Skip to main content

Inorganic Porous Nanoparticles as Pesticide or Nutrient Carriers

  • Chapter
  • First Online:
Inorganic Nanopesticides and Nanofertilizers

Abstract

Nano-enabled agriculture has been gaining interest recently as a pathway to improve crop yield and protection while reducing fertilizer and pesticide application rates compared to traditional agricultural practices. Inorganic, porous nanoparticles can have a pivotal role in the successful deployment of nanotechnology. Inorganic porous nanoparticles can provide a structurally stable framework to encapsulate and transport active ingredients, such as pesticides and fertilizers. Herein, we provide a review of promising features that these porous nanocarriers possess that may be of interest in agriculture. For instance, porous nanocarriers can increase the apparent solubility and mobility of poorly soluble pesticides and control the release of these over time. Commonly studied inorganic nanomaterials include silica, iron oxide, zinc oxide, copper oxide, clays, and hydroxyapatites, each of which has its own attributes and characteristics that can be relevant to crop growth and protection in the field. This chapter also includes explanations of the uptake of these nanocarriers through roots and leaves, and their further translocation within the plants. The important role of particle physicochemical characteristics, e.g., zeta potential and size in uptake and translocation are reviewed along with emerging approaches for rational design of nanoparticles to provide them with stimuli-responsive characteristics that can be triggered by changes in pH, temperature, ionic strength, light, enzymes, and redox agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Haliem, M. E., Hegazy, H. S., Hassan, N. S., & Naguib, D. M. (2017). Effect of silica ions and nano silica on rice plants under salinity stress. Ecological Engineering, 99, 282–289.

    Article  Google Scholar 

  • Abdelrahman, T. M., Qin, X., Li, D., Senosy, I. A., Mmby, M., Wan, H., Li, J., & He, S. (2021). Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants. Chemical Engineering Journal, 404, 126440.

    Article  CAS  Google Scholar 

  • Ajeesh Krishna, T., Maharajan, T., Victor Roch, G., Ignacimuthu, S., & Antony Ceasar, S. (2020). Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Frontiers in Plant Science, 11, 662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar, M. S., Riaz, S., Mehmood, R. F., Ahmad, K. S., Alghamdi, Y., Malik, M. A., & Naseem, S. (2017). Surfactant and template free synthesis of porous ZnS nanoparticles. Materials Chemistry and Physics, 189, 28–34.

    Article  CAS  Google Scholar 

  • Albanese, A., Tang, P. S., & Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Ansari, L., Derakhshi, M., Bagheri, E., Shahtahmassebi, N., & Malaekeh-Nikouei, B. (2020). Folate conjugation improved uptake and targeting of porous hydroxyapatite nanoparticles containing epirubicin to cancer cells. Pharmaceutical Development and Technology, 25, 601–609.

    Article  CAS  PubMed  Google Scholar 

  • Ashok, A., Kumar, A., Bhosale, R. R., Saleh, M. A. H., & Van Den Broeke, L. J. (2015). Cellulose assisted combustion synthesis of porous cu–Ni nanopowders. RSC Advances, 5, 28703–28712.

    Article  CAS  Google Scholar 

  • Attia, E. A., & Elhawat, N. (2021). Combined foliar and soil application of silica nanoparticles enhances the growth, flowering period and flower characteristics of marigold (Tagetes erecta L.). Scientia Horticulturae, 282, 110015.

    Article  CAS  Google Scholar 

  • Aubert, T., Burel, A., Esnault, M.-A., Cordier, S., Grasset, F., & Cabello-Hurtado, F. (2012). Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. Journal of Hazardous Materials, 219, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Avellan, A., Yun, J., Zhang, Y., Spielman-Sun, E., Unrine, J. M., Thieme, J., Li, J., Lombi, E., Bland, G., & Lowry, G. V. (2019). Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano, 13, 5291–5305.

    Article  CAS  PubMed  Google Scholar 

  • Baeza, A., Colilla, M., & Vallet-Regí, M. (2015). Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opinion on Drug Delivery, 12, 319–337.

    Article  CAS  PubMed  Google Scholar 

  • Baldi, E., Marino, G., Toselli, M., Marzadori, C., Ciavatta, C., Tavoni, M., Di Giosia, M., Calvaresi, M., Falini, G., & Zerbetto, F. (2018). Delivery systems for agriculture: Fe-EDDHSA/CaCO 3 hybrid crystals as adjuvants for prevention of iron chlorosis. Chemical Communications, 54, 1635–1638.

    Article  CAS  PubMed  Google Scholar 

  • Bernardo, M. P., Guimarães, G. G., Majaron, V. F., & Ribeiro, C. (2018). Controlled release of phosphate from layered double hydroxide structures: Dynamics in soil and application as smart fertilizer. ACS Sustainable Chemistry & Engineering, 6, 5152–5161.

    Article  CAS  Google Scholar 

  • Bhardwaj, D., Sharma, M., Sharma, P., & Tomar, R. (2012). Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. Journal of Hazardous Materials, 227, 292–300.

    Article  PubMed  CAS  Google Scholar 

  • Bo, R., Zhang, F., Bu, S., Nasiri, N., Di Bernardo, I., Tran-Phu, T., Shrestha, A., Chen, H., Taheri, M., & QI, S. (2020). One-step synthesis of porous transparent conductive oxides by hierarchical self-assembly of aluminum-doped ZnO nanoparticles. ACS Applied Materials & Interfaces, 12, 9589–9599.

    Article  CAS  Google Scholar 

  • Bueno, V., Bosi, A., Tosco, T., & Ghoshal, S. (2022). Mobility of solid and porous hollow SiO2 nanoparticles in saturated porous media: Impacts of surface and particle structure. Journal of Colloid and Interface Science, 606, 480–490.

    Article  CAS  PubMed  Google Scholar 

  • Bueno, V., & Ghoshal, S. (2020). Self-assembled surfactant-templated synthesis of porous hollow silica nanoparticles: Mechanism of formation and feasibility of post-synthesis Nanoencapsulation. Langmuir, 36, 14633–14643.

