACM, Belangero WD, Annichino-Bizzacchi JM. Contributions for classification of platelet-rich plasma--proposal of a new classification: MARSPILL. Regen Med. 2017;12(5):565–74.

    Article  CAS  PubMed  Google Scholar 

  30. Dohan Ehrenfest DM, Rasmussen L, et al. Classification of platelet concentrates; from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158–67.

    Article  CAS  PubMed  Google Scholar 

  31. Schippinger G, Pruller F, Divjak M, et al. Autologous platelet-rich plasma preparation influence of nonsteroidal anti-inflammatory drugs on platelet function. Orthop J Sports Med. 2015;3:6.

    Article  Google Scholar 

  32. Amaral R, Silva N, Haddad N, Lopes L, Ferreira F, Filho R, Cappelletti P, de Mello W, Cordeiro-Spinetti E, Balduino A. Platelet-rich plasma obtained with different anticoagulants and their effect on platelet numbers and mesenchymal stromal behavior in vitro. Stem Cells Int. 2016;2016:7414036.

    Google Scholar 

  33. Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review of author’s perspective. J Cutan Asthetic Surg. 2014;7(4):189–97.

    Article  Google Scholar 

  34. Smith J, Finnoff JT. Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundamentals PM & R. 2009;1(1):64–75.

    Google Scholar 

  35. Krobbuaban B, Diregpoke S, Prasan S, et al. Alcohol-based chlorhexidine vs. povidine iodine in reducing skin colonization prior to regional anesthesia procedure. J Med Assoc Thail. 2011;41(11):807–12.

    Google Scholar 

  36. Nazarian L, et al. AIUM practice guidelines for the performance of the musculoskeletal ultrasound examination. AIUM Practice Guidelines. 2007; 1–13.

    Google Scholar 

  37. Baima J, Isaac Z. Clean versus sterile technique for common joint injection: a review from the physiatry perspective. Curr Rev Musculoskelet Med. 2008;1:88–91.

    Article  PubMed  Google Scholar 

  38. Cohnheim J. Ueber entzu ndung und eiterung. Arch fu’r Pathol Anat und Physiol und fu’r Klin Med. 1867;40:1–79.

    Google Scholar 

  39. Murphy MB, Terrazas JA, Buford DA. Bone marrow concentrate and platelet-rich plasma acquisition and preparation. Tech Reg Anesth Pain Manag. 2015;19(1,2):19–25.

    Article  Google Scholar 

  40. Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplatation. 1974;17(4):331–40.

    Article  CAS  Google Scholar 

  41. Golpanian S, El-Khorazaty Y, Mendizabal A, DiFede DL, Suncion VY, Karantalis V, Fishman JE, Ghersin E, Balkan W, Hare JM. Effect of aging on human mesenchymal stem cell therapy in ischemic cardiomyopathy patients. J Am Coll Cardiol. 2015;65(2):125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Civin CI, Strauss LC, Brovali C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol. 1984;133(1):156–65.

    Google Scholar 

  43. Tindle RW, Nichols RA, Chan I, et al. A novel monoclonal antibody BI-3C5 recognises myeloblasts and non-B non-T lymphoblasts in acute leukemias and CGL blasts crises, and reacts with immature cells in normal bone marrow. Leuk Res. 1985;9(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  44. Thomas ED, Storb R, Cliff RA, et al. Bone-marrow transplantation. N Engl J Med. 1975;292(17):895–902.

    Article  CAS  PubMed  Google Scholar 

  45. Phillips RL, Reinhart AJ, Van Zant G. Genetic control of murine hematopoietic stem cell pool sizes and cycling kinetics. Proc Natl Acad Sci U S A. 1992;89:11607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Landsdorp PM, Dragowska W, Mayani H. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med. 1993;178:787–91.

    Article  Google Scholar 

  47. Nygren JM, Bryder D, Jacobsen SE. Prolonged cell cycle transit is a defining and developmentally conserved hemopoietic stem cell property. J Immunol. 2006;177:201–8.

    Article  CAS  PubMed  Google Scholar 

  48. Kim MJ, Kim MH, Kim SA, Chang JS. Age-related deterioration of hematopoietic stem cells. Int J Stem Cells. 2008;1(1):55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murphy MB, Moncivas K, Kaplan AI. Mesenchymal stem cells environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45(11):e54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  51. Horwitz EM, Andreef M, Frassoni F. Mesenchymal stromal cells. Curr Opin Hematol. 2006;13(6):419–25.

    Article  PubMed Central  Google Scholar 

  52. Friedenstein AK, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.

    CAS  PubMed  Google Scholar 

  53. Horwitz E, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–5.

    Article  CAS  PubMed  Google Scholar 

  54. Finnoff JT. Regenerative rehabilitative medicine for joints and muscles. Curr PM & R Rep. 2020;8:8–16.

    Google Scholar 

  55. Salamanna F, Contartese D, Aldini NN, Brodano GB, Griffoni C, Gasbarrini A, Fini M. Bone marrow aspirate clot: a technical complication or a smart approach for musculoskeletal regeneration? J Cell Physiol. 2018;233:2723–32.

    Article  CAS  PubMed  Google Scholar 

  56. Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from iliac crest, tibia and calcaneus. J Bone Joint Surg Am. 2013;95:1312–6.

    Article  PubMed  Google Scholar 

  57. Iman MA, Mahmoud SSS, Holton J, Abouelmaati D, Elsherbini Y, Snow M. A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in orthopedics. SICOT J. 2017;17(3):1–8.

    Google Scholar 

  58. Marx RE, Tursun R. A qualitative and quantitative analysis of autologous human multipotent adult stem cells derived from three anatomic areas by marrow aspiration: tibia, anterior ilium and posterior ilium. Int J Oral Maxillofac Implants. 2013;28(5):e290–4.

    Article  PubMed  Google Scholar 

  59. Fennema EM, Renard AJS, Leusink A, et al. The effect of bone marrow aspiration strategy on the yield and quality of human mesenchymal stem cells. Acta Orthop. 2009;80(5):618–21.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Muschler GF, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am. 1997;79(11):1699–709.

    Article  CAS  PubMed  Google Scholar 

  61. Batinic D, Marusic M, Pavletic Z, et al. Relationship between differing volumes of bone marrow aspirates and their cellular composition. Bone Marrow Transplant. 1990;6(2):103–7.

    CAS  PubMed  Google Scholar 

  62. Ehringer A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208(3):421–8.

    Article  CAS  Google Scholar 

  63. Scarpone M, Kuebler D, Harrell DB. Marrow cellution bone marrow aspiration system and related concentrations of stem and progenitor cells. Allegheny Health Network Annual Orthopedic Update. 2016;8-10.

    Google Scholar 

  64. Lamagna C, Bergers G. The bone marrow constitutes a reservoir of pericytes progenitors. J LeoKoc Biol. 2006;80(4):677–81.

    Article  CAS  Google Scholar 

  65. Caplan AI. All MSCs are pericytes? Cell Stem Cell. 2008;3(3):229–30.

    Article  CAS  PubMed  Google Scholar 

  66. Hong SJ, Traktuev DO. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 2010;15:86–91.

    Article  PubMed  Google Scholar 

  67. Kuhl T, Mezger M, Hausser I, et al. High local concentrations of intradermal MSCs restore skin integrity and facilitate wound healing in dystrophic epidermolysis bullosa. Mol Ther. 2015;23:1368–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Peng H, Huard J. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl Immunol. 2004;12:311–9.

    Article  CAS  PubMed  Google Scholar 

  69. Wang Y, Yu X, Chen E, et al. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther. 2016;7:71.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

    Article  CAS  PubMed  Google Scholar 

  71. Caplan AI. New MSCs: MSCs as pericytes are sentinels and gatekeepers. J Orthop Res. 2017;35:1151–9.

    Article  PubMed  Google Scholar 

  72. Murray IR, Peault B. Q & A: mesenchymal stem cells—where do they come from and is it important? BMC Biol. 2015;13:99.

    Google Scholar 

  73. Baily JE, Chen WC, Khan N, et al. Isolation of perivascular multipotent precursor cell populations from human cardiac tissue. J Vis Exp. 2016;116:e54252.

    Google Scholar 

  74. Esteves CL, Donadeu FX. Pericytes and their potential in regenerative medicine across species. Cytometry. 2018;93(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  75. Gokcinar-Yagci B, Uckan-Cetinkaya D, Celebi-Saltik B. Pericytes: properties, functions and applications in tissue engineering. Stem Cell Rev Rep. 2015;11(4):549–59.

    Article  CAS  PubMed  Google Scholar 

  76. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  77. Bowen JE. Technical issues in harvesting and concentrating stem cells (bone marrow and adipose). PM & R. 2015;7(4 suppl):S8–S18.

    Article  Google Scholar 

  78. Van Esch RW, Kool MM, van As S. NSAIDs can have adverse effects on bone healing. Med Hypothesis. 2003;81(2):343–6.

    Article  CAS  Google Scholar 

  79. Kitajama M, Shigematsu M, Ogawa K, Sugihara H, Hotokebuchi T. Effect of glucocorticoid on adipocyte size in human bone marrow. Med Mol Morphol. 2007;40:150–6.

    Article  CAS  Google Scholar 

  80. Lipworth BJ. Systemic adverse effects of inhaled corticosteroid therapy: a systematic review and meta-analysis. Arch Intern Med. 1999;159(9):941–55.

    Article  CAS  PubMed  Google Scholar 

  81. Ramos FJ, Kaeberlein M. A healthy diet for stem cells. Nature. Jun 2012;486:477–8.

    Article  CAS  PubMed  Google Scholar 

  82. Wilkinson AC, Yamazaki S. Hematopoietic stem cell diet. Int J of Hematol. 2018;107:634–41.

    Article  Google Scholar 

  83. Mana MD, Kuo EY, Yilmaz OH. Dietary regulation of adult stem cells. Curr Stem Cell Rep. 2017;3:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sittitavornwong S, Falconer DS, Shah R, et al. Anatomic considerations for posterior superior iliac crest bone procurement. J Oral Maxillofac Surg. 2013;71:1777–88.

