Skip to main content

Treatment of Focal Muscle Stiffness with Hyaluronidase Injections

  • Chapter
  • First Online:
Spasticity and Muscle Stiffness

Abstract

Spasticity develops because of injury to the central nervous system. However, secondary changes within the connective tissue of the muscle also contribute to muscle stiffness. The hyaluronan hypothesis postulates that the accumulation and biophysical alteration of hyaluronan, a high molecular weight glycosaminoglycan that normally acts as a lubricant within the extracellular matrix of muscles, promotes the development of muscle stiffness and progression to fibrosis and muscle contracture. Intramuscular injections of the enzyme hyaluronidase, which catabolizes the altered hyaluronan polymer, were shown to reduce muscle stiffness and increase passive and active range of motion in patients with spasticity-associated muscle stiffness. This chapter discusses the preliminary evidence for the emerging treatment of muscle stiffness using the enzyme hyaluronidase and its potential to prevent fibrosis and contracture.

…the beauty and strength of the mechanical construction lie not in one part or in another, but in the harmonious concatenation which all the parts, soft and hard, rigid and flexible, tension bearing and pressure bearing, make up together.—D’Arcy Thompson, On Growth and Form, 1917.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 29 October 2022

    P. Raghavan (ed.), Spasticity and Muscle Stiffness,

References

  1. Raghavan P, et al. Human recombinant hyaluronidase injections for upper limb muscle stiffness in individuals with cerebral injury: a case series. EBioMedicine. 2016;9:306–13.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stecco A, Stecco C, Raghavan P. Peripheral mechanisms of spasticity and treatment implications. Curr Phys Med Rehabil Rep. 2014;2(2):121–7.

    Article  Google Scholar 

  3. Piehl-Aulin K, et al. Hyaluronan in human skeletal muscle of lower extremity: concentration, distribution, and effect of exercise. J Appl Physiol (1985). 1991;71(6):2493–8.

    Article  CAS  Google Scholar 

  4. Purslow PP, Trotter JA. The morphology and mechanical properties of endomysium in series-fibred muscles: variations with muscle length. J Muscle Res Cell Motil. 1994;15(3):299–308.

    Article  CAS  PubMed  Google Scholar 

  5. Cowman MK, et al. Viscoelastic properties of hyaluronan in physiological conditions. F1000Res. 2015;4:622.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Okita M, et al. Effects of reduced joint mobility on sarcomere length, collagen fibril arrangement in the endomysium, and hyaluronan in rat soleus muscle. J Muscle Res Cell Motil. 2004;25(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  7. Calve S, et al. Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. Am J Physiol Cell Physiol. 2012;303(5):C577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Menon RG, et al. T1rho-mapping for musculoskeletal pain diagnosis: case series of variation of water bound glycosaminoglycans quantification before and after fascial manipulation((R)) in subjects with elbow pain. Int J Environ Res Public Health. 2020;17(3).

    Google Scholar 

  9. Meyer GA, McCulloch AD, Lieber RL. A nonlinear model of passive muscle viscosity. J Biomech Eng. 2011;133(9):091007.

    Article  CAS  PubMed  Google Scholar 

  10. Elliott DM, et al. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann Biomed Eng. 2003;31(5):599–605.

    Article  PubMed  Google Scholar 

  11. Richter RP, et al. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets? Curr Opin Struct Biol. 2018;50:65–74.

    Article  CAS  PubMed  Google Scholar 

  12. Gibbs DA, et al. Rheology of hyaluronic acid. Biopolymers. 1968;6(6):777–91.

    Article  CAS  PubMed  Google Scholar 

  13. Matteini P, et al. Structural behavior of highly concentrated hyaluronan. Biomacromolecules. 2009;10(6):1516–22.

    Article  CAS  PubMed  Google Scholar 

  14. Geiringer SR, deLateur BJ. Physiatric therapeutics. 3. Traction, manipulation, and massage. Arch Phys Med Rehabil. 1990;71(4-S):S264–6.

    CAS  PubMed  Google Scholar 

  15. deLateur BJ, Hinderer SR. Physiatric therapeutics. 2. Therapeutic heat and cold, electrotherapy, and therapeutic exercise. Arch Phys Med Rehabil. 1990;71(4-S):S260–3.

    CAS  PubMed  Google Scholar 

  16. Li S, et al. Different effects of cold stimulation on reflex and non-reflex components of poststroke spastic hypertonia. Front Neurol. 2017;8:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. A review. Scand J Med Sci Sports. 1998;8(2):65–77.