    Article  CAS  PubMed  Google Scholar 

  • Cao, L., Zhang, H., Cao, C., Zhang, J., Li, F., & Huang, Q. (2016). Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomaterials, 6, 126.

    Article  PubMed Central  CAS  Google Scholar 

  • Cao, L., Zhou, Z., Niu, S., Cao, C., Li, X., Shan, Y., & Huang, Q. (2017). Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2, 4-dichlorophenoxy acetic acid sodium salt release. Journal of Agricultural and Food Chemistry, 66, 6594–6603.

    Article  PubMed  CAS  Google Scholar 

  • Cao, V. D., Nguyen, P. P., Khuong, V. Q., Nguyen, C. K., Nguyen, X. C., Dang, C. H., & Tran, N. Q. (2014). Ultrafine copper nanoparticles exhibiting a powerful antifungal/killing activity against Corticium salmonicolor. Bulletin of the Korean Chemical Society, 35, 2645–2648.

    Article  CAS  Google Scholar 

  • Chen, C.-Y., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials: I. synthesis and characterization of MCM-41. Microporous Materials, 2, 17–26.

    Article  Google Scholar 

  • Chen, C., Zhang, G., Dai, Z., Xiang, Y., Liu, B., Bian, P., Zheng, K., Wu, Z., & Cai, D. (2018a). Fabrication of light-responsively controlled-release herbicide using a nanocomposite. Chemical Engineering Journal, 349, 101–110.

    Article  CAS  Google Scholar 

  • Chen, H., Hu, J., Zhou, H., Zhou, X., & Xu, H. (2019). One step synthesis, characterization of F127-Mn+−chlorpyrifos mesoporous silica for sustained release system with pH sensitivity. Journal of Macromolecular Science, Part A, 56, 34–41.

    Article  CAS  Google Scholar 

  • Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M. (2018b). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Science of the Total Environment, 613, 829–839.

    Article  PubMed  CAS  Google Scholar 

  • Cui, Y., Dong, H., Cai, X., Wang, D., & Li, Y. (2012). Mesoporous silica nanoparticles capped with disulfide-linked PEG gatekeepers for glutathione-mediated controlled release. ACS Applied Materials & Interfaces, 4, 3177–3183.

    Article  CAS  Google Scholar 

  • Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., Misson, J., Schikora, A., Czernic, P., & Mari, S. (2009). Metal movement within the plant: Contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S. L., Briat, J.-F., & Walker, E. L. (2001). Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature, 409, 346–349.

    Article  CAS  PubMed  Google Scholar 

  • Da Costa, M., & Sharma, P. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54, 110–119.

    Article  CAS  Google Scholar 

  • Dietz, K.-J., & Herth, S. (2011). Plant nanotoxicology. Trends in Plant Science, 16, 582–589.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, T., Bagchi, D., Bera, A., Das, S., Adhikari, T., & Pal, S. K. (2019). Surface engineered ZnO-humic/citrate interfaces: Photoinduced charge carrier dynamics and potential application for smart and sustained delivery of zn micronutrient. ACS Sustainable Chemistry & Engineering, 7, 10920–10930.

    Article  CAS  Google Scholar 

  • Eichert, T., Kurtz, A., Steiner, U., & Goldbach, H. E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum, 134, 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Eide, D., Broderius, M., Fett, J., & Guerinot, M. L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences, 93, 5624–5628.

    Article  CAS  Google Scholar 

  • El-Shetehy, M., Moradi, A., Maceroni, M., Reinhardt, D., Petri-Fink, A., Rothen-Rutishauser, B., Mauch, F., & Schwab, F. (2020). Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology, 1–10.

    Google Scholar 

  • Epstein, E. (1972). Mineral nutrition of plants: principles and perspectives. J. Wiley and Sons, Inc., New York.

    Google Scholar 

  • Feng, J., Yang, J., Shen, Y., Deng, W., Chen, W., Ma, Y., Chen, Z., & Dong, S. (2021). Mesoporous silica nanoparticles prepared via a one-pot method for controlled release of abamectin: Properties and applications. Microporous and Mesoporous Materials, 311, 110688.

    Article  CAS  Google Scholar 

  • Fernandes, R. S., Raimundo, I. M., Jr., & Pimentel, M. F. (2019). Revising the synthesis of Stöber silica nanoparticles: A multivariate assessment study on the effects of reaction parameters on the particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 577, 1–7.

    Article  CAS  Google Scholar 

  • Fernandez-Fernandez, A., Manchanda, R., & Mcgoron, A. J. (2011). Theranostic applications of nanomaterials in cancer: Drug delivery, image-guided therapy, and multifunctional platforms. Applied Biochemistry and Biotechnology, 165, 1628–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fomina, N., Sankaranarayanan, J., & Almutairi, A. (2012). Photochemical mechanisms of light-triggered release from nanocarriers. Advanced Drug Delivery Reviews, 64, 1005–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly, S., & Das, N. C. (2017). Water uptake kinetics and control release of agrochemical fertilizers from nanoclay-assisted semi-interpenetrating sodium acrylate-based hydrogel. Polymer-Plastics Technology and Engineering, 56, 744–761.

    Article  CAS  Google Scholar 

  • Gao, S., Tang, G., Hua, D., Xiong, R., Han, J., Jiang, S., Zhang, Q., & Huang, C. (2019). Stimuli-responsive bio-based polymeric systems and their applications. Journal of Materials Chemistry B, 7, 709–729.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Kundu, A., Bueno, V., Rahim, A. A., & Ghoshal, S. (2021). Uptake and translocation of mesoporous SiO2-coated ZnO nanoparticles to Solanum lycopersicum following foliar application. Environmental Science & Technology, 55, 20.

    Article  Google Scholar 

  • Gao, Y., Liang, Y., Dong, H., Niu, J., Tang, J., Yang, J., Tang, G., Zhou, Z., Tang, R., & Shi, X. (2020). A bioresponsive system based on mesoporous Organosilica nanoparticles for smart delivery of fungicide in response to pathogen presence. ACS Sustainable Chemistry & Engineering, 8, 5716–5723.