    Article  PubMed  Google Scholar 

  85. Hernigou J, Picard L, Alves A, Silvera J, Homma Y. Understanding bone safety zones during bone marrow aspiration from the iliac crest: the sector rule. Int Orthop. 2014;38(11):2377–84.

    Article  PubMed  Google Scholar 

  86. Hernigou J, Alves A, Homma Y, Guissou I, Hernigou P. Anatomy of the ilium for bone marrow aspiration: map of sectors and implication for safe trocar placement. Int Orthop. 2014;38(12):2585–90.

    Article  PubMed  Google Scholar 

  87. Gronkjaer M, Hasselgren CF, Ostergaerd AS, Johansen P, Korup J, Bogsted M, Bilgrau AE, Jensen P. Bone marrow aspiration: a randomized controlled trial assessing the quality of bone marrow specimens using slow and rapid aspiration techniques and evaluating pain intensity. Acta Haematol. 2016;135(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  88. Vanhelleputte P, Nijs K, Delforge M, Evers G, Vanderschueren S. Pain during bone marrow aspiration: prevalence and prevention. J Pain Symptom Manag. 2003;26(3):860–6.

    Article  Google Scholar 

  89. Malanga GA, Ibrahim V (eds). Regenerative treatments in sports and orthopedic medicine. Springer Publishing Company; 2017.

    Google Scholar 

  90. Zehnder JL, Schrier S, Rosmarin AG. Bone marrow aspiration and biopsy: indications and technique. Website: http://www.uptodate.com/contents/bone-marrowaspiration-and-biopsy-indication-and-tec... 2011.

  91. Melampati S, Joshi S, Lai S, Braner DAV, Tegtmeyer K. Bone marrow aspiration and biopsy. N Engl J Med. 2009;361:e28.

    Article  Google Scholar 

  92. Miller HJ, Awad SS, Crosby CT, et al. Chlorhexidine-alcohol versus povidone-iodine for surgical site antisepsis. N Engl J Med. 2010;362:18–26.

    Article  PubMed  Google Scholar 

  93. Friedlis MF, Centeno CJ. Performing a better bone marrow aspiration. Phys Med Rehabil Clin N Am. 2016;27:919–39.

    Article  PubMed  Google Scholar 

  94. Rahnama R, Wang M, Dang AC, et al. Cytotoxicity of local anesthetics on human mesenchymal stem cells. J Bone Jt Surg. 2013;95(2):132–7.

    Article  Google Scholar 

  95. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217(2):318–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hernigou P, Matthieu G, Poignard A, et al. Percutaneous autologous bone marrow grafting for nonunions: surgical technique. J Bone Joint Surg Am. 2006;88(suppl 1):322–7.

    Article  PubMed  Google Scholar 

  97. Hernigou P, Homma Y, Flouzat Lachaniette CH, et al. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop. 2013;37(11):2279–87.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Glass GE, Ferretti P. Adipose-derived stem cells in aesthetic surgery. Aesth Surg J. 2019;39(4):423–38.

    Article  Google Scholar 

  99. Salgado AJBOG, Reis RLG, Sousa NJC, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  100. Arshad Z, Halioua-Haubold C, Roberts M, Fulvio U, Branford OA, Brindley DA, Davies BM, Pettitt D. Adipose-derived stem cells in asthetic surgery: a mixed methods evaluation of the current clinical trial, intellectual property, and regulatory landscape. Aesth Surg J. 2018;38(2):199–210.

    Article  Google Scholar 

  101. Zollino I, Zuolo M, Gianesini S, Pedriali M, Sibilla MG, Tessari M, Carinci F, Occhionorelli S, Zamboni P. Autologous adipose-derived stem cells: basic science, technique, and rationale for application in ulcer and wound healing. Phlebol. 2017;32(3):160–71.

    Article  Google Scholar 

  102. Nicoletti GF, De Francesco F, D’Andrea F, Ferraro GA. Methods and procedures in adipose stem cells: state of the art perspective for translational medicine. J Cell Physiol. 2015;230(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  103. Kokai L, Traktuev D, Zhang L, Merfeld-Clauss S, DiBernardo G, Lu H, Marra K, Donnenberg A, Donnenberg V, Meyer E, Fodor P, March K, Rubin J. Adipose stem cell function maintained with age: an intra-subject study of long-term cryopreserved cells. Aesthet Surg J. 2017;37(4):454–63.

    PubMed  Google Scholar 

  104. Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal /stem cells: a joint statement of the International Federation fir Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett. 2003;89(2–3):267–70.

    Article  PubMed  CAS  Google Scholar 

  106. Mitchell JB, McIntosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem-cell associated markers. Stem Cells. 2006;24(2):376–85.

    Article  PubMed  Google Scholar 

  107. Kern S, Eicher H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

  108. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Contributors V. (Brousseau Z.) Fundamentals of US Regulatory Affairs, 10th Ed. Rockville: Regulatory Affairs Professionals Society. 2017.

    Google Scholar 

  110. Rodbell M, Jones AB. J Biol Chem. 1966;241:40–142.

    Google Scholar 

  111. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008;45(2):115–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bjorntorp P, Karlsson H, Pertoft H, Pettersson P, Sjostrom U, Smith U. J Lipid Res. 1978;19(1978):316–24.

    Article  CAS  PubMed  Google Scholar 

  113. Padoin AV, Braga-Silva J, Martins P, et al. Sources of processed lipoaspirate cells: influence of donot site on cell concentration. Plast Reconstr Surg. 2008;122(2):614–8.

    Article  CAS  PubMed  Google Scholar 

  114. Lim AA, Fan K, Allam KA, et al. Autologous fat transplantation in the craniofacial patient: the UCLA experience. J Craniofac Surg. 2012;23(4):1061–6.

    Article  PubMed  Google Scholar 

  115. Choudhery MS, Badowski M, Muise A, et al. Subcutaneous adipose-derived stem cell utility is independent of anatomical harvest site. Biores Open Access. 2015;4(1):131–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jurgens WJFM, et al. Effect of tissue harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tiss Res. 2008;323(3):415–26.

    Article  Google Scholar 

  117. Klein JA. The tumescent technique: anesthesia and modified liposuction technique. Dermatol Clin. 1990;8:425–37.

    Article  CAS  PubMed  Google Scholar 

  118. Venkataram J. Tumescent liposuction: a review. J Cutan Aesth Surg. 2008;1(2):49–57.

    Article  Google Scholar 

  119. Trivisonno A, Di Rocco G, Cannistra C, Finocchi V, Farr ST, Monti M, Toietta G. Harvest of superficial layers of fat with a microcannula and isolation of adipose tissue-derived stromal and vascular cells. Aesthe Surg J. 2014;34(4):601–13.

    Article  Google Scholar 

  120. Doi K, Tanaka S, Lida H, et al. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. J Tissue Eng Regen Med. 2012;7(11):864–70.

    Article  PubMed  CAS  Google Scholar 

  121. Aronowitz J, Lockhart R, Hakakian C, Birnbaum Z. Adipose-derived vascular fraction isolation. Ann Plastic Surg. 2016;77(3):354–62.

    Article  CAS  Google Scholar 

  122. Van Dongen J, Harmsen M, Stevens H. Isolation of stromal vascular fraction by fractionation of adipose tissue. Methods Mol Biol. 1993;2020:91–103.

    Google Scholar 

  123. Tremolada C, Colombo V, Ventura C. Adipose tissue and mesenchymal stem cells: state of the art and Lipogems® technology development. Curr Stem Cell Rep. 2016;2(3):304–12.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Teimourian B, Rogers WB. A national survey of complications associated with suction lipectomy: a comparative study. Plast Reconstr Surg. 1989;84:628.

    Article  CAS  PubMed  Google Scholar 

  125. Ezzeddine H, Husari A, Nassar H, Kanso M, El Nounou G, Khalife M, Faraj W. Life threatening complications post-liposuction. Aesth Plast Surg. 2018;42:384–7.

    Article  Google Scholar 

  126. Grazer FM, de Jong RH. Fatal outcomes from liposuction: census survey of cosmetic surgeons. Plast Reconstr Surg. 2000;105(1):436–46.

    Article  CAS  PubMed  Google Scholar 

  127. Coldiron B, Coleman W, Cox SE, Jacob C, Lawrence N, Kaminer M, Narins RS. ASDS guidelines of care for tumescent liposuction. Liposuction Council Bull Dermatol Surg. 2006;32:709–16.

    Article  CAS  Google Scholar 

  128. Boni R. Safety of tumescent liposuction compared with liposuction in systemic sedation or general anesthesia—a review of the literature. Am J Cosm Surg. 2007;24(3):139–42.

    Article  Google Scholar 

  129. Klein JA, Jeske DR. Estimated maximal safe dosages of tumescent lidocaine. Anesth Analg. 2016;122(5):1350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Klein JA. Tumescent technique for regional anesthesia permits lidocaine doses of 35 mg/kg for liposuction. J Dermatol Surg Oncol. 1990;16:248–63.

    Article  CAS  PubMed  Google Scholar 

  131. Shoshani O, Berger J, Fodor L, et al. The effect of lidocaine and adrenaline on the viability of injected adipose tissue: an experimental study in nude mice. J Drugs Dermatol. 2005;4(3):311–6.

    PubMed  Google Scholar 

  132. Keck M, Zeyda M, Gollinger K, et al. Local anesthetics have a major impact on viability of preadipocytes and their differentiation into adipocytes. Plast Reconstr Surg. 2010;126(5):1500–5.

    Article  CAS  PubMed  Google Scholar 

  133. Tapon-Bretaudiere J, Bros A, Couture-Tose E, Delain E. Electron microscopy of the conformational changes of alpha-2-macroglobulin from human plasma. EMBO J. 1985;4(1):85–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. De Castro JC. Alpha-2-macroglobulin: the new weapon for neuropathic pains. J Anesth Pain Relief Manag. 2019; https://doi.org/10.31579/JAPM.2019/002.

  135. Rehman AA, Khan FH, Ahsan H. Alpha-2 macroglobulin: a physiological guardian. J Cell Physiol. 2013;228:16651675.

    Article  CAS  Google Scholar 

  136. Ritchie R, Palomaki G, Neveux L, Navolotskaia O, Ledue T, Craig W. Reference distributions for alpha 2-macroglobulin: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Analy. 2004;18(2):139–47.