    Article  CAS  PubMed  Google Scholar 

  18. Gao F, et al. Effects of repeated ankle stretching on calf muscle-tendon and ankle biomechanical properties in stroke survivors. Clin Biomech (Bristol, Avon). 2011;26(5):516–22.

    Article  Google Scholar 

  19. Stecco C, et al. Hyaluronan within fascia in the etiology of myofascial pain. Surg Radiol Anat. 2011;33(10):891–6.

    Article  PubMed  Google Scholar 

  20. Margalef R, et al. Experimental myofascial trigger point creation in rodents. J Appl Physiol (1985). 2019;126(1):160–9.

    Article  CAS  Google Scholar 

  21. Fukami Y. Studies of capsule and capsular space of cat muscle spindles. J Physiol. 1986;376:281–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kwok JC, Carulli D, Fawcett JW. In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem. 2010;114(5):1447–59.

    CAS  PubMed  Google Scholar 

  23. Kwok JC, et al. Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol. 2011;71(11):1073–89.

    Article  CAS  PubMed  Google Scholar 

  24. Smith PD, et al. "GAG-ing with the neuron": the role of glycosaminoglycan patterning in the central nervous system. Exp Neurol. 2015;274(Pt B):100–14.

    Article  CAS  PubMed  Google Scholar 

  25. Carulli D, Kwok JC, Pizzorusso T. Perineuronal nets and CNS plasticity and repair. Neural Plast. 2016;2016:4327082.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Duran-Reynals F. Exaltation de l'activité du virus vaccinal par les extraits de certains organs. Comptes Rendus des Séances de la Société de Biologie et de Ses Filiales. 1928;99:6–7.

    Google Scholar 

  27. Chain E, Duthie ES. Identity of hyaluronidase and spreading factor. Br J Exp Pathol. 1940;21:324–38.

    CAS  PubMed Central  Google Scholar 

  28. Meyer K. Hyaluronidases. In: Boyer PD, editor. The enzymes. New York: Academic Press; 1971. p. 307–20.

    Google Scholar 

  29. Roden L, et al. Enzymic pathways of hyaluronan catabolism. Ciba Found Symp. 1989;143:60–76; discussion 76–86, 281–5.

    CAS  PubMed  Google Scholar 

  30. Csoka AB, Frost GI, Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 2001;20(8):499–508.

    Article  CAS  PubMed  Google Scholar 

  31. Stern R. Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology. 2003;13(12):105R–15R.

    Article  CAS  PubMed  Google Scholar 

  32. Bourguignon V, Flamion B. Respective roles of hyaluronidases 1 and 2 in endogenous hyaluronan turnover. FASEB J. 2016;30(6):2108–14.

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi T, Chanmee T, Itano N. Hyaluronan: metabolism and function. Biomolecules. 2020;10(11).

    Google Scholar 

  34. Culty M, Nguyen HA, Underhill CB. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol. 1992;116(4):1055–62.

    Article  CAS  PubMed  Google Scholar 

  35. Afify AM, et al. Purification and characterization of human serum hyaluronidase. Arch Biochem Biophys. 1993;305(2):434–41.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida H, et al. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci U S A. 2013;110(14):5612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamamoto H, et al. A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long-sought-after cell-surface hyaluronidase. J Biol Chem. 2017;292(18):7304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamaguchi Y, et al. TMEM2: a missing link in hyaluronan catabolism identified? Matrix Biol. 2019;78-79:139–46.

    Article  CAS  PubMed  Google Scholar 

  39. McGary CT, et al. Degradation and intracellular accumulation of a residualizing hyaluronan derivative by liver endothelial cells. Hepatology. 1993;18(6):1465–76.

    Article  CAS  PubMed  Google Scholar 

  40. McGary CT, Raja RH, Weigel PH. Endocytosis of hyaluronic acid by rat liver endothelial cells. Evidence for receptor recycling. Biochem J. 1989;257(3):875–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou B, et al. Purification and subunit characterization of the rat liver endocytic hyaluronan receptor. J Biol Chem. 1999;274(48):33831–4.

    Article  CAS  PubMed  Google Scholar 

  42. Fraser JR, Appelgren LE, Laurent TC. Tissue uptake of circulating hyaluronic acid. A whole body autoradiographic study. Cell Tissue Res. 1983;233(2):285–93.