    Article  CAS  Google Scholar 

  • Gavrilović, T. V., Jovanović, D. J., Lojpur, V., & Dramićanin, M. D. (2014). Multifunctional Eu 3+−and Er 3+/Yb 3+−doped GdVO 4 nanoparticles synthesized by reverse micelle method. Scientific Reports, 4, 1–9.

    Google Scholar 

  • Grillo, R., Mattos, B. D., Antunes, D. R., Forini, M. M., Monikh, F. A., & Rojas, O. J. (2021). Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today, 37, 101078.

    Article  CAS  Google Scholar 

  • Guo, M., Zhang, W., Ding, G., Guo, D., Zhu, J., Wang, B., Punyapitak, D., & Cao, Y. (2015). Preparation and characterization of enzyme-responsive emamectin benzoate microcapsules based on a copolymer matrix of silica–epichlorohydrin–carboxymethylcellulose. RSC Advances, 5, 93170–93179.

    Article  CAS  Google Scholar 

  • Hai, L., Jia, X., He, D., Zhang, A., Wang, T., Cheng, H., He, X., & Wang, K. (2018). DNA-functionalized hollow mesoporous silica nanoparticles with dual cargo loading for near-infrared-responsive synergistic chemo-photothermal treatment of cancer cells. ACS Applied Nano Materials, 1, 3486–3497.

    Article  CAS  Google Scholar 

  • Hakim, S., Darounkola, M. R. R., Barghemadi, M., & Parvazinia, M. (2019). Fabrication of PVA/nanoclay hydrogel nanocomposites and their microstructural effect on the release behavior of a potassium phosphate fertilizer. Journal of Polymers and the Environment, 27, 2925–2932.

    Article  CAS  Google Scholar 

  • Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Current Opinion in Plant Biology, 12, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, T., Lowry, G. V., Ghoshal, S., Tufenkji, N., Brambilla, D., Dutcher, J. R., Gilbertson, L. M., Giraldo, J. P., Kinsella, J. M., & Landry, M. P. (2020). Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 1, 416–425.

    Article  CAS  Google Scholar 

  • Hou, X., Li, Y., Pan, Y., Jin, Y., & Xiao, H. (2018). Controlled release of agrochemicals and heavy metal ion capture dual-functional redox-responsive hydrogel for soil remediation. Chemical Communications, 54, 13714–13717.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J. J., Xiao, D., & Zhang, X. Z. (2016). Advances in peptide functionalization on mesoporous silica nanoparticles for controlled drug release. Small, 12, 3344–3359.

    Article  CAS  PubMed  Google Scholar 

  • Hu, P., An, J., Faulkner, M. M., Wu, H., Li, Z., Tian, X., & Giraldo, J. P. (2020). Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano, 14, 7970–7986.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, D., Haydon, M. J., Wang, Y., Wong, E., Sherson, S. M., Young, J., Camakaris, J., Harper, J. F., & Cobbett, C. S. (2004). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell, 16, 1327–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesus, M., & Grazu, V. (2012). Nanobiotechnology: Inorganic nanoparticles vs organic nanoparticles. Elsevier.

    Google Scholar 

  • Jeyasubramanian, K., Thoppey, U. U. G., Hikku, G. S., Selvakumar, N., Subramania, A., & Krishnamoorthy, K. (2016). Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Advances, 6, 15451–15459.

    Article  CAS  Google Scholar 

  • Jiang, J., Lim, Y. S., Park, S., Kim, S.-H., Yoon, S., & Piao, L. (2017). Hollow porous Cu particles from silica-encapsulated cu 2 O nanoparticle aggregates effectively catalyze 4-nitrophenol reduction. Nanoscale, 9, 3873–3880.

    Article  CAS  PubMed  Google Scholar 

  • Kasana, R. C., Panwar, N. R., Kaul, R. K., & Kumar, P. (2016). Copper nanoparticles in agriculture: Biological synthesis and antimicrobial activity. Nanoscience in Food and Agriculture 3. Springer.

    Google Scholar 

  • Kaziem, A. E., Gao, Y., He, S., & Li, J. (2017). Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release. Journal of Agricultural and Food Chemistry, 65, 7854–7864.

    Article  CAS  PubMed  Google Scholar 

  • Keller, A. A., Adeleye, A. S., Conway, J. R., Garner, K. L., Zhao, L., Cherr, G. N., Hong, J., Gardea-Torresdey, J. L., Godwin, H. A., & Hanna, S. (2017). Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact, 7, 28–40.

    Article  Google Scholar 

  • Khan, M. R., & Siddiqui, Z. A. (2021). Role of zinc oxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Meloidogyne incognita and Rhizoctonia solani. Horticulture, Environment, and Biotechnology, 62, 225–241.

    Article  CAS  Google Scholar 

  • Kim, H., Kim, S., Park, C., Lee, H., Park, H. J., & Kim, C. (2010). Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Advanced Materials, 22, 4280–4283.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.-S., & Tai, W.-P. (2007). Electrical and optical properties of Al-doped ZnO thin films by sol–gel process. Applied Surface Science, 253, 4911–4916.

    Article  CAS  Google Scholar 

  • Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63, 131–152.

    Article  CAS  PubMed  Google Scholar 

  • Koo, A. N., Rim, H. P., Park, D. J., Kim, J.-H., Jeong, S. Y., & Lee, S. C. (2013). Glutathione-mediated intracellular release of anti-inflammatory N-acetyl-L-cysteine from mesoporous silica nanoparticles. Macromolecular Research, 21, 809–814.

    Article  CAS  Google Scholar 

  • Kottegoda, N., Munaweera, I., Madusanka, N., & Karunaratne, V. (2011). A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science, 73–78.

    Google Scholar 

  • Larue, C., Castillo-Michel, H., Sobanska, S., Trcera, N., Sorieul, S., Cécillon, L., Ouerdane, L., Legros, S., & Sarret, G. (2014). Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. Journal of Hazardous Materials, 273, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.-M., Brisset, F., & Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Science of the Total Environment, 431, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Lew, T. T. S., Wong, M. H., Kwak, S. Y., Sinclair, R., Koman, V. B., & Strano, M. S. (2018). Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small, 14, 1802086.