    Article  CAS  Google Scholar 

  137. Becker C, Harpel P. Alpha-2-macroglobulin on human vascular endothelium. J Exp Med. 1976;144(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  138. Sottrup-Jensen L. In the plasma proteins. Academic Press. 1987;5:192–291.

    Google Scholar 

  139. Garcia-Ferrer I, Marrero A, Gomis-Ruth FX, Goulas T. Alpha-2-macroglobulins: structure and function. Subcell Biochem. 2017;83:149–83.

    Article  CAS  PubMed  Google Scholar 

  140. Cuellar JM, Cuellar VG, Gabrovsky V, Scuderi GJ. Alpha-2-macroglobulin: autologous protease inhibition technology. PM & R Clin N Am. 2016;27(4):9098–918.

    Google Scholar 

  141. Arandjelovic S, Dragojlovic N, Li X, Myers RR, Campana WM, Gonias SL. A derivative of the plasma protease inhibitor Alpha-2-macroglobulin regulates the response to peripheral nerve injury. J Neurochem. 2007;103(2):694–705.

    Article  CAS  PubMed  Google Scholar 

  142. Orhurhu V, Schwartz R, Potts J, Peck J, Urits I, Orhurhu MS, Odonkor C, Viswanath O, Kaye AD, Gill J. Role of alpha-2-macroglobulin in the treatment of osteoarthritic knee pain: a brief review of the literature. Curr Pain Headache Rep. 2020;24(3):9.

    Article  PubMed  Google Scholar 

  143. Li S, Xiang C, Wei X, Sun X, Li R, Li P, Sun J, Wei D, Chen Y, Zhang Y, Wei L. Early supplemental α2-macroglobulin attenuates cartilage and bone damage by inhibiting inflammation in collagen-II induced arthritis model. Int J Rheuma Dis. 2019;22(4):654–65.

    Article  CAS  Google Scholar 

  144. Huang B, Chen J, Zhang X, Wang J, Zheng Z, Shan Z, Liu J, Zhu Z, Zhao F. Alpha-2-macroglobulin as dual regulator for both anabolism and catabolism in the cartilaginous endplate of intervertebral disc. Spine (Phila Pa 1976). 2019;44(6):E338–47.

    Article  Google Scholar 

  145. Vincenzetti S, Pucciarelli S, Huang Y, Ricciutelli M, Lambertucci C, Volpini R, Scuppa G, Soverchia L, Ubaldi M, Polzonetti V. Biomarkers mapping of neuropathic pain in a nerve chronic constriction injury mice model. Biochimie. 2019;158:172–9.

    Article  CAS  PubMed  Google Scholar 

  146. Liu Y, Cao W, Kong X, Li J, Chen X, Ge Y, Zhong W, Fang S. Protective effects of α-2-macroglobulin on human bone marrow mesenchymal stem cells in radiation injury. Mol Med Rep. 2018;18(5):4219–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Myers RR, Sekiguchi Y, Kikuchi S, Scott B, Medicherla S, Protter A, Campana WM. Inhibition of p38 MAP kinase activity enhances axonal regeneration. Exp Neurol. 2003;184:606–14.

    Article  CAS  PubMed  Google Scholar 

  148. Nadeau S, Fillali M, Zhang J, Kerr BJ, Rivest S, Vaccari JPR, Keane RW, Lacroix S. Functional recovery after peripheral nerve injury is dependent on the proinflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosc. 2011;31-35:12533–42.

    Article  CAS  Google Scholar 

  149. Wagner R, Myers RR. Endoneurial injection of TNF-α produces neuropathic pain behaviours. Neuroreport. 1996;7:2867–901.

    Article  Google Scholar 

  150. Taskinen HS, Olsson T, Bucht A, Khademi M, Svelander L, et al. Peripheral nerve injury induces endoneurial expression of IFN-γ, IL-10, TNF-α, mRNA. J Neuroimmunol. 2000;102:17–25.

    Article  CAS  PubMed  Google Scholar 

  151. Shamash S, Reichert F, Rotschenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-α, interleukin-1α, and interleukin-1β. J Neurosci. 2002;22:3052–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Menge T, Jander S, Stoll G. Induction of the pro-inflammatory cytokine interleukin-18 by axonal injury. J Neurosci. 2001;65:332–9.

    CAS  Google Scholar 

  153. Reichert F, Levitzky R, Rotshenker S. Interleukin-6 in intact and injured mouse peripheral nerves. Eur J Neurosci. 1996;8:530–5.

    Article  CAS  PubMed  Google Scholar 

  154. Myers RR, Campana WM, Shubayev VL. The role of neuroinflammation in neuropathic pain; mechanisms and therapeutic targets. Drugs Disc Today. 2006;11:8–20.

    Article  CAS  Google Scholar 

  155. Dubovy P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat. 2011;193(4):267–75.

    Article  CAS  PubMed  Google Scholar 

  156. LaMarre J, Wollenberg GK, Gonias SL, Hayes MA. Cytokine binding and clearance properties of proteinase-activated α2-macroglobulins. Lab Investig. 1991;65(1):3–14.

    CAS  PubMed  Google Scholar 

  157. Webb DJ, Gonias SL. A modified human alpha-2-macroglobulin derivative that binds tumor necrosis factor-alpha and interleukin-1 beta with high affinity in vitro and reverses lipopolysaccharide toxicity in vivo in mice. Lab Investig. 1998;78:939–48.

    CAS  PubMed  Google Scholar 

  158. Gonias SL, Pizzo SV. Altered clearance of human alpha-2-macroglobulin complexes following reaction with cis-dichlorodiamineplatinum(II). Biochem Biophys Acta. 1981;678:268–74.

    Article  CAS  PubMed  Google Scholar 

  159. Benito MJ, Veale DJ, Fitzgerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheuma Dis. 2005;64:1263–7.

    Article  CAS  Google Scholar 

  160. Todhunter PG, Kincaid SA, Todhunter RJ, Kammerman JR, Johnstone B, Baird AN, Hanson RR, Wright JM, Lin HC, Purohit RC. Immunohistochemical analysis of an equine model of synovitis-induced arthritis. Am J Vet Res. 1996;57:1080–93.

    CAS  PubMed  Google Scholar 

  161. Lefebvre V, Pefers-Joris C, Vaes G. Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta. 1990;1052(3):366–78.

    Article  CAS  PubMed  Google Scholar 

  162. Clegg PD, Burke RM, Coughlan AR, Riggs CM, Carter SD. Characteristics of equine matrix metalloproteinase 2 and 9 and identification of the cellular sources of these enzymes in joints. Equine Vet J. 1997a;29:335–42.

    Article  CAS  PubMed  Google Scholar 

  163. Sutton S, Clutterbuck A, Harris P, Gent T, Freeman S, Foster N, Barrett-Jolly R, Mobasheri A. The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J. 2009;179(1):10–24.

    Article  CAS  PubMed  Google Scholar 

  164. Ohtori S, Inoue G, Miyagi M, et al. Pathomechanisms of discogenic low back pain in humans and animal models. Spine J. 2015;15(6):1347–55.

    Article  PubMed  Google Scholar 

  165. Saal J, Saal JS. Nonoperative treatment of herniated lumbar intervertebral disc with radiculopathy: an outcome study. Spine (Phila Pa 1976). 1989;14:431–7.

    Article  CAS  Google Scholar 

  166. Tetlow LC, Adlam DJ, Wooley DE. Matrix metalloproteinases and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44(3):585–94.

    Article  CAS  PubMed  Google Scholar 

  167. Baker JF, Walsh PM, Byrne DP, Mulhall KJ. Pravastatin suppresses matrix metalloproteinase expression and activity in human articular chondrocytes stimulated by interkeukin-1β. J Orthop Traumatol. 2012;13(3):119–23.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Garnero P, Landewe R, Chapurlat RD. The role of biochemical markers of joint tissue remodeling to predict progression and treatment efficacy in inflammatory rheumatic diseases. Rheuma. 2020;0:1–11.

    Google Scholar 

  169. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev. 2011;7(1):33–42.

    CAS  Google Scholar 

  170. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10(1):45–65.

    Article  CAS  PubMed  Google Scholar 

  171. Huang T, Wu C, Yu J, Sumi S, Yang K. I-lysine regulates tumor necrosis factor-alpha and matrix metalloproteinases-3 expression in human osteoarthritic chondrocytes. Process Biochem. 2016;51(7):904–11.

    Article  CAS  Google Scholar 

  172. Larsson S, Englund M, Struglics A, Lohmander LS. Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy. Osteoarth Cart. 2015;23:1906–14.

    Article  CAS  Google Scholar 

  173. Schulze-Tanzil G, Al-Sadi O, Wiegand E, et al. The role of proinflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scand J Med Sci Sports. 2011;21:337–51.

    Article  CAS  PubMed  Google Scholar 

  174. Chen W, Jin G, Xiong Y, Hu P, Bao J, Wu L. Rosmarinic acid down-regulated=s NO and PGE2 expression via MAPK pathway in rat chondrocytes. J Cell Mol Med. 2018;22(1):346–53.

    Article  CAS  PubMed  Google Scholar 

  175. Asghar S, Litherland GJ, Lockhart JC, Goodyear CS, Crilly A. Exosomes in intercellular communication and implications for osteoarthritis. Rheuma. 2020;59(1):57–68.

    CAS  Google Scholar 

  176. Goldring SR, Goldring MB. Clinical aspects, pathology and pathophysiology of osteoarthritis. J Musculoskelet Neuronal Interact. 2006;6:376–8.

    CAS  PubMed  Google Scholar 

  177. Zhang S, Chuah SJ, Lai RC, et al. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27.

    Article  CAS  PubMed  Google Scholar 

  178. Wang S, Wei X, Zhou J, Zhang J, Li K, Chen Q, Terek R, Fleming BC, Goldring MB, Ehrlich MG, Zhang G, Wei L. Identification of α2-macroglobulin as a master inhibitor of cartilage-degrading factors that attenuates the progression of posttraumatic osteoarthritis. Arthritis Rheumatol. 2014;66(7):1843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tortorella MD, Arner EC, Hills R, Easton A, Korte-Sarfaty J, Fok K, et al. α2-macroglobulin is a novel substrate for ADAMTS-5 and represents and endogenous inhibitor of these enzymes. J Biol Chem. 2004;279:7554–61.