    Article  CAS  PubMed  Google Scholar 

  43. Fraser JR, et al. Plasma clearance, tissue distribution and metabolism of hyaluronic acid injected intravenously in the rabbit. Biochem J. 1981;200(2):415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Day TD. The permeability of interstitial connective tissue and the nature of the interfibrillary substance. J Physiol. 1952;117(1):1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Craig AS, Eikenberry EF, Parry DA. Ultrastructural organization of skin: classification on the basis of mechanical role. Connect Tissue Res. 1987;16(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  46. Verzijl N, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000;275(50):39027–31.

    Article  CAS  PubMed  Google Scholar 

  47. Laurent UB, Dahl LB, Reed RK. Catabolism of hyaluronan in rabbit skin takes place locally, in lymph nodes and liver. Exp Physiol. 1991;76(5):695–703.

    Article  CAS  PubMed  Google Scholar 

  48. Fraser JR, Laurent TC. Turnover and metabolism of hyaluronan. Ciba Found Symp. 1989;143:41–53; discussion 53–9, 281–5.

    CAS  PubMed  Google Scholar 

  49. Locke RK. Treatment of spastic flatfoot with procaine-hyaluronidase and stretching. J Natl Assoc Chirop. 1952;42(11):36–8.

    CAS  PubMed  Google Scholar 

  50. Frost GI, Csoka T, Stern R. The hyaluronidases: a chemical, biological and clinical overview. Trends Glycosci Glycotechnol. 1996;8:419–34.

    Article  CAS  Google Scholar 

  51. Farr C, et al. Clinical pharmacology and possible applications of hyaluronidase with reference to Hylase "Dessau". Wien Med Wochenschr. 1997;147(15):347–55.

    Google Scholar 

  52. Eberhart AH, Weiler CR, Erie JC. Angioedema related to the use of hyaluronidase in cataract surgery. Am J Ophthalmol. 2004;138(1):142–3.

    Article  PubMed  Google Scholar 

  53. Williams RG. The effects of continuous local injection of hyaluronidase on skin and subcutaneous tissue in rats. Anat Rec. 1955;122(3):349–61.

    Article  CAS  PubMed  Google Scholar 

  54. Lin Y, et al. A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. J Cell Biol. 1994;125(5):1157–63.

    Article  CAS  PubMed  Google Scholar 

  55. Bookbinder LH, et al. A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release. 2006;114(2):230–41.

    Article  CAS  PubMed  Google Scholar 

  56. Kang DW, et al. Recombinant human hyaluronidase PH20 (rHuPH20) facilitates subcutaneous infusions of large volumes of immunoglobulin in a swine model. Drug Deliv Transl Res. 2012;2(4):254–64.

    Article  CAS  PubMed  Google Scholar 

  57. Sharma DSC, Lahiri MA. Use of hyaluronidase in plastic surgery: a review. J Plast Reconstr Aesthet Surg. 2021;74(7):1610–4.

    Article  PubMed  Google Scholar 

  58. Searle T, Ali FR, Al-Niaimi F. Hyaluronidase in dermatology: uses beyond hyaluronic acid fillers. J Drugs Dermatol. 2020;19(10):993–8.

    Article  PubMed  Google Scholar 

  59. Helm Ii S, Racz G. Hyaluronidase in neuroplasty: a review. Pain Physician. 2019;22(6):555–60.

    Article  PubMed  Google Scholar 

  60. Dunn AL, et al. Hyaluronidase: a review of approved formulations, indications and off-label use in chronic pain management. Expert Opin Biol Ther. 2010;10(1):127–31.

    Article  CAS  PubMed  Google Scholar 

  61. Bailey SH, Fagien S, Rohrich RJ. Changing role of hyaluronidase in plastic surgery. Plast Reconstr Surg. 2014;133(2):127e–32e.

    Article  CAS  PubMed  Google Scholar 

  62. Seifter J. Studies on the pharmacology and toxicology of testicular hyaluronidase. Ann N Y Acad Sci. 1950;52(7):1141–55.

    Article  CAS  PubMed  Google Scholar 

  63. Mayer NH. New treatment approaches on the horizon for spastic hemiparesis. PM R. 2018;10(9 Suppl 2):S144–50.

    Article  PubMed  Google Scholar 

  64. Raghavan P. Emerging therapies for spastic movement disorders. Phys Med Rehabil Clin N Am. 2018;29(3):633–44.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Keenan KE, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1rho and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–9.