    Article  CAS  Google Scholar 

  • Li, H., Tan, L.-L., Jia, P., Li, Q.-L., Sun, Y.-L., Zhang, J., Ning, Y.-Q., Yu, J., & Yang, Y.-W. (2014). Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods. Chemical Science, 5, 2804–2808.

    Article  CAS  Google Scholar 

  • Li, H., Yang, Z.-Y., Liu, C., Zeng, Y.-P., Hao, Y.-H., Gu, Y., Wang, W.-D., & Li, R. (2015). PEGylated ceria nanoparticles used for radioprotection on human liver cells under γ-ray irradiation. Free Radical Biology and Medicine, 87, 26–35.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Ye, X., Guo, X., Geng, Z., & Wang, G. (2016). Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. Journal of Hazardous Materials, 314, 188–196.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Hu, J., Xiao, L., Wang, Y., & Wang, X. (2018). Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings. Science of the Total Environment, 625, 677–685.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Tappero, R. V., Acerbo, A. S., Yan, H., Chu, Y., Lowry, G. V., & Unrine, J. M. (2019). Effect of CeO 2 nanomaterial surface functional groups on tissue and subcellular distribution of Ce in tomato (Solanum lycopersicum). Environmental Science: Nano, 6, 273–285.

    CAS  Google Scholar 

  • Li, M., Zhang, P., Adeel, M., Guo, Z., Chetwynd, A. J., Ma, C., Bai, T., Hao, Y., & Rui, Y. (2021). Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environmental Pollution, 269, 116134.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z.-Z., Xu, S.-A., Wen, L.-X., Liu, F., Liu, A.-Q., Wang, Q., Sun, H.-Y., Yu, W., & Chen, J.-F. (2006). Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release. Journal of Controlled Release, 111, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z. Z., Chen, J. F., Liu, F., Liu, A. Q., Wang, Q., Sun, H. Y., & Wen, L. X. (2007). Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Management Science: Formerly Pesticide Science, 63, 241–246.

    Article  CAS  Google Scholar 

  • Liang, Y., Guo, M., Fan, C., Dong, H., Ding, G., Zhang, W., Tang, G., Yang, J., Kong, D., & Cao, Y. (2017). Development of novel urease-responsive pendimethalin microcapsules using silica-IPTS-PEI as controlled release carrier materials. ACS Sustainable Chemistry & Engineering, 5, 4802–4810.

    Article  CAS  Google Scholar 

  • Lin, Y.-S., & Haynes, C. L. (2009). Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials, 21, 3979–3986.

    Article  CAS  Google Scholar 

  • Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Delivery, 25, 1234–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R., & Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 4, 1–6.

    Google Scholar 

  • Liu, R., Zhang, Y., Zhao, X., Agarwal, A., Mueller, L. J., & Feng, P. (2010). pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. Journal of the American Chemical Society, 132, 1500–1501.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wu, T., White, J. C., & Lin, D. (2021). A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nature Nanotechnology, 16, 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Lohse, S. E., & Murphy, C. J. (2012). Applications of colloidal inorganic nanoparticles: From medicine to energy. Journal of the American Chemical Society, 134, 15607–15620.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, A., Cacoub, P., Macdougall, I. C., & Peyrin-Biroulet, L. (2016). Iron deficiency anaemia. The Lancet, 387, 907–916.

    Article  CAS  Google Scholar 

  • Lucas, W. J., & Lee, J.-Y. (2004). Plasmodesmata as a supracellular control network in plants. Nature Reviews Molecular Cell Biology, 5, 712–726.

    Article  CAS  PubMed  Google Scholar 

  • Lucena, J. J., Gárate, A., & Villén, M. (2010). Stability in solution and reactivity with soils and soil components of iron and zinc complexes. Journal of Plant Nutrition and Soil Science, 173, 900–906.

    Article  CAS  Google Scholar 

  • Luyckx, M., Hausman, J.-F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: Current knowledge and technological perspectives. Frontiers in Plant Science, 8, 411.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, C., White, J. C., Dhankher, O. P., & Xing, B. (2015). Metal-based nanotoxicity and detoxification pathways in higher plants. Environmental Science & Technology, 49, 7109–7122.

    Article  CAS  Google Scholar 

  • Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408, 3053–3061.

    Article  CAS  PubMed  Google Scholar 

  • Madusanka, N., Sandaruwan, C., Kottegoda, N., Sirisena, D., Munaweera, I., De Alwis, A., Karunaratne, V., & Amaratunga, G. A. (2017). Urea–hydroxyapatite-montmorillonite nanohybrid composites as slow release nitrogen compositions. Applied Clay Science, 150, 303–308.

    Article  CAS  Google Scholar 

  • Maghsoodi, M. R., Ghodszad, L., & Lajayer, B. A. (2020). Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: Potentials, challenges and effects on plants. Environmental Technology & Innovation, 19, 100869.

    Article  Google Scholar 

  • Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65, 689–702.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, N., Datta, S., Manjaiah, K., Dwivedi, B., Nain, L., Kumar, R., & Aggarwal, P. (2018). Novel chitosan grafted zinc containing nanoclay polymer biocomposite (CZNCPBC): Controlled release formulation (CRF) of Zn2+. Reactive and Functional Polymers, 127, 55–66.

    Article  CAS  Google Scholar 

  • Manjunatha, S., Biradar, D., & Aladakatti, Y. R. (2016). Nanotechnology and its applications in agriculture: A review. Journal of Farm Science, 29, 1–13.

    Google Scholar 

  • Marchiol, L., Filippi, A., Adamiano, A., Degli Esposti, L., Iafisco, M., Mattiello, A., Petrussa, E., & Braidot, E. (2019). Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): Preliminary evidence. Agronomy, 9, 161.

    Article  CAS  Google Scholar 

  • Mattos, B. D., Tardy, B. L., Pezhman, M., Kämäräinen, T., Linder, M., Schreiner, W. H., Magalhães, W. L., & Rojas, O. J. (2018). Controlled biocide release from hierarchically-structured biogenic silica: Surface chemistry to tune release rate and responsiveness. Scientific Reports, 8, 1–11.