    Article  CAS  Google Scholar 

  180. Luan Y, Kong L, Howell DR, Ilalov K, Fajardo M, Bai XH, et al. Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by α2-macroglobulin. Osteoarthr Cartil. 2008;16:1413–20.

    Article  CAS  Google Scholar 

  181. Kang JD, Georgescu HI, McIntyre-Larkin L, et al. Herniated lumbar intervertebral discs spontaneously produced matrix metalloproteinases, nitric oxide, interleukin-6 and prostaglandin-E2. Spine. 1996;21:271–7.

    Article  CAS  PubMed  Google Scholar 

  182. Smith MW, Ith A, Carragee EJ, Cheng I, Alamin TF, Golish SR, Mitsunaga K, Scuderi GJ, Smuck M. Does the presence of the fibronectin-aggrecan complex predict outcomes from lumbar discectomy for disc herniation? Spine J. 2019;19(2):e28–33.

    Article  PubMed  Google Scholar 

  183. Lynch TS, O’Connor M, Minkara AA. Biomarkers for femoroacetabular impingement and hip osteoarthritis. Am J Sports Med. 2019;47(9):2242–50.

    Article  PubMed  Google Scholar 

  184. Zhang Y, Wei X, Browning S, Scuderi G, Hanna LS, Wei L. Targeted designed variants of alpha-2-macroglobulin attenuate cartilage degeneration in a rat model of osteoarthritis induced by anterior cruciate ligament transection. Arthritis Res Ther. 2017;19:75.

    Article  CAS  Google Scholar 

  185. Latypov RF, Harvey TS, Liu D, Bondarenko PV, Kohno T, Fachini RA II, Rosenfield RD, Ketchem RR, Brems DN, Raibekas AA. Biophysical characterization of structural proteins and folding of interleukin-1 receptor antagonist. J Mol Biol. 2007;368:1187–201.

    Article  CAS  PubMed  Google Scholar 

  186. Eisenberg SP, Evans RJ, Arend WP, Verderber E, Brewer MT, Hannum CH, Thompson RC. Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist. Nature. 1990;343:341–6.

    Article  CAS  PubMed  Google Scholar 

  187. Thierry L, Vittecoq O, le Loet X. What is role of interleukin-1 receptor antagonist in rheumatic disease? Joint Bone Spine. 2007;74(3):223–6.

    Article  Google Scholar 

  188. Dinarello CA, Thompson RC. Blocking IL-1: interleukin-1 receptor antagonist in vivo and in vitro. Immunol Today. 1991;12(11):4040–410.

    Article  Google Scholar 

  189. Corradi A, Bajetto A, Cozzolino F, Rubartelli A. Production and secretion of interleukin-1 receptor antagonist in monocytes and keratinocytes. Cytotechnology. 1993;11:S50–2.

    Article  CAS  PubMed  Google Scholar 

  190. Bresnihan B. The safety and efficacy of interleukin-receptor antagonist in the treatment of rheumatoid arthritis. Sem Arthritis Rheuma. 2001;30(5):17–20.

    Article  CAS  Google Scholar 

  191. Vittecoq O, Jacquot S, Jouen-Beades F, Pouplin S, Thomas M, Dutot I, et al. Potential diagnostic value of IL-1RA production by whole blood cells from community-recruited patients with very early arthritis. Results of the VErA study. Arthritis Rheuma. 2003;48(Suppl):542.

    Google Scholar 

  192. O’Shaughnessey K, Matuska A, Hoeppner J, et al. Autologous protein solution prepared from the blood of osteoarthritic patients contains an enhanced profile of anti-ibflammatory cytokines and anabolic growth factors. J Orthop Res. 2014;32(10):1349–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Ghivizzani S, Gouze E, Watson R, Saran J, Kay K, Bush M, Levings P, Gouze J. Interleukin-1 in rheumatoid arthritis: its inhibition by interleukin-1Ra and Anakinra. J Pharm Tech. 2007;23(2):86–94.

    Article  CAS  Google Scholar 

  194. Sims JE, Gayle MA, Slack JL, et al. Interleukin-1 signaling occurs exclusively via the type I receptor. Proc Natl Acad Sci U S A. 1993;90:6155–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wesche H, Korherr C, Kracht M, Falk W, Resch K, Martin MU. The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J Biol Chem. 1997;272:7727–31.

    Article  CAS  PubMed  Google Scholar 

  196. Colotta F, Dower SK, Sims JE, Montovani A. The type II ‘decoy’ receptor: a novel regulatory pathway for interleukin-1. Immunol Today. 1994;15:562–6.

    Article  CAS  PubMed  Google Scholar 

  197. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87:2095–147.

    Article  CAS  PubMed  Google Scholar 

  198. Gouze JN, Gouze E, Palmer GD, et al. A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer. Arthritis Res Ther. 2003;5:301–9.

    Article  Google Scholar 

  199. Evans CH, Chevalier X, Wehling P. Autologous conditioned serum. Phys Med Rehabil Clin N Am. 2016;27:893–908.

    Article  PubMed  Google Scholar 

  200. Bresnihan B, Alvaro-Gracia JM, Cobby M, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheuma. 1998;41:2196–204.

    Article  CAS  Google Scholar 

  201. Schiff M. Durability and rapidity of response to anakinra in patients with rheumatoid arthritis. Drugs. 2012;64(22):2493–501.

    Article  Google Scholar 

  202. Fleischman R, Schechtman J, Bennett R, Handel M, Burmester G, Tesser J, Modafferi D, Poulakos J, Sun G. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHulL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheuma. 2003;48(4):927–34.

    Article  CAS  Google Scholar 

  203. Dinesh P, Rasool M. Multifaceted role of interleukin-21 in rheumatoid arthritis: current understanding and future perspective. J Cell Physiol. 2018;233(5):3918–28.

    Article  CAS  PubMed  Google Scholar 

  204. Chevalier X, Giraudeau B, Conrozier T, et al. Safety study of intraarticular injection of interleukin-1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J Rheumatol. 2005;32:1317–23.

    CAS  PubMed  Google Scholar 

  205. Chevalier X, Goupille P, Beaulieu AD, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2009;61:344–52.

    Article  CAS  PubMed  Google Scholar 

  206. Bacconnier L, Jorgensen C, Fabre S. Erosive osteoarthritis of the hand: clinical experience with anakinra. Ann Rheum Dis. 2009;68:1078–9.

    Article  CAS  PubMed  Google Scholar 

  207. Cavalli G, Dinarello C. Treating rheumatological diseases and comorbidities with interleukin-1 blocking therapies. Rheumatology. 2015;54(12):2134–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Magalon J, Bausset O, Veran J, Giraudo L, Serratrice N, Magalon G, Dignat-George F, Sabatier F. Physico-chemical factors influencing autologous conditioned serum purification. Biores Open Access. 2014;3(1):35–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Arend WP, Leung DY. IgG induction of IL-1 receptor antagonist production by human monocytes. Immunol Rev. 1994;139:71–8.

    Article  CAS  PubMed  Google Scholar 

  210. Meijer H, Reinecke J, Becker C, Tholen G, Wehling P. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm Res. 2003;52:404–7.

    Article  CAS  PubMed  Google Scholar 

  211. Granowitz EV, Clark BD, Mancilla J, Dinarello CA. Interleukin-1 receptor antagonist competitively inhibits the binding of interleukin-1 to the type II interleukin-1 receptor. J Biol Chem. 1991;266:14147–50.

    Article  CAS  PubMed  Google Scholar 

  212. Wehling P, Moser C, Frisbie D, et al. Autologous conditioned serum in the treatment of orthopedic diseases: the orthokine therapy. BioDrugs. 2007;21(5):323–32.

    Article  CAS  PubMed  Google Scholar 

  213. Hannum CH, Wilcox CJ, Arend WP, et al. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature. 1990;343:336–40.

    Article  CAS  PubMed  Google Scholar 

  214. Carter DB, Deibel MR Jr, Dunn CJ, et al. Purification, cloning, expression, and biological characterization of an interleukin-1 receptor antagonist protein. Nature. 1990;344:633–8.

    Article  CAS  PubMed  Google Scholar 

  215. Rutgers M, Saris DB, Dhert WJA, Creemers LB. Cytokine profile of autologous conditioned serum for treatment of osteoarthritis, in vitro effects on cartilage metabolism and intra-articular levels after injection. Arthritis Res Ther. 2010;12:R114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Auw Yang KG, Raijmakers NJH, Van Arkel ERA, Caron JJ, Rijk PC, Willems WJ, et al. Autologous interleukin-1 receptor antagonist improves function and symptoms in osteoarthritis when compared to placebo in a prospective randomized controlled trial. Osteoarthr Cartil. 2008;16:498–505.

    Article  CAS  Google Scholar 

  217. Baltzer AWA, Moser C, Jansen SA, Krauspe R. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthr Cartil. 2009;17:152–60.

    Article  CAS  Google Scholar 

  218. Zarringam D, Bekkers J, Saris D. Long term effect of injection treatment for osteoarthritis in the knee by Orthokin autologous conditioned serum. Cartilage. 2018;9(2):140–5.

    Article  CAS  PubMed  Google Scholar 

  219. Strumper R. Intraarticular injections of autologous conditioned serum to treat pain from meniscal lesions. Sports Med Int Open. 2017;1(6):E200–5.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Baselga GEJ, Miguel HTP. Treatment of osteoarthritis with a combination of autologous conditioned serum and physiotherapy: a two-year observational study. PLoS One. 2015;10(12):e0145551.

    Google Scholar 

  221. Wehling P, Evans C, Wehling J, Maixner W. Effectiveness of intraarticular therapies in osteoarthritis: a literature review. Therap Adv Musculoskel Dis. 2017;9(8):183–96.