    Article  CAS  Google Scholar 

  66. Mlynarik V, et al. Transverse relaxation mechanisms in articular cartilage. J Magn Reson. 2004;169(2):300–7.

    Article  CAS  PubMed  Google Scholar 

  67. Wang L, Regatte RR. T(1)rho MRI of human musculoskeletal system. J Magn Reson Imaging. 2015;41(3):586–600.

    Article  PubMed  Google Scholar 

  68. Sharafi A, Chang G, Regatte RR. Bi-component T1rho and T2 relaxation mapping of skeletal muscle in-vivo. Sci Rep. 2017;7(1):14115.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Peng XG, et al. Noninvasive assessment of age, gender, and exercise effects on skeletal muscle: initial experience with T1 rho MRI of calf muscle. J Magn Reson Imaging. 2017;46(1):61–70.

    Article  PubMed  Google Scholar 

  70. Paul CPL, et al. Quantitative MRI in early intervertebral disc degeneration: T1rho correlates better than T2 and ADC with biomechanics, histology and matrix content. PLoS One. 2018;13(1):e0191442.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Samartzis D, et al. Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine J. 2015;15(9):1919–32.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sepponen RE, et al. A method for T1 rho imaging. J Comput Assist Tomogr. 1985;9(6):1007–11.

    Article  CAS  PubMed  Google Scholar 

  73. Gilani IA, Sepponen R. Quantitative rotating frame relaxometry methods in MRI. NMR Biomed. 2016;29(6):841–61.

    Article  PubMed  Google Scholar 

  74. Menon RG, Raghavan P, Regatte RR. Quantifying muscle glycosaminoglycan levels in patients with post-stroke muscle stiffness using T1rho MRI. Sci Rep. 2019;9(1):14513.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Menon RG, Raghavan P, Regatte RR. Pilot study quantifying muscle glycosaminoglycan using bi-exponential T1rho mapping in patients with muscle stiffness after stroke. Sci Rep. 2021;11(1):13951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pillen S, van Alfen N. Skeletal muscle ultrasound. Neurol Res. 2011;33(10):1016–24.

    Article  PubMed  Google Scholar 

  77. Correa-de-Araujo R, et al. The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: a symposium report. Front Physiol. 2017;8:87.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Iftekharuddin KM, Awwal AAS. Field guide to image processing. SPIE field guides. Bellingham, WA: SPIE Press; 2012.

    Book  Google Scholar 

  79. Pillen S, et al. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol. 2009;35(3):443–6.

    Article  PubMed  Google Scholar 

  80. Nijboer-Oosterveld J, Van Alfen N, Pillen S. New normal values for quantitative muscle ultrasound: obesity increases muscle echo intensity. Muscle Nerve. 2011;43(1):142–3.

    Article  PubMed  Google Scholar 

  81. Reimers K, et al. Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med. 1993;12(2):73–7.

    Article  CAS  PubMed  Google Scholar 

  82. Heckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. J Pediatr. 1982;101(5):656–60.

    Article  CAS  PubMed  Google Scholar 

  83. Kenis-Coskun O, et al. Reliability of quantitative ultrasound measurement of flexor digitorum superficialis and profundus muscles in stroke. J Comp Eff Res. 2020;9(18):1293–300.

    Article  PubMed  Google Scholar 

  84. Picelli A, et al. Ultrasonographic evaluation of botulinum toxin injection site for the medial approach to tibialis posterior muscle in chronic stroke patients with spastic equinovarus foot: an observational study. Toxins (Basel). 2017;9(11).

    Google Scholar 

  85. Hara T, et al. Effects of botulinum toxin A therapy and multidisciplinary rehabilitation on lower limb spasticity classified by spastic muscle echo intensity in post-stroke patients. Int J Neurosci. 2018;128(5):412–20.

    Article  CAS  PubMed  Google Scholar 

  86. Picelli A, et al. Is spastic muscle echo intensity related to the response to botulinum toxin type A in patients with stroke? A cohort study. Arch Phys Med Rehabil. 2012;93(7):1253–8.

    Article  PubMed  Google Scholar 

  87. Sikdar S, et al. Assessment of myofascial trigger points (MTrPs): a new application of ultrasound imaging and vibration sonoelastography. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5585–8.

    PubMed  Google Scholar 

  88. Ozcakar L, et al. Ultrasound imaging for sarcopenia, spasticity and painful muscle syndromes. Curr Opin Support Palliat Care. 2018;12(3):373–81.