    Article  CAS  Google Scholar 

  • Mazloomi, F., & Jalali, M. (2019). Effects of vermiculite, nanoclay and zeolite on ammonium transport through saturated sandy loam soil: Column experiments and modeling approaches. Catena, 176, 170–180.

    Article  CAS  Google Scholar 

  • Meng, F., Wei, Y., & Yang, X. (2005). Iron content and bioavailability in rice. Journal of Trace Elements in Medicine and Biology, 18, 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Merino, D., Tomadoni, B., Salcedo, M. F., Mansilla, A. Y., Casalongué, C. A. & Alvarez, V. A. (2020). Nanoclay as carriers of bioactive molecules applied to agriculture. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1–22.

    Google Scholar 

  • Milner, M. J., Seamon, J., Craft, E., & Kochian, L. V. (2013). Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 64, 369–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, V., Mishra, R. K., Dikshit, A., & Pandey, A. C. (2014). Interactions of nanoparticles with plants: An emerging prospective in the agriculture industry. Emerging technologies and management of crop stress tolerance. Elsevier.

    Book  Google Scholar 

  • Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. M., & Xu, Z. P. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3, 1–10.

    Article  CAS  Google Scholar 

  • Molina, M., Aburto, F., Calderón, R., Cazanga, M., & Escudey, M. (2009). Trace element composition of selected fertilizers used in Chile: Phosphorus fertilizers as a source of long-term soil contamination. Soil and Sediment Contamination, 18, 497–511.

    Article  CAS  Google Scholar 

  • Montalvo, D., Mclaughlin, M. J., & Degryse, F. (2015). Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in andisols and oxisols. Soil Science Society of America Journal, 79, 551–558.

    Article  CAS  Google Scholar 

  • Mortvedt, J. (1996). Heavy metal contaminants in inorganic and organic fertilizers. Fertilizers and environment. Springer.

    Google Scholar 

  • Mostafa, M., Ahmed, F. K., Alghuthaymi, M., & Abd-Elsalam, K. A. (2021). Inorganic smart nanoparticles: A new tool to deliver CRISPR systems into plant cells. CRISPR and RNAi Systems. Elsevier.

    Google Scholar 

  • Muhammad, F., Guo, M., Qi, W., Sun, F., Wang, A., Guo, Y., & Zhu, G. (2011). pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. Journal of the American Chemical Society, 133, 8778–8781.

    Article  CAS  PubMed  Google Scholar 

  • Nair, P. M. G., & Chung, I. M. (2014). Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environmental Science and Pollution Research, 21, 12709–12722.

    Article  CAS  PubMed  Google Scholar 

  • Nandiyanto, A. B. D., Kim, S.-G., Iskandar, F., & Okuyama, K. (2009). Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous and Mesoporous Materials, 120, 447–453.

    Article  CAS  Google Scholar 

  • Narayanan, N., Gupta, S., Gajbhiye, V., & Manjaiah, K. (2017). Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere, 173, 502–511.

    Article  CAS  PubMed  Google Scholar 

  • Nazir, M. S., Kassim, M. H. M., Mohapatra, L., Gilani, M. A., Raza, M. R., & Majeed, K. (2016). Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. Nanoclay reinforced polymer composites. Springer.

    Book  Google Scholar 

  • Nikumbh, A., Pawar, R., Nighot, D., Gugale, G., Sangale, M., Khanvilkar, M., & Nagawade, A. (2014). Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. Journal of Magnetism and Magnetic Materials, 355, 201–209.

    Article  CAS  Google Scholar 

  • Niu, N., He, F., Ma, P. A., Gai, S., Yang, G., Qu, F., Wang, Y., Xu, J., & Yang, P. (2014). Up-conversion nanoparticle assembled mesoporous silica composites: Synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release. ACS Applied Materials & Interfaces, 6, 3250–3262.

    Article  CAS  Google Scholar 

  • O’Mara, P. B., Wilde, P., Benedetti, T. M., Andronescu, C., Cheong, S., Gooding, J. J., Tilley, R. D., & Schuhmann, W. (2019). Cascade reactions in nanozymes: Spatially separated active sites inside Ag-Core–Porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. Journal of the American Chemical Society, 141, 14093–14097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogunkunle, C. O., Jimoh, M. A., Asogwa, N. T., Viswanathan, K., Vishwakarma, V., & Fatoba, P. O. (2018). Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate. Ecotoxicology and Environmental Safety, 155, 86–93.

    Article  CAS  PubMed  Google Scholar 

  • Ozel, F., Kockar, H., & Karaagac, O. (2015). Growth of iron oxide nanoparticles by hydrothermal process: Effect of reaction parameters on the nanoparticle size. Journal of Superconductivity and Novel Magnetism, 28, 823–829.

    Article  CAS  Google Scholar 

  • Pack, C.-G., Paulson, B., Shin, Y., Jung, M. K., Kim, J. S., & Kim, J. K. (2021). Variably sized and multi-colored silica-nanoparticles characterized by fluorescence correlation methods for cellular dynamics. Materials, 14, 19.

    Article  CAS  Google Scholar 

  • Palmer, C. M., & Guerinot, M. L. (2009). Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 5, 333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmgren, M. G., Clemens, S., Williams, L. E., Krämer, U., Borg, S., Schjørring, J. K., & Sanders, D. (2008). Zinc biofortification of cereals: Problems and solutions. Trends in Plant Science, 13, 464–473.

    Article  CAS  PubMed  Google Scholar 

  • Parra-Nieto, J., Del Cid, M. A. G., De Cárcer, I. A., & Baeza, A. (2021). Inorganic porous nanoparticles for drug delivery in antitumoral therapy. Biotechnology Journal, 16, 2000150.

    Article  CAS  Google Scholar 

  • Pérez-De-Luque, A., & Rubiales, D. (2009). Nanotechnology for parasitic plant control. Pest Management Science: Formerly Pesticide Science, 65, 540–545.