    Article  Google Scholar 

  222. Darabos N, Hundric-Haspl Z, Haspl M, Markotic A, Darabos A, Moser C. Correlation between synovial fluid and serum IL-1β levels after ACL surgery: a preliminary report. Int Orthop. 2008;33(2):413–8.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Cameron M, Buchgraber A, Passler H, Vogt M, Thonar E, Fu F, Evans CH. The natural history of anterior ligament deficient knee. Changes in synovial fluid cytokine and keratan sulfate concentrations. Am J Sports Med. 1997;25:751–4.

    Article  CAS  PubMed  Google Scholar 

  224. Marks P, Cameron M. Inflammatory cytokine profiles correlate with the degree of chondrosis in the chronic anterior cruciate ligament deficient knee. ACL study meeting. 2000; Rhodes, Greece.

    Google Scholar 

  225. Darabos N, Haspl M, Moser C, et al. Intraarticular application of autologous-conditioned serum (ACS) reduces bone tunnel widening after ACL reconstructive surgery in a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2011;19(Suppl):536–46.

    Google Scholar 

  226. Genc E, Beytemur O, Yuksel S, Eren Y, Caglar A, Kucukyildirim B, Gulec M. Investigation of the biomechanical and histopathological effects of autologous conditioned serum on healing of achilles tendon. Acta Orthop Traumatol Turc. 2018;52(3):226–31.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Muller S, Quirk N, Muller-Lebschi J, Heisterbach P, Durselen L, Majewski M, Evans C. Response of the injured tendon to growth factors in the presence or absence of paratenon. Am J Sports Med. 2019;47(2):462–7.

    Article  PubMed  Google Scholar 

  228. Majewski M, Ochsner PE, Liu F, et al. Accelerated healing of the rat Achilles tendon in response to autologous conditioned serum. Am J Sports Med. 2009;37(11):2117–25.

    Article  PubMed  Google Scholar 

  229. Goni VG, Singh Jhala S, Gopinathan NR, et al. Efficacy of epidural perineural injection of autologous conditioned serum in unilateral cervical radiculopathy: a pilot study. Spine. 2015;40:E915–21.

    Article  PubMed  Google Scholar 

  230. Becker C, Heidersdorf S, Drewlo S, de Rodriguez SZ, Kramer J, Wilburger RE. Efficacy of epidural injections with autologous conditioned serum for lumbar radicular compression: an investigator-initiated, prospective, double-blind, reference-controlled study. Spine. 2007;32:1803–8.

    Article  PubMed  Google Scholar 

  231. Ravi Kumar HS, Goni VG, Batra YK. Autologous conditioned serum as a novel alternative option in the treatment of unilateral lumbar radiculopathy: a prospective study. Asian Spine J. 2015;9:916–22.

    Article  Google Scholar 

  232. Wright-Carpenter T, Klein P, Schaferhoff P, Appell H, Mir L, Wehling P. Treatment of muscle injuries by local administration by autologous conditioned serum: a pilot study on sportsmen with muscle strains. Int J Sports Med. 2005;25(8):588–93.

    Article  Google Scholar 

  233. Wright-Carpenter T, Opolon P, Appell H, Meijer H, Wehling P, Mir L. Treatment of muscle injuries by local administration by autologous conditioned serum: animal experiments using a muscle contusion model. Int J Sports Med. 2005;25(8):582–7.

    Article  Google Scholar 

  234. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26(3):355–69.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Sakellariou V, Poultsides LA, Ma Y, et al. Risk assessment for chronic pain and patient satisfaction after total knee arthroplasty. Orthopedics. 2016;39(1):55–62.

    Article  PubMed  Google Scholar 

  236. Singh J. Epidemiology of knee and hip arthroplasty: a systematic review. Open Orthop J. 2011;5:80–5.

    Article  PubMed  PubMed Central  Google Scholar 

  237. De Girolamo L, Kon E, Filardo G, Marmotti AG, Soler F, Peretti GM, Vannini F, Madry H, Chubinskaya S. Regenerative approaches for the treatment of early OA. Knee Surg Sports Traumatol Arthrosc. 2016;24:1826–35.

    Article  PubMed  Google Scholar 

  238. Crane DM, Oliver KS, Bayes MC. Orthobiologics and knee osteoarthritis: a recent literature review, treatment algorithm, and pathophysiology discussion. Phys Med Rehabil Clin N Am. 2016;27:985–1002.

    Article  PubMed  Google Scholar 

  239. Mascarenhas R, Saltzman B, Fortier L, et al. Role of platelet-rich plasma in articular cartilage injury and disease. J Knee Surg. 2014;28(1):3–10.

    Article  PubMed  Google Scholar 

  240. Block TJ, Garza JR. Regenerative cells for the management of osteoarthritis and joint disorders: a concise literature review. Aesth Surg J. 2017;37(53):S9–S15.

    Article  Google Scholar 

  241. Chang KV, Hung CY, Aliwarga F, et al. Comparative effectiveness of platelet-rich plasma injections for treating knee joint cartilage degenerative pathology: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2014;95(3):562–75.

    Article  PubMed  Google Scholar 

  242. Riboh JC, Saltzman BM, Yanke AB, et al. Effect of leucocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am J Sports Med. 2016;44(3):792–800.

    Article  PubMed  Google Scholar 

  243. Souzdalnitski D, Narouze S, Lerman I, Calodney A. Platelet-rich plasma injections for knee osteoarthritis: systematic review of duration of clinical benefits. Tech Reg Anesth Pain Manag. 2015;19(1):67–72.

    Article  Google Scholar 

  244. Yan W, Xu X, Xu Q, Sun Z, Jiang Q, Shi D. Platelet-rich plasma in combination with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: a 6-month follow-up. Regen Biomater. 2020;7(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  245. Dallari D, Stagni C, Rani N, et al. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized-controlled study. Am J Sports Med. 2016;44(3):664–71.

    Article  PubMed  Google Scholar 

  246. Singh JR, Haffey P, Valimahomed A, Gelhorn AC. The effectiveness of autologous platelet-rich plasma for osteoarthritis of the hip: a retrospective analysis. Pain Med. 2019;20(8):1611–8.

    Article  PubMed  Google Scholar 

  247. Zuk PAM, Zhu H, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz P, Hedrick H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue. 2001;7:211–28.

    Article  CAS  Google Scholar 

  248. Cho H, Kim H, Kim Y, Kim K. Recent clinical trials in adipose-derived stem cell-mediated osteoarthritis treatment. Biotechnol Bioproc. 2020;24(6):839–53.

    Article  CAS  Google Scholar 

  249. Sun Y, Chen S, Pei M. Comparative advantages of infrapatellar fat pad: an emerging stem cell source for regenerative medicine. Rheumatology. 2018;57(12):2072–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O’Connor MI. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate for knee osteoarthritis. Am J Sports Med. 2017;45(1):82–90.

    Article  PubMed  Google Scholar 

  251. Centeno C, Pitts J, Al-Sayegh H, Freeman M. Efficacy of autologous bone marrow concentrate for knee osteoarthritis with or without adipose graft. Biomed Res Int. 2014; 370621.

    Google Scholar 

  252. Law L, Hunt CL, Nassr A, Larson AN, Eldrige JS, Mauck WD, Pingree MJ, Yang J, Muir CW, Erwin PJ, Bydon M, Qu W. Office-based mesenchymal stem cell therapy for the treatment of musculoskeletal diseases: a systematic review of recent human studies. Pain Med. 2019;20(8):1570–83.

    Article  PubMed  Google Scholar 

  253. Tsaipalis D, Zeugolis D. Hypoxia preconditioning of bone marrow stem cells before implantation in orthopedics. Am J Orthop Surg. 2019;27(23):e1040–2.

    Article  Google Scholar 

  254. Kokubo M, Sato M, Yamato M, Mitani G, Uchiyama Y, Mochida J, Okano T. Characterization of layered chondrocyte sheets created in a co-culture system with synviocytes in a hypoxic environment. J Tiss Eng Regen Med. 2017;11(10):2885–94.

    Article  CAS  Google Scholar 

  255. Tiku ML, Sabaawy HE. Cartilage regeneration for treatment of osteoarthritis: a paradigm for non-surgical intervention. Ther Adv Musculoskel Dis. 2015;7(3):76–87.

    Article  CAS  Google Scholar 

  256. Siddiqui AJ, Mazzola TJ, Shiple BJ. Techniques for performing regenerative procedures for orthopedic conditions. Regen Treat Sports Orthop Conditions. 2018:221–56.

    Google Scholar 

  257. Sharma P, Maffulli N, Maffulli N. Tendon structure biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact. 2006;6:181–90.

    CAS  PubMed  Google Scholar 

  258. Sakabe T, Sakai T. Musculoskeletal diseases—tendon. Br Med Bull. 2011;99:211–25.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Chisari E, Rehak L, Khan WS, Maffulli N. Tendon healing in presence of chronic low-level inflammation: a systematic review. Br Med Bull. 2019;132:97–116.

    Article  CAS  PubMed  Google Scholar 

  260. Abate M, Gravare-Silbernagel K, Siljeholm C, et al. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther. 2009;11:235.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Hammerman M, Blomgram P, Dansac A, et al. Different gene response to mechanical loading during early and late phases of rat Achilles tendon healing. J Appl Physiol. 2017;123:800–15.

    Article  CAS  PubMed  Google Scholar 

  262. Hammerman M, Dietrich-Zagonel F, Blomgran P, et al. Different mechanisms activated by mild versus strong loading in rat achilles tendon healing. PLoS One. 2018;13:e0201211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Hammerman M, Aspenberg P, Eliasson P. Microtrauma stimulates rat Achilles tendon healing via an early gene expression pattern similar to mechanical loading. J Appl Phyiol. 2014;116:54–60.

    Article  Google Scholar 

  264. Schepull T, Aspenberg P. Early controlled tension improves the material properties of healing human achilles tendon after ruptures: a randomized trial. Am J Sports Med. 2013;41:2550–7.

    Article  PubMed  Google Scholar 

  265. Rack P, Ross H. The tendon of flexor pollicis longus: its effect on the muscular control of force and position at the human thumb. J Physiol. 1984;351:99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Bruns J, Kampen J, Kahrs J, Plitz W. Achilles tendon rupture: experimental results in spontaneous repair in a sheep-model. Knee Surg Sports Traumatol Arthrosc. 2000;8:364–9.