    Article  PubMed  Google Scholar 

  89. Brandenburg JE, et al. Quantifying passive muscle stiffness in children with and without cerebral palsy using ultrasound shear wave elastography. Dev Med Child Neurol. 2016;58(12):1288–94.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jakubowski KL, et al. Passive material properties of stroke-impaired plantarflexor and dorsiflexor muscles. Clin Biomech (Bristol, Avon). 2017;49:48–55.

    Article  PubMed Central  Google Scholar 

  91. Brandenburg JE, et al. Quantifying effect of onabotulinum toxin a on passive muscle stiffness in children with cerebral palsy using ultrasound shear wave elastography. Am J Phys Med Rehabil. 2018;97(7):500–6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Vigotsky AD, Rouse EJ, Lee SSM. Mapping the relationships between joint stiffness, modeled muscle stiffness, and shear wave velocity. J Appl Physiol (1985). 2020;129(3):483–91.

    Article  CAS  Google Scholar 

  93. Boulard C, Gautheron V, Lapole T. Mechanical properties of ankle joint and gastrocnemius muscle in spastic children with unilateral cerebral palsy measured with shear wave elastography. J Biomech. 2021;124:110502.

    Article  PubMed  Google Scholar 

  94. Zuniga LDO, Lopez CAG, Gonzalez ER. Ultrasound elastography in the assessment of the stiffness of spastic muscles: a systematic review. Ultrasound Med Biol. 2021;47(6):1448–64.

    Article  PubMed  Google Scholar 

  95. Tran A, Gao J. Quantitative ultrasound to assess skeletal muscles in post stroke spasticity. J Cent Nerv Syst Dis. 2021;13:1179573521996141.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lehoux MC, et al. Shear wave elastography potential to characterize spastic muscles in stroke survivors: literature review. Clin Biomech (Bristol, Avon). 2020;72:84–93.

    Article  Google Scholar 

  97. Leonard CT, et al. Myotonometer intra- and interrater reliabilities. Arch Phys Med Rehabil. 2003;84(6):928–32.

    Article  PubMed  Google Scholar 

  98. Chuang LL, et al. Quantitative mechanical properties of the relaxed biceps and triceps brachii muscles in patients with subacute stroke: a reliability study of the myoton-3 myometer. Stroke Res Treat. 2012;2012:617694.

    PubMed  PubMed Central  Google Scholar 

  99. Li X, et al. Assessing muscle compliance in stroke with the Myotonometer. Clin Biomech (Bristol, Avon). 2017;50:110–3.

    Article  Google Scholar 

  100. Chuang LL, Wu CY, Lin KC. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch Phys Med Rehabil. 2012;93(3):532–40.

    Article  PubMed  Google Scholar 

  101. Chuang LL, et al. Relative and absolute reliabilities of the myotonometric measurements of hemiparetic arms in patients with stroke. Arch Phys Med Rehabil. 2013;94(3):459–66.

    Article  PubMed  Google Scholar 

  102. Aarrestad DD, et al. Intra- and interrater reliabilities of the Myotonometer when assessing the spastic condition of children with cerebral palsy. J Child Neurol. 2004;19(11):894–901.

    Article  PubMed  Google Scholar 

  103. Rydahl SJ, Brouwer BJ. Ankle stiffness and tissue compliance in stroke survivors: a validation of Myotonometer measurements. Arch Phys Med Rehabil. 2004;85(10):1631–7.

    Article  PubMed  Google Scholar 

  104. Lee Y, Kim M, Lee H. The measurement of stiffness for major muscles with shear wave elastography and myoton: a quantitative analysis study. Diagnostics (Basel). 2021;11(3).

    Google Scholar 

  105. Stecco A, et al. Stiffness and echogenicity: development of a stiffness-echogenicity matrix for clinical problem solving. Eur J Transl Myol. 2019;29(3):8476.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hechter O. Studies on spreading factors: I. The importance of mechanical factors in hyaluronidase action in skin. J Exp Med. 1947;85(1):77–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclosures

This chapter discusses the off-label use of hyaluronidase for treatment of muscle stiffness. Drs. Preeti Raghavan and Antonio Stecco are co-founders of MovEase, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Stecco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raghavan, P., Gordon, A., Roemmich, R., Stecco, A. (2022). Treatment of Focal Muscle Stiffness with Hyaluronidase Injections. In: Raghavan, P. (eds) Spasticity and Muscle Stiffness. Springer, Cham. https://doi.org/10.1007/978-3-030-96900-4_13

Download citation

Publish with us

Policies and ethics