    Article  CAS  Google Scholar 

  • Plohl, O., Gyergyek, S., & Zemljič, L. F. (2021). Mesoporous silica nanoparticles modified with N-rich polymer as a potentially environmentally-friendly delivery system for pesticides. Microporous and Mesoporous Materials, 310, 110663.

    Article  CAS  Google Scholar 

  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Ramimoghadam, D., Hussein, M. Z. B., & Taufiq-Yap, Y. H. (2013). Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate. Chemistry Central Journal, 7, 1–10.

    Article  CAS  Google Scholar 

  • Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., El-Sheery, N. I., & Brestic, M. (2019). Application of silicon nanoparticles in agriculture. 3 Biotech, 9, 1–11.

    Article  Google Scholar 

  • Raut, A. V., Jadhav, S., Shengule, D., & Jadhav, K. (2016). Structural and magnetic characterization of 100-kGy Co 60 γ-ray-irradiated ZnFe 2 O 4 NPs by XRD, W–H plot and ESR. Journal of Sol-Gel Science and Technology, 79, 1–11.

    Article  CAS  Google Scholar 

  • Ravet, K., & Pilon, M. (2013). Copper and iron homeostasis in plants: The challenges of oxidative stress. Antioxidants & Redox Signaling, 19, 919–932.

    Article  CAS  Google Scholar 

  • Ren, D., Xu, J., Chen, N., Ye, Z., Li, X., Chen, Q., & Ma, S. (2021). Controlled synthesis of mesoporous silica nanoparticles with tunable architectures via oil-water microemulsion assembly process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125773.

    Article  CAS  Google Scholar 

  • Richter, A. P., Brown, J. S., Bharti, B., Wang, A., Gangwal, S., Houck, K., Hubal, E. A. C., Paunov, V. N., Stoyanov, S. D., & Velev, O. D. (2015). An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nature Nanotechnology, 10, 817–823.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature, 397, 694–697.

    Article  CAS  PubMed  Google Scholar 

  • Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., & Hou, T. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science, 7, 815.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabir, S., Arshad, M., & Chaudhari, S. K. (2014). Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. The Scientific World Journal, 2014.

    Google Scholar 

  • Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 9, 7591–7621.

    Article  CAS  PubMed  Google Scholar 

  • Safi, R., Ghasemi, A., Shoja-Razavi, R., Ghasemi, E., & Sodaee, T. (2016). Rietveld structure refinement, cations distribution and magnetic features of CoFe2O4 nanoparticles synthesized by co-precipitation, hydrothermal, and combustion methods. Ceramics International, 42, 6375–6382.

    Article  CAS  Google Scholar 

  • Said, A., Zhang, Q., Qu, J., Liu, Y., Lei, Z., Hu, H., & Xu, Z. (2018). Mechanochemical activation of phlogopite to directly produce slow-release potassium fertilizer. Applied Clay Science, 165, 77–81.

    Article  CAS  Google Scholar 

  • Samavini, R., Sandaruwan, C., De Silva, M., Priyadarshana, G., Kottegoda, N., & Karunaratne, V. (2018). Effect of citric acid surface modification on solubility of hydroxyapatite nanoparticles. Journal of Agricultural and Food Chemistry, 66, 3330–3337.

    Article  CAS  PubMed  Google Scholar 

  • Santana, I., Wu, H., Hu, P., & Giraldo, J. P. (2020). Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nature Communications, 11, 1–12.

    Article  CAS  Google Scholar 

  • Sanz, A., Pike, S., Khan, M. A., Carrió-Seguí, À., Mendoza-Cózatl, D. G., Peñarrubia, L., & Gassmann, W. (2019). Copper uptake mechanism of Arabidopsis thaliana high-affinity COPT transporters. Protoplasma, 256, 161–170.

    Article  PubMed  Google Scholar 

  • Sarkar, D. J., & Singh, A. (2017). Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites. Carbohydrate Polymers, 156, 303–311.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., & Wiesner, M. R. (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology, 10, 257–278.

    Article  CAS  PubMed  Google Scholar 

  • Semida, W. M., Abdelkhalik, A., Mohamed, G., El-Mageed, A., Taia, A., El-Mageed, A., Shimaa, A., Rady, M. M., & Ali, E. F. (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants, 10, 421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafigh, M., Hamidpour, M., Abbaszadeh-Dahaji, P., Mozafari, V., & Furrer, G. (2019). Bioavailability of Zn from layered double hydroxides: The effects of plant growth-promoting rhizobacteria (PGPR). Applied Clay Science, 182, 105283.

    Article  CAS  Google Scholar 

  • Shan, Y., Cao, L., Muhammad, B., Xu, B., Zhao, P., Cao, C., & Huang, Q. (2020). Iron-based porous metal–organic frameworks with crop nutritional function as carriers for controlled fungicide release. Journal of Colloid and Interface Science, 566, 383–393.

    Article  CAS  PubMed  Google Scholar 

  • Shan, Y., Cao, L., Xu, C., Zhao, P., Cao, C., Li, F., Xu, B., & Huang, Q. (2019). Sulfonate-functionalized mesoporous silica nanoparticles as carriers for controlled herbicide diquat dibromide release through electrostatic interaction. International Journal of Molecular Sciences, 20, 1330.

    Article  CAS  PubMed Central  Google Scholar 

  • Siddiqui, H., Ahmed, K. B. M., Sami, F., & Hayat, S. (2020). Silicon nanoparticles and plants: Current knowledge and future perspectives. Sustainable Agriculture Reviews, 41, 129–142.

    Article  Google Scholar 

  • Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. Journal of the American Chemical Society, 128, 14792–14793.

    Article  CAS  PubMed  Google Scholar 

  • Songkhum, P., Wuttikhun, T., Chanlek, N., Khemthong, P., & Laohhasurayotin, K. (2018). Controlled release studies of boron and zinc from layered double hydroxides as the micronutrient hosts for agricultural application. Applied Clay Science, 152, 311–322.

    Article  CAS  Google Scholar 

  • Sonkar, S. K., Roy, M., Babar, D. G., & Sarkar, S. (2012). Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale, 4, 7670–7675.

    Article  CAS  PubMed  Google Scholar 

  • Spielman-Sun, E., Avellan, A., Bland, G. D., Clement, E. T., Tappero, R. V., Acerbo, A. S., & Lowry, G. V. (2020). Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale, 12, 3630–3636.

    Article  CAS  PubMed  Google Scholar 

  • Spielman-Sun, E., Avellan, A., Bland, G. D., Tappero, R. V., Acerbo, A. S., Unrine, J. M., Giraldo, J. P., & Lowry, G. V. (2019). Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environmental Science: Nano, 6, 2508–2519.

    CAS  Google Scholar 

  • Spielman-Sun, E., Lombi, E., Donner, E., Howard, D., Unrine, J. M., & Lowry, G. V. (2017). Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environmental Science & Technology, 51, 7361–7368.

    Article  CAS  Google Scholar 

  • Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26, 62–69.

    Article  Google Scholar 

  • Sturikova, H., Krystofova, O., Huska, D., & Adam, V. (2018). Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials, 349, 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Subbiah, R., Veerapandian, M., Yun, S., & K. (2010). Nanoparticles: Functionalization and multifunctional applications in biomedical sciences. Current Medicinal Chemistry, 17, 4559–4577.

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2014). Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 44, 1128–1131.

    Article  CAS  Google Scholar 

  • Szameitat, A. E., Sharma, A., Minutello, F., Pinna, A., Er-Rafik, M., Hansen, T. H., Persson, D. P., Andersen, B., & Husted, S. (2021). Unravelling the interactions between nano-hydroxyapatite and the roots of phosphorus deficient barley plants. Environmental Science: Nano, 8, 444–459.

    CAS  Google Scholar 

  • Tadic, M., Panjan, M., Damnjanovic, V., & Milosevic, I. (2014). Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Applied Surface Science, 320, 183–187.

    Article  CAS  Google Scholar 

  • Tarafdar, J., Raliya, R., Mahawar, H., & Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research, 3, 257–262.

    Article  CAS  Google Scholar 

  • Taşkin, M. B., Şahin, Ö., Taskin, H., Atakol, O., Inal, A., & Gunes, A. (2018). Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. Journal of Plant Nutrition, 41, 1148–1154.

    Article  CAS  Google Scholar 

  • Tiwari, A., Mamedov, F., Grieco, M., Suorsa, M., Jajoo, A., Styring, S., Tikkanen, M., & Aro, E.-M. (2016). Photodamage of iron–Sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nature Plants, 2, 1–9.

    Article  CAS  Google Scholar 

  • Torabian, S., Zahedi, M., & Khoshgoftarmanesh, A. (2016). Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. Journal of Agriculture, Science and Technology, 18, 1013–1025.

    Google Scholar 

  • Torney, F., Trewyn, B. G., Lin, V. S.-Y., & Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2, 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Accounts of Chemical Research, 40, 846–853.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, S., Sonkar, S. K., & Sarkar, S. (2011). Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale, 3, 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  • Tsou, C.-J., Hung, Y., & Mou, C.-Y. (2014). Hollow mesoporous silica nanoparticles with tunable shell thickness and pore size distribution for application as broad-ranging pH nanosensor. Microporous and Mesoporous Materials, 190, 181–188.

    Article  CAS  Google Scholar 

  • Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39, 2804–2814.

    Article  CAS  Google Scholar 

  • Uzu, G., Sobanska, S., Sarret, G., Munoz, M., & Dumat, C. (2010). Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science & Technology, 44, 1036–1042.

    Article  CAS  Google Scholar 

  • Verma, G., Barick, K., Manoj, N., Sahu, A., & Hassan, P. (2013). Rod-like micelle templated synthesis of porous hydroxyapatite. Ceramics International, 39, 8995–9002.

    Article  CAS  Google Scholar 

  • Verma, Y., Datta, S., Mandal, I. K., & Sarkar, D. (2016). Effect of phosphorus loaded organically modified nanoclay-polymer composite on release and fixation of phosphorus and its uptake by wheat (Triticum aestivum L.). Journal of Pure and Applied Microbiology, 10, 2299–2306.

    CAS  Google Scholar 

  • Vu, K. B., Phung, T. K., Tran, T. T., Mugemana, C., Giang, H. N., & Nhi, T. L. P. (2021). Polystyrene nanoparticles prepared by nanoprecipitation: A recyclable template for fabricating hollow silica. Journal of Industrial and Engineering Chemistry, 97, 307.

    Article  CAS  Google Scholar 

  • Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5, 30–42.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P., Lombi, E., Zhao, F.-J., & Kopittke, P. M. (2016). Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science, 21, 699–712.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Zhang, P., Gao, J., Chen, X., & Yang, H. (2015a). Facile synthesis and magnetic properties of Fe3C/C nanoparticles via a sol–gel process. Dyes and Pigments, 112, 305–310.

    Article  CAS  Google Scholar 

  • Wang, X. D., Rabe, K. S., Ahmed, I., & Niemeyer, C. M. (2015b). Multifunctional silica nanoparticles for covalent immobilization of highly sensitive proteins. Advanced Materials, 27, 7945–7950.

    Article  CAS  PubMed  Google Scholar 

  • Wei, H., Wang, H., Chu, H., & Li, J. (2019). Preparation and characterization of slow-release and water-retention fertilizer based on starch and halloysite. International Journal of Biological Macromolecules, 133, 1210–1218.

    Article  CAS  PubMed  Google Scholar 

  • Wei, M., Gao, Y., Li, X., & Serpe, M. J. (2017). Stimuli-responsive polymers and their applications. Polymer Chemistry, 8, 127–143.

    Article  CAS  Google Scholar 

  • WHO (2009). Recommendations on wheat and maize flour fortification meeting report: Interim consensus statement. World Health Organization.

    Google Scholar 

  • Wibowo, D., Zhao, C.-X., Peters, B. C., & Middelberg, A. P. (2014). Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. Journal of Agricultural and Food Chemistry, 62, 12504–12511.

    Article  CAS  PubMed  Google Scholar 

  • Wong, M. H., Misra, R. P., Giraldo, J. P., Kwak, S.-Y., Son, Y., Landry, M. P., Swan, J. W., Blankschtein, D., & Strano, M. S. (2016). Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: A universal localization mechanism. Nano Letters, 16, 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, T., Dumat, C., Dappe, V., Vezin, H., Schreck, E., Shahid, M., Pierart, A., & Sobanska, S. (2017). Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environmental Science & Technology, 51, 5242–5251.

    Article  CAS  Google Scholar 

  • Xu, Z., Gao, Z., & Shao, X. (2018). Light-triggered release of insecticidally active spirotetramat-enol. Chinese Chemical Letters, 29, 1648–1650.

    Article  CAS  Google Scholar 

  • Yadav, R. S., Havlica, J., Hnatko, M., Šajgalík, P., Alexander, C., Palou, M., Bartoníčková, E., Boháč, M., Frajkorová, F., & Masilko, J. (2015). Magnetic properties of Co1− xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. Journal of Magnetism and Magnetic Materials, 378, 190–199.

    Article  CAS  Google Scholar 

  • Yang, J., Gao, Y., Zhou, Z., Tang, J., Tang, G., Niu, J., Chen, X., Tian, Y., Li, Y., & Cao, Y. (2021). A simple and green preparation process for PRO@ PIL-PHS-PEC microcapsules by using phosphonium ionic liquid as a multifunctional additive. Chemical Engineering Journal, 424, 130371.

    Article  CAS  Google Scholar 

  • Yang, Y.-J., Tao, X., Hou, Q., Ma, Y., Chen, X.-L., & Chen, J.-F. (2010). Mesoporous silica nanotubes coated with multilayered polyelectrolytes for pH-controlled drug release. Acta Biomaterialia, 6, 3092–3100.

    Article  CAS  PubMed  Google Scholar 

  • Ye, F., Qin, J., Toprak, M. S., & Muhammed, M. (2011). Multifunctional core–shell nanoparticles: Superparamagnetic, mesoporous, and thermosensitive. Journal of Nanoparticle Research, 13, 6157–6167.

    Article  CAS  Google Scholar 

  • Yi, Z., Hussain, H. I., Feng, C., Sun, D., She, F., Rookes, J. E., Cahill, D. M., & Kong, L. (2015). Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery. ACS Applied Materials & Interfaces, 7, 9937–9946.

    Article  CAS  Google Scholar 

  • Yuan, G. (2014). An organoclay formula for the slow release of soluble compounds. Applied Clay Science, 100, 84–87.

    Article  CAS  Google Scholar 

  • Yuan, L., Tang, Q., Yang, D., Zhang, J. Z., Zhang, F., & Hu, J. (2011). Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. The Journal of Physical Chemistry C, 115, 9926–9932.

    Article  CAS  Google Scholar 

  • Zafar, H., Ali, A., & Zia, M. (2017). CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Applied Biochemistry and Biotechnology, 181, 365–378.

    Article  CAS  PubMed  Google Scholar 

  • Zhai, G., Walters, K. S., Peate, D. W., Alvarez, P. J., & Schnoor, J. L. (2014). Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environmental Science & Technology Letters, 1, 146–151.

    Article  CAS  Google Scholar 

  • Zhang, G., Zhou, L., Cai, D., & Wu, Z. (2018). Anion-responsive carbon nanosystem for controlling selenium fertilizer release and improving selenium utilization efficiency in vegetables. Carbon, 129, 711–719.

    Article  CAS  Google Scholar 

  • Zhang, H., & Chen, G. (2009). Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol− gel method. Environmental Science & Technology, 43, 2905–2910.

    Article  CAS  Google Scholar 

  • Zhang, J., Li, X., Rosenholm, J. M., & Gu, H.-C. (2011). Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 361, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Chen, W., Jing, M., Liu, S., Feng, J., Wu, H., Zhou, Y., Zhang, X., & Ma, Z. (2019). Self-assembled mixed micelle loaded with natural pyrethrins as an intelligent nano-insecticide with a novel temperature-responsive release mode. Chemical Engineering Journal, 361, 1381–1391.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhu, P., Chen, L., Li, G., Zhou, F., Lu, D. D., Sun, R., Zhou, F., & Wong, C.-P. (2014). Hierarchical architectures of monodisperse porous cu microspheres: Synthesis, growth mechanism, high-efficiency and recyclable catalytic performance. Journal of Materials Chemistry A, 2, 11966–11973.

    Article  CAS  Google Scholar 

  • Zhang, Z., Wang, L., Wang, J., Jiang, X., Li, X., Hu, Z., Ji, Y., Wu, X., & Chen, C. (2012). Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Advanced Materials, 24, 1418–1423.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, P., Cao, L., Ma, D., Zhou, Z., Huang, Q., & Pan, C. (2018). Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale, 10, 1798–1806.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Q., Zhu, L., Lin, G., Chen, G., Liu, B., Zhang, L., Duan, T., & Lei, J. (2019). Controllable synthesis of porous cu-BTC@ polymer composite beads for iodine capture. ACS Applied Materials & Interfaces, 11, 42635–42645.

    Article  CAS  Google Scholar 

  • Zhu, H., Gu, X., Zuo, D., Wang, Z., Wang, N., & Yao, K. (2008). Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room-temperature ethanol sensor. Nanotechnology, 19, 405503.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., Li, J., Shen, Y., Liu, S., Zeng, N., Zhan, X., White, J. C., Gardea-Torresdey, J., & Xing, B. (2020). Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environmental Science: Nano, 7, 3901–3913.

    CAS  Google Scholar 

  • Zhu, Z.-J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O. R., Rotello, V. M., Xing, B., & Vachet, R. W. (2012). Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environmental Science & Technology, 46, 12391–12398.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasis Ghoshal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, V., Ghoshal, S. (2022). Inorganic Porous Nanoparticles as Pesticide or Nutrient Carriers. In: Fernandes Fraceto, L., Pereira de Carvalho, H.W., de Lima, R., Ghoshal, S., Santaella, C. (eds) Inorganic Nanopesticides and Nanofertilizers. Springer, Cham. https://doi.org/10.1007/978-3-030-94155-0_11

Download citation

Publish with us

Policies and ethics