    Article  CAS  PubMed  Google Scholar 

  267. Geremia GM, Bobbert MF, Casa Nova M, Ott RD, Lemos Fde A, Lupion Rde O, et al. The structural and mechanical properties of the Achilles tendon 2 years after surgical repair. Clin Biomech (Bristol, Avon). 2015;30:485–92.

    Article  Google Scholar 

  268. Brown MN, Shiple BJ, Scarpone M. Regenerative approaches to tendon and ligament conditions. Phys Med Rehabil Clin N Am. 2016;27:941–84.

    Article  PubMed  Google Scholar 

  269. Petersen W, Tillman B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol (Berl). 1999;200(3):325–44.

    Article  CAS  Google Scholar 

  270. Robi K, Jakob N, Matevz K, Matjaz B. The physiology of sports injuries and repair processes. In: Hamlin M, Draper N, Kathiravel Y, editors. Current issues in sports and exercise medicine. London: IntechOpen; 2013.

    Google Scholar 

  271. Galatz L, Ball C, Teefey S, et al. The outcome and repair of integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86:219–24.

    Article  PubMed  Google Scholar 

  272. Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current progress in tendon and ligament tissue engineering. Tissue Eng Regen Med. 2019;16(6):549–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Fleming B, Hulstyn M, Oksendahl HL, et al. Ligament injury, reconstruction and osteoarthritis. Curr Opin Orthop. 2005;16(5):354–62.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Bosch G, Van Shie H, de Groot M, et al. Effects of platelet-rich plasma on the quality of repair of mechanically induced core lesions in equine superficial digital flexor tendons: a placebo-controlled experimental study. J Orthop Res. 2010;28:211–7.

    CAS  PubMed  Google Scholar 

  275. Sanchez M, Albillos J, Angulo F, Santisteban J, Andia I. Platelet-rich plasma in muscle and tendon healing. Oper Tech Orthop. 2012;22(1):16–24.

    Article  Google Scholar 

  276. Hurley ET, Lim Fat D, Moran CJ, Mullet H. The efficacy of platelet-rich plasma and platelet-rich fibrin in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Am J Sports Med. 2019;47(3):753–61.

    Article  PubMed  Google Scholar 

  277. Liddle AD, Rodriguez-Merchan C. Platelet-rich plasma in the treatment of patellar tendinopathy: a systematic review. Am J Sports Med. 2015;43(10):2583–90.

    Article  PubMed  Google Scholar 

  278. Ben-Nafa W, Munro W. The effect of corticosteroid versus platelet-rich plasma injection therapies for the management of lateral epicondylitis: a systematic review. SICOT-J. 2018;4:11.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Mishra AK, Skrepnik NV, Edwards SG, Jones JL, Sampsons S, Vermillion DA, et al. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med. 2014;42(2):463–71.

    Article  PubMed  Google Scholar 

  280. Fitzpatrick J, Bulsara M, Zheng M. The effectiveness of platelet-rich plasma in the treatment of tendinopathy: a meta-analysis of randomized controlled clinical trial. Am J Sports Med. 2017;45(1):226–33.

    Article  PubMed  Google Scholar 

  281. Clark NJ, Desai VS, Dines JD, Morrey ME, Camp CL. Nonreconstruction options for treating medial ulnar collateral ligament of the elbow in overhead athletes. Curr Rev Musculosket Med. 2018;11(1):48–54.

    Article  Google Scholar 

  282. Dines JS, Williams PN, ElAttrache N, Conte S, Ahmad CS, et al. Platelet-rich plasma can be used to successfully treat elbow ulnar collateral ligament insufficiency in high-level throwers. Am J Orthop. 2016;45(5):296–300.

    PubMed  Google Scholar 

  283. Vogrin M, Rupreht M, Crnjac A, Dinevski D, Krajnc C, Recnik G. The effect of platelet-derived growth factors on stability after anterior cruciate ligament reconstruction: a prospective randomized clinical study. Wien Klin Wochenschrift. 2010;122(S2):91–5.

    Article  CAS  Google Scholar 

  284. Di Matteo B, Loibl M, Andriolo L, et al. Biologic agents for anterior cruciate ligament healing: a systematic review. World J Orthop. 2016;7(9):592–603.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Walters B, Porter D, Hobart S, Bedford B, Hogan D, McHugh M, Klein D, Harousseau K, Nicholas S. Effect of intra-operative platelet-rich plasma treatment on post-operative donor site knee pain in patellar tendon autograft anterior cruciate ligament reconstruction: a double-blind randomized controlled trial. Am J Sports Med. 2018;46(8):1827–35.

    Article  PubMed  Google Scholar 

  286. Kia C, Baldino J, Bell R, Ramji A, Uyeki C, Mazzocca A. Platelet-rich plasma: review of current literature on its use for tendon and ligament pathology. Curr Rev Musculosket Med. 2018;11(4):566–72.

    Article  Google Scholar 

  287. Leong N, Kator J, Clemens T, James A, Enamoto-Iwamoto M, Jiang J. Tendon and ligament healing and current approaches to tendon and ligament regeneration. J Orthop Res. 2020;38(1):7–12.

    Article  PubMed  Google Scholar 

  288. Fu Y, Karbaat L, Wu L, et al. Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng Part B Rev. 2017;23:515–28.

    Article  CAS  PubMed  Google Scholar 

  289. Walia B, Huang A. Tendon stem progenitor cells: understanding the biology to inform therapeutic strategies for tendon repair. J Orthop Res. 2019;37(6):1270–80.

    Article  PubMed  Google Scholar 

  290. Mautner K, Blazuk J. Where do injectable stem cell treatments apply in treatment of muscle, tendon and ligament injuries? PM & R. 2016;7(4 suppl):S33–40.

    Google Scholar 

  291. Mei-Dan O, Kots E, Barchilon V, et al. A dynamic ultrasound examination for the diagnosis of ankle syndesmotic injury in professional athletes. Am J Sports Med. 2009;37(5):1009–16.

    Article  PubMed  Google Scholar 

  292. Gutierrez M. Ultrasound-guided procedures in rheumatology: what is the evidence? J Clin Rheumatol. 2015;21(4):201–10.

    Article  PubMed  Google Scholar 

  293. Thain L, Adler R. Sonography of the rotator cuff and biceps tendon: technique, normal anatomy, and pathology. J Clin Ultrasound. 1999;27(8):446–58.

    Article  CAS  PubMed  Google Scholar 

  294. Malanga GA, Axtman M, Mautner KR. The rationale and evidence for performing ultrasound-guided injections. Atlas Ultrasound-guided Musculoskel Inject. 2014:18–22.

    Google Scholar 

  295. Wilson JJ, Lee KS, Chamberlain C, DeWall R, Baer GS, Greatens M, Kamps N. Intratendinous injections of platelet-rich plasma: feasibility and effect on tendon pathology and mechanics. J Exp Orthop. 2015;2(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Rossi LA, Romoli ARM, Altiere BAB, Flor JAB, Scordo WE, Elizondo CM. Does platelet-rich plasma decrease time to return to sports in acute muscle tear? A randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25:3319–25.

    Article  PubMed  Google Scholar 

  297. Ekstrand J, Hagglund M, Walden M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–32.

    Article  PubMed  Google Scholar 

  298. Hallen A, Ekstrand J. Return to play following muscle injuries in professional footballers. J Sports Sci. 2014;32(13):1229–36.

    Article  PubMed  Google Scholar 

  299. Ahmad CS, Redler LH, Ciccotti MG, Maffuli N, Longo UG, Bradley J. Evaluation and management of hamstring injuries. Am J Sports Med. 2013;41(12):2933–47.

    Article  PubMed  Google Scholar 

  300. Wong S, Ning A, Lee C, Feeley B. Return to sports after muscle injury. Curr Rev Musculoskelet Med. 2015;8(2):168–75.

    Article  PubMed  PubMed Central  Google Scholar 

  301. Boppart MD, De Lisio M, Zou K, Huntsman HD. Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise. Front Physiol. 2013;4:310.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Motahashi N, Asakura A. Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol. 2014;2:1.

    Google Scholar 

  303. Karalaki M, Fili S, Philippou A, Koutsilieres M. Muscle regeneration: cellular and molecular events. In Vivo. 2009;23(5):779–96.

    CAS  PubMed  Google Scholar 

  304. Perandini L, Chimin P, Lutkemeyer D, Camara N. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? Febs J. 2018;285(11):1973–84.

    Article  CAS  PubMed  Google Scholar 

  305. Yumiko O, Ichiro M. Macrophages in inflammation, repair and regeneration. Int Immunol. 2018;30:11.

    Google Scholar 

  306. Gilbert-Honick J, Grayson W. Vascularized and innervated skeletal muscle tissue engineering. Adv Healthc Mater. 2020;9(1):1–27.

    Article  CAS  Google Scholar 

  307. Corona BT, Wenke JC, Ward CL. Cells Tissues Organs. 2016;202:180.

    Article  PubMed  Google Scholar 

  308. Yosef B, Zhou Y, Mouschouris K, Poteracki J, Soker S, Criswell T. N-acetyl-L-cysteine reduces fibrosis and improves muscle function after acute compartment syndrome injury. Military Med. 2020;185(Suppl1):25–34.

    Article  Google Scholar 

  309. Amthor H, Nicolas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, Patel K. Follistatin complexes myostatin and antagonizes myostatin-mediated inhibition of myogenesis. Dev Biol. 2004;270:19–30.

    Article  CAS  PubMed  Google Scholar 

  310. Wong A, Pomerantz J. The role of muscle stem cells in regeneration and recovery after denervation: a review. Plast Reconstr Surg. 2019;143(3):779–88.

    Article  CAS  PubMed  Google Scholar 

  311. Grassi A, Napoli F, Romandini I, Samuelsson K, Zaffagnini S, Candrian C, Filardo G. Is platelet-rich plasma (PRP) effective in the treatment of acute muscle injuries? A systematic review and meta-analysis. Sports Med. 2018;48(4):971–89.

    Article  PubMed  Google Scholar 

  312. Setayesh K, Villarreal A, Gottschalk A, Tokish J, Choate W. Treatment of muscle injuries with platelet-rich plasma: a review of the literature. Curr Rev Musculoskelet Med. 2018;11(4):635–42.

    Article  PubMed  PubMed Central  Google Scholar 

  313. Ziegler C, Van Sloun R, Gonzalez S, Whitney K, DePhillipo N, Kennedy M, Dornan G, Evans T, Huard J, LaPrade R. Characterization of growth factors, cytokines and chemokines in bone marrow concentrate and platelet-rich plasma: a prospective analysis. Am J Sports Med. 2019;47(9):2174–87.

    Article  PubMed  Google Scholar 

  314. Gang EJ, Darabi R, Bosnakovski D, et al. Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery. Exp Cell Res. 2009;315:2624–36.

    Article  CAS  PubMed  Google Scholar 

  315. Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem-cell based strategies for skeletal muscle regeneration. J Orthop Res. 2019;37(6):1246–62.

    Article  PubMed  Google Scholar 

  316. Hamid AM, Mohamed Ali MR, Yusof A, et al. Platelet- rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial. Am J Sports Med. 2014;42(10):2410–8.

    Article  Google Scholar 

  317. Park P, Cai C, Bawa P, Kumaravel M. Platelet-rich plasma vs. steroid injections for hamstring injury: is there really a choice? Skelet Radiol. 2018;48(4):577–82.

    Article  Google Scholar 

  318. Arner J, Lawyer T, Mauro C, Bradley J. Platelet-rich plasma shortens return to play in National Football League (NFL) Players with acute hamstring injuries. Orthop J Sports Med. 2019;7(7 suppl 5):1.

    Google Scholar 

  319. Gaballah A, Elgeidi A, Bressel E, Shakrah N, Abd-Alghany A. Rehabilitation of hamstring strains: does a single injection of platelet-rich plasma improve outcomes? (Clinical Study). Sports Sci Health. 2018;14(2):439–47.

    Article  Google Scholar 

  320. Manduca M, Straub S. Effectiveness of PRP injection in reducing recovery time of acute hamstring injury: a critically appraised topic. J Sport Rehabil. 2018;27(5):4870–484.

    Article  Google Scholar 

  321. Hamilton B, Tol JL, Almusa E, et al. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomized controlled trial. Br J Sports Med. 2015;49(14):943–50.

    Article  PubMed  Google Scholar 

  322. Bradley JP, Lawyer TJ, Ruef S, Towers JD, Arner JW. Platelet-rich plasma shortens return to play in National Football League Players with acute hamstring injuries. Orthop J Sports Med. 2020;8(4):1–5.

    Google Scholar 

  323. Evangelidis P, Massey G, Ferguson R, Wheeler P, Pain M, Folland J. The functional significance of hamstrings composition: is it really a “fast” muscle group? Scand J Med Sci Sports. 2017;27(11):1181–9.

    Article  PubMed  Google Scholar 

  324. Bentzen R, Ma O, Herzka A. Point of care ultrasound diagnosis of proximal hamstring rupture. J Emerg Med. 2018;54(2):225–8.

    Article  Google Scholar 

  325. Peterson J, Thorborg K, Nielsen M, Skjodt T, Bolvig L, Bang N, Holmich P. The diagnostic and prognostic value of ultrasonography in soccer players with acute hamstring injuries. Am J Sports Med. 2014;42(2):399–404.

    Article  Google Scholar 

  326. Hall M. Return to play after thigh muscle injury: utility of serial ultrasound in guiding clinical progression. Curr Sports Med Rep. 2018;17(9):296–301.

    Article  PubMed  Google Scholar 

  327. Alzahrani M, Aldebeyan S, Abduljabbar F, Martineau P. Hamstring injuries in athletes: diagnosis and treatment. JBJS Rev. 2015;3(6):11.

    Article  Google Scholar 

  328. Chu S, Rho M. Hamstring injuries in the athlete: diagnosis, treatment and return to play. Curr Sports Med Rep. 2016;15(3):184–90.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Kubrova E, van Wijnen A, Qu W. Spine disorders and regenerative rehabilitation. Curr Physical Med Rehabil Rep. 2020;8(1):30–6.

    Article  Google Scholar 

  330. Sakai D, Andersson G. Stem cell therapy for intervertebral disk regeneration: obstacles and solutions. Nat Rev Rheumatol. 2015;11(4):243–56.

    Article  PubMed  Google Scholar 

  331. Hicks GE, Morone N, Weiner DK. Degenerative lumbar disk and facet disease in older adults: prevalence and clinical correlates. Spine (Phila Pa 1976). 2009;34(12):1301–6.

    Article  Google Scholar 

  332. Theis KA, Roblin DW, Helmick CG, Luo R. Prevalence and cause of work disability among work-age US adults, 2011-2013. NHIS Disabil Health J. 2018;11(1):108–15.

    Article  PubMed  Google Scholar 

  333. Jensen TS, Albert HB, Soerensen JS, et al. Natural course of disc morphology in patients with sciatica: an MRI study using a standardized qualitative classification system. Spine (Phila Pa 1976). 2006;31(14):1606–12.

    Article  Google Scholar 

  334. Sowa G. Using biology to define optimal treatments for low back pain opportunities for physiatrists. Am J Phys Med Rehabil. 2013;92(10):841–8.

    Article  PubMed  Google Scholar 

  335. Bogduk M. Clinical anatomy of the lumbar spine and sacrum. 4th ed. New York: Elsevier; 2005. p. 147–8.

    Google Scholar 

  336. Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK. Intervertebral disk degeneration and repair. Neurosurgery. 2017;80(3S):S46–54.

    Article  PubMed  PubMed Central  Google Scholar 

  337. Mascarinas A, Harrison J, Boachie-Adjie K, Lutz G. Regenerative treatments for spinal conditions. Phys Med Rehabil Clin N Am. 2016;27:1003–17.

    Article  PubMed  Google Scholar 

  338. Wang S, Chang Q, Lu J, Wang C. Growth factors and platelet-rich plasma: promising biological strategies for early intervertebral disc degeneration. Int Orthop. 2015;39(5):927–34.

    Article  PubMed  Google Scholar 

  339. Le Maitre CL, Richardson SM, Baird P, et al. Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc. J Pathol. 2005;207:445–52.

    Article  PubMed  CAS  Google Scholar 

  340. Vadala G, Sowa G, Hubert M, Gilbertson L, Denaro V, Kang J. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tiss Engg Regen Med. 2012;6(5):348–55.

    Article  CAS  Google Scholar 

  341. Zhao L, Manchikanti L, Kaye A, Abd-Elsayed A. Treatment of discogenic low back pain: current treatment strategies and future options—a literature review. Curr Pain Headache Rep. 2019;23(11):1–9.

    Article  Google Scholar 

  342. Livshits V, Popham M, Malkin I, et al. Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: the UK twin spine study. Ann Rheum Dis. 2011;70(10):1740–5.

    Article  PubMed  Google Scholar 

  343. Kalichman L, Hunter DJ. The genetics of intervertebral disc degeneration. Familial disposition and heritability estimation. Joint Bone Spine. 2008;75(4):383–7.

    Article  PubMed  Google Scholar 

  344. Liuke M, Solovieva S, Lamminen A, et al. Disk degeneration of the lumbar spine in relation to overweight. Int J Obes. 2005;29(8):903–8.

    Article  CAS  Google Scholar 

  345. Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5S.

    Article  CAS  PubMed  Google Scholar 

  346. Valimahomed A, Haffey P, Urman R, Kaye A, Yong R. Regenerative techniques for neuraxial back pain: a systematic review. Curr Pain Headache Rep. 2019;23(3):1–11.

    Article  Google Scholar 

  347. Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The prevalence and clinical features of internal disc disruption in patients with low back pain. Spine. 1995;20(17):1878–83.

    Article  CAS  PubMed  Google Scholar 

  348. Peng B, Fu X, Pang X, Li D, Liu W, Gao C, et al. Prospective clinical study on natural history of discogenic low back pain at 4 years of follow-up. Pain Physician. 2012;15:525–32.

    Article  PubMed  Google Scholar 

  349. Schol J, Sakai D. Cell therapy for intervertebral disc herniation and degenerative disc disease: clinical trials. Int Orthop. 2018;43(4):1011–25.

    Article  PubMed  Google Scholar 

  350. Nguyen TH, Randolph DC, Talmage J, Succop P, Travis R. Long term outcomes of lumbar fusion among workers’ compensation subjects: a historical cohort study. Spine. 2011;36(4):320–31.

    Article  PubMed  Google Scholar 

  351. Monfett M, Harrison J, Boachie-Adjei K, Lutz G. Intradiscal platelet-rich plasma (PRP) injections for discogenic low back pain: an update. Int Orthop. 2016;40(6):1321–8.

    Article  PubMed  Google Scholar 

  352. Burnham T, Conger A, Tate Q, Cushman D, Kendall R, Schneider B, McCormick Z. The effectiveness and safety of percutaneous platelet-rich plasma and bone marrow aspirate concentrate for the treatment of suspected of discogenic low back pain: a comprehensive review. Curr Phys Med Rehabil Rep. 2019;7(4):372–84.

    Article  Google Scholar 

  353. Levi D, Horn S, Tyszko S, Levin J, Hecht-Leavitt C, Walko E. Intradiscal platelet-rich plasma injection for chronic discogenic low back pain: preliminary results from a prospective trial. Pain Med. 2016;17(6):1010–22.

    PubMed  Google Scholar 

  354. Urits I, Viswanath O, Galasso A, Sottosani E, Mahan K, Aiudi C, Kaye A, Orhurhu V. Platelet-rich plasma for the treatment of low back pain: a comprehensive review. Curr Pain Headache Rep. 2019;23(7):1–11.

    Article  Google Scholar 

  355. Singla B, Batra Y, Bharti N, Goni V, Marwaha N. Steroid versus platelet-rich plasma in ultrasound-guided sacroiliac joint injection for chronic low back pain. Pain Pract. 2017;17(6):782–91.

    Article  PubMed  Google Scholar 

  356. Pairuchvej S, Muljadi J, Arirachakaran A, Kongtharvonskul J. Efficacy of platelet-rich plasma in posterior lumbar interbody fusion: systematic review and meta-analysis. Eur J Orthop Surg Traumatol. 2020;30(4):583–93.

    Google Scholar 

  357. Kim H, Yeom J, Koh Y, Yeo J, Kang K, Kang Y, Chang B, Lee C. Anti-inflammatory effect of platelet-rich plasma on nucleus pulposus cells with response of TNF-α and IL-1. J Orthop Res. 2014;32(4):551–6.

    Article  CAS  PubMed  Google Scholar 

  358. Montesano PX, Cuellar JM, Scuderi GJ. Intradiscal injection of an autologous alpha-2-macroglobulin (A2M) concentrate alleviates back pain in FAC-positive patients. Orthop Rheumatol. 2017;4(2):555634.

    Google Scholar 

  359. Dimitroulas T, Lambe T, Raphael JH, Kitas GD, Duarte RV. Biologic drugs as analgesics for the management of low back pain and sciatica. Pain Med. 2019;20(9):1678–86.

    Article  PubMed  Google Scholar 

  360. Takahashi K, Ohtori S. Perspectives of treatment of low back pain. Glob Spine J. 2017;4(1_suppl):s-0034.

    Google Scholar 

  361. Ohtori S, Miyagi M, Inoue G. Sensory nerve ingrowth, cytokines, and instability of discogenic low back pain: a review. Spine Surg Relat Res. 2018;2(1):11–7.

    Article  PubMed  PubMed Central  Google Scholar 

  362. Takahashi K, Aoki Y, Ohtori S. Resolving discogenic pain. Eur Spine J. 2008;17(4):428–31.

    Article  PubMed  PubMed Central  Google Scholar 

  363. Ohtori S, Aoki Y, Orita S. Pain generators and pathways of degenerative disc disease. Lumbar Spine Online Textbook. JBJS. Section 2, Chapter 4. 2018.

    Google Scholar 

  364. Urits I, Capuco A, Sharma M, Kaye A, Viswanath O, Cornett E, Orhurhu V. Stem cell therapies for treatment of discogenic low back pain: a comprehensive review. Pain Headache Rep. 2019;23(9):1–12.

    Google Scholar 

  365. Oehmi D, Goldschlager T, Rosenfeld J, Ghosh P, Jenken G. The role of stem cell therapies in degenerative lumbar spine disease: a review. Neurosurg Rev. 2015;38(3):429–45.

    Article  Google Scholar 

  366. Feng G, Zhao X, Liu H, Zhang H, Chen X, Shi R, et al. Transplantation of mesenchymal stem cells and nucleus pulposus cells in a degenerative disc model in rabbits: a comparison of 2 cell types as potential candidates for disc regeneration. J Neurosurg Spine. 2011;14(3):322–9.

    Article  PubMed  Google Scholar 

  367. Henriksson HB, Svanvik T, Jonsson M, Hagman M, Horn M, Lindahl A, et al. Transplantation of human mesenchymal cells into intervertebral discs in a xenogeneic porcine model. Spine (Phila Pa 1976). 2009;34(2):141–8.

    Article  Google Scholar 

  368. Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K, et al. Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res. 2008;26(5):589–600.

    Article  CAS  PubMed  Google Scholar 

  369. Vadala G, Russo F, Musumeci M, D’Este M, Cattani C, Catanzaro G, et al. Clinically relevant hydrogel-based on hyaluronic acid and platelet-rich plasma as a carrier for mesenchymal stem cells: rheological and biological characterization. J Orthop Res. 2017;35(10):2109–16.

    Article  CAS  PubMed  Google Scholar 

  370. Vadala G, Sowa G, Hubert M, Gilbertson L, Denaro V, Kang G. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tiss Engg Regen Med. 2012;6(5):348–55.

    Article  CAS  Google Scholar 

  371. Wangler S, Peroglio M, Menzel U, Benneker L, HaglunD L, Sakai D, Alini M, Grad S. Mesenchymal stem cell homing into intervertebral discs enhances the tie-2 positive progenitor cell population, prevents cell death, and induces a proliferative response. Spine. 2019;44(23):1613–22.

    Article  PubMed  PubMed Central  Google Scholar 

  372. Colombini A, Ceriani C, Banfi G, et al. Fibrin in intervertebral disc tissue engineering. Tissue Eng Part B Rev. 2014;20(6):713–21.

    Article  CAS  PubMed  Google Scholar 

  373. Yin W, Pauza K, Olan W, Doerzbacher J, Thorne K. Intradiscal injection of fibrin sealant for the treatment of symptomatic lumbar internal disc disruption: results of a prospective multicenter pilot study with 24-month follow up. Pain Med. 2014;15(1):16–31.

    Article  PubMed  Google Scholar 

  374. Zhang C, Berven SH, Fortin M, et al. Adjacent segment degeneration versus disease after lumbar spine fusion for degenerative pathology: a systematic review with meta-analysis of the literature. Clin Spine Surg. 2016;29(1):21–9.

    Article  PubMed  Google Scholar 

  375. Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87(5):381–5.

    Article  PubMed  Google Scholar 

  376. Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol. 2011;24:577–83.

    Article  CAS  PubMed  Google Scholar 

  377. Stoll G, Jander S, Myers RR. Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripheral Nerve Syst. 2002;7:13–27.

    Article  Google Scholar 

  378. Deumens R, Bozkurt A, Meek MF, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol. 2010;92(3):245–76.

    Article  PubMed  Google Scholar 

  379. Carr MJ, Johnston AP. Schwann cells as drivers of tissue repair and regeneration. Curr Opin Neurobiol. 2017;47:52–7.

    Article  CAS  PubMed  Google Scholar 

  380. Ide C. Peripheral nerve regeneration. Neurosci Res. 1996;25:101–21.

    Article  CAS  PubMed  Google Scholar 

  381. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.

    Article  PubMed  PubMed Central  Google Scholar 

  382. Webber C, Zochodne D. The nerve regenerative microenvironment: early behavior and partnership of axons and Schwann cells. Exp Neurol. 2010;223:51–9.

    Article  CAS  PubMed  Google Scholar 

  383. Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14:67–116.

    Article  CAS  PubMed  Google Scholar 

  384. Schneidt P, Friede RL. Myelin phagocytosis in Wallerian degeneration. Properties of millipore diffusion chambers and immunohistochemical identification of cell populations. Acta Neuropathol. 1987;75:77–84.

    Google Scholar 

  385. Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130(5):605–18.

    Article  CAS  PubMed  Google Scholar 

  386. Shin Y, Gu X, Zhang R, Qian T, Li S, Yi S. Biological characteristics of dynamic expression of nerve regeneration related to growth factors in dorsal root ganglia after peripheral nerve injury. Neural Regen Res. 2020;15(8):1502–9.

    Article  Google Scholar 

  387. Seddon HJ. Peripheral nerve injuries. Medical Research Council. Medical Report Series 282. London: Her Majesty’s Stationery Office; 1954.

    Google Scholar 

  388. Sunderland S. Rate of regeneration of I: sensory fibers and II: motor fibers. Arch Neurol Psychiatr. 1947;58:1–14.

    Article  CAS  Google Scholar 

  389. Gordon T. Electrical stimulation to enhance axon regeneration after peripheral nerve injuries in the animal models and humans. Neurotherapeutics. 2016;13(2):295–310.

    Article  PubMed  PubMed Central  Google Scholar 

  390. Colloca L, Ludman T, Bouhassira D, Baron R, et al. Neuropathic pain. Nat Rev Dis Primers. 2017;16(3):17002.

    Article  Google Scholar 

  391. Miclescu A, Straamann A, Gkatziani P, Butler S, Karlsten R, Gordh T. Chronic neuropathic pain after traumatic peripheral nerve injuries in the upper extremity: prevalence, demographic and surgical determinants, impact on health and on pain medications. Scand J Pain. 2019;20(1):95–108.

    Article  PubMed  Google Scholar 

  392. Yu W, Wang J, Yin J. Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury. Int J Neurosci. 2012;121(4):176–80.

    Article  Google Scholar 

  393. Bastami F, Vares P, Khojasteh A. Healing effects of platelet-rich plasma on peripheral nerve injuries. J Craniofac Surg. 2017;28(1):e49–57.

    Article  PubMed  Google Scholar 

  394. Afsar SI, Yemisci OU, Cetin N. The role of platelet-rich plasma in peripheral nerve injuries. J Clin Anal Med. 2015;6(suppl 6):905–8.

    Google Scholar 

  395. Lopez JC, Cortes H, Ceballos EG, Pizarro LQ. Platelet-rich plasma in treating peripheral neuropathic pain. Preliminary report. Rev Soc Esp Dolor. 2018;25(5):263–70.

    Google Scholar 

  396. Cass S. Ultrasound-guided nerve hydrodissection: what is it? A review of literature. Curr Sports Med Rep. 2016;15(1):20–2.

    Article  PubMed  Google Scholar 

  397. Nwawka K, Miller TT. Ultrasound-guided peripheral nerve injection techniques. Am J Roentgen. 2016;207(3):507–16.

    Article  Google Scholar 

  398. Purita J, Lana JFSD, Kolber M, Rodriguez BL, Mosaner T, Santos GS, Caliari-Oliveira C, Huber SC. Bone marrow-derived products: a classification proposal –bone marrow aspirate, bone marrow aspirate concentrate or hybrid? World J Stem Cells. 2020;12(4):1–9.

    Article  Google Scholar 

Download references

Acknowledgment

First and foremost, to the Faithful God who allowed me to finish this manuscript during these challenging times of COVID19 pandemic, who kept me busy writing but at the same time keeping us safe from infection.

My family: my wife Kyna de Castro and two kids, Rafael Bennett and Zarah Francine de Castro, for their constant and unwavering support.

To my colleagues who inspired me to move on.

Psalm 84:11 – “For the Lord God is a sun and shield; the Lord bestows favor and honor. No good thing does He withhold from those who walk uprightly.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Castro, J.C. (2022). Regenerative Medicine Procedures Under Ultrasound Guidance. In: El Miedany, Y. (eds) Musculoskeletal Ultrasound-Guided Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-98256-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98256-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98255-3

  • Online ISBN: 978-3-030-98256-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics